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Geodesy with the Global Positioning
System

Class 4: The pseudorange and phase observables



• In previous classes we had presented the equation
for the pseudorange as the true range biased by the
satellite and clock errors

• The GPS receiver makes discrete measurements of
the pseudorange at the observation epochs tj, so
the pseudorange R can be written as

R(tj) = ρ(tj) + c[δr(tj)− δs(tj − τ)]

• Here r and s refer to receiver and satellite and ρ = cτ

is the true range of the point of transmission of the
signal to the point of reception

ρ(t) = |~xs(t− τ)− ~xr(t)|
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• Replacing every appearance of τ with ρ/c we have

R(tj) =
∣∣∣~xs(t− ρ

c)− ~xr(t)
∣∣∣+ c

[
δr(tj)− δs(tj − ρ

c)
]

• As we’ve said, ~xs and δs can be calculated using
information in the RINEX navigation file, but it ap-
pears as though we need to know the true range
just to calculate the correct epoch to evaluate these
values

• The GPS satellite orbit at an altitude of ∼20,000 km,
however the maximum range (when the satellite is
on the horizon) is ∼25,000 km

• Thus ρ
c ≤ 0.085 seconds
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• Typical clock rates are 10−12 sec/sec, so an error
of 0.085 sec leads to a clock error of ∼10−13 sec
and a range error of < 0.1 mm.

• This is negligible compared to a pseudorange mea-
surement error of ∼10 m, so we can neglect the ρ/c
term in the satellite clock error

• We still need to deal with the range itself, where
we have

ρ(t) =
∣∣∣~xs(t− ρ

c)− ~xr(t)
∣∣∣

• ρ is on both sides
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• GPS satellites move with a speed of ∼3 km/sec,

so neglecting the 0.085 sec signal propagation time

leads to a satellite position error of ∼250 m, too

large to ignore

• However, the acceleration (using a = GM/r2) is

∼0.6 m/s2, contributing to a second-order error (if

neglected in ρ) of ∼2 mm

• Thus, a first-order expansion should suffice
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• We have

ρ(t) =
∣∣∣~xs(t− ρ

c)− ~xr(t)
∣∣∣

• First-order expansion for ~xs(t):

~xs(t+ ∆t) = ~xs(t) + ~vs(t)∆t

where ~vs is satellite velocity (we’ll talk about how

to calculate later)

• Expression for ρ becomes

ρ(t) =
∣∣∣~xs(t)− ~vs(t)ρc − ~xr(t)∣∣∣
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• Let ~ρ◦(t) = ~xs(t)− ~xr(t)

• ~ρ◦ is instantaneous topocentric range vector from

the site to the satellite. Then using | ~A| =
[
~A · ~A

]1/2

ρ(t) =
[(
~ρ◦(t)− ~vs(t)

ρ

c

)
·
(
~ρ◦(t)− ~vs(t)

ρ

c

)]1/2

=

[
ρ2
◦(t)− 2~vs(t) · ~ρ◦(t)

ρ

c
+
(
vs
ρ

c

)2
]1/2

' ρ◦(t)− ~vs(t) · ρ̂◦(t)
ρ

c

• We used ρ̂◦ = ~ρ◦/ρ◦ and vs/c� 1 to neglect higher

order terms in expansion of (1 + x)1/2
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• Solving for ρ(t) yields

ρ(t) = ρ◦(t)/ [1 + ~vs(t) · ρ̂◦(t)/c]

• Letting ~β(t) = ~vs/c we can write

ρ(t) = ρ◦(t)/
[
1 + ~β(t) · ρ̂◦(t)

]

• The observable equation for the pseudorange is

R(tj) = ρ◦(t)/
[
1 + ~β(tj) · ρ̂◦(tj)

]
+ c

[
δr(tj)− δs(tj)

]

• This is still for propagation in vacuum. We haven’t
yet considered the atmospheric propagation media.
(Next time.)
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Design Matrix for Pseudorange

• The least-squares solution requires a design matrix
with the partial derivatives of the observation with
respect to the unknown parameters

• Observation equation with explicit unknowns:

R =
[
(xs−xr)2+(ys−yr)2+(ys−yr)2

]1/2

1+~β·ρ̂◦
+ c [δr − δs]

• I’ve pretended that ρ̂◦ doesn’t depend on xr, yr, and
zr, because it is a weak dependence compared to
numerator, so I will approximate ∂ρ̂◦/∂xr ' 0 and
so on
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• Then the partial derivatives with respect to carte-

sian components of unknown receiver position are

∂R
xr
' −x

s−xr
ρ◦

∂R
yr
' −y

s−yr
ρ◦

∂R
zr
' −z

s−zr
ρ◦

• Note that these partial derivatives are typically of

order of magnitude 1 and are unit less

• The partial derivative with respect to the unknown

receiver clock error is ∂R/∂δr ' c

• These partials are of order 3×109 if the observation

is in meters and the clock error is in seconds
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• Therefore it is useful to define clock error in units

of length δ′r = c δr and then ∂R/∂δ′r ' 1

• This makes the inversion much more stable (could

also scale)
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Nonlinear Least-squares Solutions

• The design matrix depends on the prior values for

the position coordinates

• Example for x:

∂R
∂xr

∣∣∣
~xr=~xar

' −x
s−xar
ρa◦

• Superscript a stands for a priori

• In least-squares parlance, this is a non-linear prob-

lem
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Nonlinear Least-squares Solutions

