EESC 9945

Geodesy with the Global Positioning System

Classes 10: Stochastic Filters I

Sequential Least Squares

- A type of constrained least-squares solution in which the entire observation set is broken down into *independent* subsets ("batches") that are analyzed sequentially
- At each stage, results from the previous analysis are used as the a priori solution in the subsequent analysis
- Sequential least-squares can be used to process data in real time, and can be extended to the case where the parameter values chance in time

Sequential Least Squares

- 1. Starting parameter estimates \hat{x}_{\circ} , Λ_{\circ}
- 2. For each data set y_k with corresponding error covariance G_k , k = 1, ..., n:
 - (a) We use \hat{x}_{k-1} , Λ_{k-1} as prior constraints (dropping hats)
 - (b) Design matrix for batch A_k
 - (c) Prefit residuals $\Delta y_k = y_k A_k \hat{x}_k$ (assume linear)
 - (d) Adjustments $\Delta \hat{x}_k = \hat{x}_k \hat{x}_{k-1}$

Sequential Least Squares

3. Using constrained least-squares that we've used perviously, solutions are:

$$\hat{x}_{k} = \hat{x}_{k-1} + \left(A_{k}^{T}G_{k}^{-1}A_{k} + \Lambda_{k-1}^{-1}\right)^{-1}A_{k}G_{k}^{-1}\left(y_{k} - A_{k}\hat{x}_{k-1}\right)$$

and

$$\boldsymbol{\Lambda}_{k} = \left(\boldsymbol{A}_{k}^{T}\boldsymbol{G}_{k}^{-1}\boldsymbol{A}_{k} + \boldsymbol{\Lambda}_{k-1}^{-1}\right)^{-1}$$

Note: k does not have to index time, but it commonly does

Practical Considerations

- If new data are acquired, we don't have to reanalyze the entire batch, only add new batch
- A new batch can have as few as $N_k = 1$ observation
- With M parameters, for each batch we have to perform two inversions of M × M symmetric matrices, or store Λ_{k-1} and perform one inversion

Sequential Least Squares: Alternative Formulation

• Standard formulation:

$$\hat{x}_{k} = \hat{x}_{k-1} + \left(A_{k}^{T}G_{k}^{-1}A_{k} + \Lambda_{k-1}^{-1}\right)^{-1}A_{k}G_{k}^{-1}\left(y_{k} - A_{k}\hat{x}_{k-1}\right)$$
$$\Lambda_{k} = \left(A_{k}^{T}G_{k}^{-1}A_{k} + \Lambda_{k-1}^{-1}\right)^{-1}$$

• Matrix identities ("inside out"):

$$(A^{T}G^{-1}A + \Lambda^{-1})^{-1} A^{T}G^{-1} = \Lambda A^{T} (A\Lambda A^{T} + G)^{-1}$$
$$(A^{T}G^{-1}A + \Lambda^{-1})^{-1} = \Lambda - \Lambda A^{T} (A\Lambda A^{T} + G)^{-1} A\Lambda$$

Sequential Least Squares: Alternative Formulation

• Therefore, we can write the sequential least-squares solution as

$$\hat{x}_{k} = \hat{x}_{k-1} + \Lambda_{k-1} A_{k}^{T} \left(A_{k} \Lambda_{k-1} A_{k}^{T} + G_{k} \right)^{-1} \left(y_{k} - A_{k} \hat{x}_{k-1} \right)$$
$$\Lambda_{k} = \Lambda_{k-1} - \Lambda_{k-1} A_{k}^{T} \left(A_{k} \Lambda_{k-1} A_{k}^{T} + G_{k} \right)^{-1} A_{k} \Lambda_{k-1}$$

- The standard approach has a matrix inversion of order M (# params): $A^T G^{-1} A + \Lambda^{-1}$
- The alternative approach has a matrix inversion of order N (# obs this batch): $A \wedge A^T + G$

Gain Matrix

• Define the gain matrix K as

$$K_k = \Lambda_{k-1} A_k^T \left(A_k \Lambda_{k-1} A_k^T + G_k \right)^{-1}$$

• Then the sequential least-squares solution can be written as

$$\hat{x}_k = \hat{x}_{k-1} + K_k \left(y_k - A_k \hat{x}_{k-1} \right)$$
$$\Lambda_k = \Lambda_{k-1} - K_k A_k \Lambda_{k-1} = \left(I - K_k A_k \right) \Lambda_{k-1}$$

Gain Matrix

 $K_k = \Lambda_{k-1} A_k^T \left(A_k \Lambda_{k-1} A_k^T + G_k \right)^{-1} \quad \hat{x}_k = \hat{x}_{k-1} + K_k \Delta y_k \quad \Lambda_k = \left(I - K_k A_k \right) \Lambda_{k-1}$

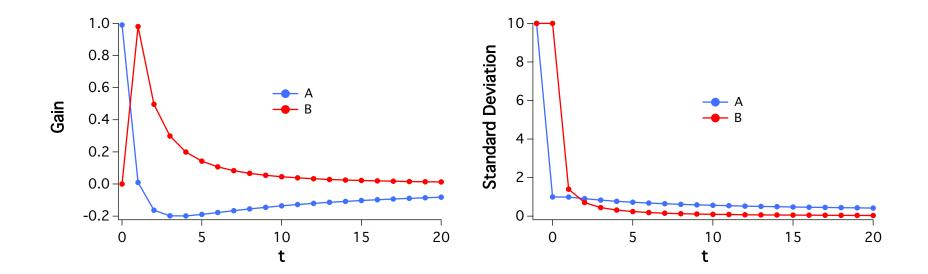
- What is meaning of *K*?
- Case 1: $K_k = 0$