• One common way to solve this is to iterate

1. Solve for adjustment from a priori parameter val-
ues, calculate a posteriori parameter estimates

2. Use the a posteriori value from the solution as a
new a prior values, and go back to step 1

3. Continue until some criterion is met (e.g., RMS
fit doesn’t change)

• Iteration works if there are no local χ2 minima near
to the starting point, and if the problem is not “too
nonlinear”
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Least-squares solution with pseudoranges

• In our project, as in many situations, the site posi-

tion is fixed over 24 hours

• However, the clock error may vary greatly even over

30 sec (the observation interval for the data set )

• With standard least squares, you’ll have only one xr,

yr, and zr, but number of clock correction parame-

ters is equal to number of observations (∼2880)

• Pseudorange solution is often called clock solution
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Dilution of Precision (DOP)

• Normalized standard deviation of an estimate

• Geometric DOP GDOP = [σ2
n + σ2

e + σ2
u + σ2

δ ]1/2/σobs

• Vertical DOP VDOP = σu/σobs

• Horizontal DOP HDOP = [σ2
n + σ2

e ]1/2/σobs
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Dilution of Precision (DOP)

• Position DOP PDOP = [σ2
n + σ2

e + σ2
u]1/2/σobs

• Time DOP TDOP = σδ/σobs

• Good achievable DOPS are in the range < 4

• Note that σ2
n + σ2

e + σ2
u = σ2

x + σ2
y + σ2

z
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Carrier beat phase observable

• Code (pseudrange) solutions are intended for in-

stantaneous positioning with 1–100 m accuracy

• In geodesy, we need a much more accurate observ-

able. Therefore geodetic receivers use the carrier

beat phase.

• The idea of “beating” comes from the concept of

“mixing” (or “heterodyning”) two signals by multi-

plying them
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Signal mixing

• Mix signals S1(t) = A1 cos 2πf1t and S2(t) = A2 cos 2πf2t:

M(t) = A1A2 cos 2πf1t cos 2πf2t

• Trig identity 2 cosα cosβ = cos(α− β) + cos(α+ β)

M(t) = A1A2
2 cos 2π(f1 + f2)t+ A1A2

2 cos 2π(f1− f2)t

• Mixed signal has two frequency components: f1+f2
and f1 − f2

• Band-pass filtering can be used to select one of the
components
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Carrier beat phase

• Once we have tracked the codes on L1 and L2, we

can reconstruct the carrier signals

• The receiver can then mix the reconstructed carrier

signal with a sinusoidal signal generated by the local

oscillator

• If we LPF, the carrier beat phase is the difference

between the phase of the received GPS signal and

the internal signal

21



22



Carrier beat phase

• The carrier beat phase is the difference between the

phase of the GPS signal and the phase of the LO

• The phase of the LO (cycles) is

φLO(t) = fLO(t− t◦) + φ◦LO

• The phase of the GPS signal is the phase of the

transmitted signal, delayed by the time it took to

propagate from the GPS SV to the antenna:

φrec(t) = φSV (t− τ) = fSV (t− τ − t◦) + φ◦SV
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Carrier beat phase

• The carrier beat phase (in cycles) is the difference

∆φ = φrec(t)− φLO(t)

= fSV (t− τ − t◦) + φ◦SV − fLO(t− t◦)− φ◦LO

• Initially phase (in radians) is measured modulo 2π
(Once lock achieved, phase is tracked continuously)

• Unknown integer number of cycles N (“ambiguity”)

• Sign is arbitrary (i.e., could define ∆φ = φLO−φrec)
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Carrier beat phase

• Ideally, the frequency used in the SV and in the re-

ceiver are the GPS L1 or L2 frequencies ad therefore

the same as each other

• In practice, there is a small variation in the frequen-

cies used in the satellite and receiver oscillators:

fSV = f◦+ δfSV (t) fLO = f◦+ δfLO(t)
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Carrier beat phase

• So we find that

∆φ = −f◦τ + ∆φ◦+N

+ δfSV (t)(t− t◦)− δfLO(t)(t− t◦)
− δfSV (t)τ

• We defined ∆φ◦ = φ◦SV − φ
◦
LO

• The last three terms are clock errors and arise for
the same reason that the clock errors arise in the
pseudorange, since the onboard frequency standard
is the SV’s clock
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Carrier beat phase

∆φ = −f◦τ + ∆φ◦+N

+ δfSV (t)(t− t◦)− δfLO(t)(t− t◦)
− δfSV (t)τ

• Two terms depend on τ

• For δfSV /f◦ ' 10−12 and τ ' 0.09 sec, last term

is less than ∼10−4 cycles or 0.02 mm and will be

neglected
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Carrier beat phase

• Writing clock terms as for the pseudorange, we have

∆φsr(t) = −f◦τsr (t) + ∆φ
s,◦
r +Ns

r + f◦[δs(t)− δr(t)]

1. Added explicit notation for receiver r and satel-

lite s

2. Added explicit time dependence

3. Omitted observational error εsr(t)
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Carrier beat phase

• If we write phase in units of distance, we have

∆φsr(t) = λ
(
−f◦τsr (t) + ∆φs,◦r +Ns

r + f◦[δs(t)− δr(t)]
)

= −cτsr (t) + c[δs(t)− δr(t)] + λ∆φs,◦r + λNs
r

• Note similarity to pseudorange equation

Rsr(t) = cτsr (t) + c [δr(t)− δs(t)]
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