- $\hat{x}_k = \hat{x}_{k-1}$ and $\Lambda_{k-1} = \Lambda_k$

- No information in *new* observations y_k
- Case 2: $K_k A_k = I$
 - Implies A_k^{-1} exists and G = 0
 - Then $\hat{x}_k = A_k^{-1} y_k$ and $\Lambda_k = 0$
 - No information in old observations
- Note that K_k does not depend on the observations

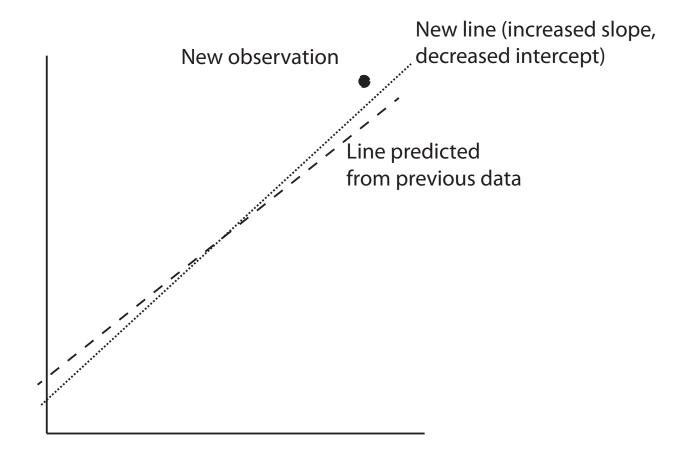
Example

Model: $y_k = a + bk$ with $\sigma = 1$, $\sigma_{a,\circ} = \sigma_{b,\circ} = 100$

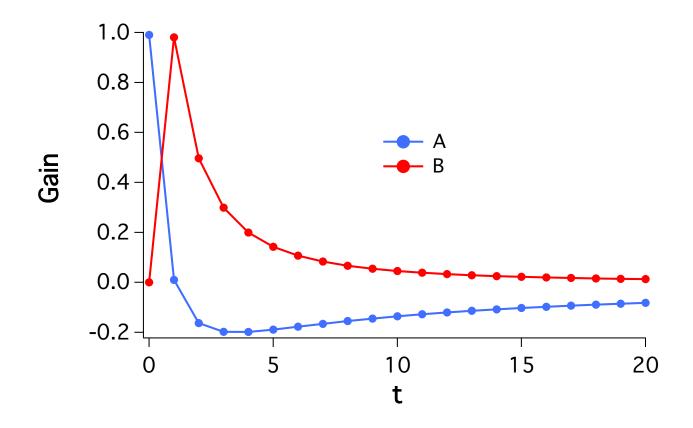


10

Why positive gain for intercept and negative for slope?



Example



Linear Dynamic Systems

- State vector: Set of quantities sufficient to completely describe "unforced" motion of dynamic system
- Transition matrix S relates the states at t_1 and t_2

$$x(t_2) = S(t_1, t_2)x(t_1)$$

• Properties of S:

$$-S(t,t)=I$$

$$-S(t_1, t_3) = S(t_1, t_2)S(t_2, t_1)$$

$$-S(t_1, t_2)S(t_2, t_1) = I$$

Example: 1-D velocity

If the state vector is

$$x(t) = \left[\begin{array}{c} z(t) \\ \dot{z}(t) \end{array}\right]$$

Then we might have

$$x(t_2) = \begin{pmatrix} 1 & t_2 - t_1 \\ 0 & 1 \end{pmatrix} x(t_1)$$

Note that in this model $\dot{z}(t)$ is constant

State Estimates

- Suppose we have an estimate $\hat{x}(t_1)$ of the state at time t_1 with covariance $\Lambda(t_1)$
- The estimate is a random variable, whether or not the state is
- We relate $\hat{x}(t_1)$ to the expectation (mean, $\langle \cdot \rangle$) and Λ to the mean-square error:

$$\widehat{x}(t_1) = \langle x(t_1) \rangle$$
$$\wedge = \left\langle [\widehat{x}(t_1) - x(t_1)] [\widehat{x}(t_1) - x(t_1)]^T \right\rangle$$

Covariance Propagation

• Given the estimate $\hat{x}(t_1)$ and covariance $\Lambda(t_1)$, what are the estimate and covariance at $t_2 \ge t_1$?

$$\hat{x}(t_2) = \langle x(t_2) \rangle = \langle S(t_1, t_2) x(t_1) \rangle$$

= $S(t_1, t_2) \langle x(t_1) \rangle$
= $S(t_1, t_2) \hat{x}(t_1)$

$$\begin{aligned} \wedge(t_2) &= \left\langle [\hat{x}(t_2) - x(t_2)] [\hat{x}(t_2) - x(t_2)]^T \right\rangle \\ &= \left\langle S(t_1, t_2) [\hat{x}(t_1) - x(t_1)] [\hat{x}(t_1) - x(t_1)]^T S(t_1, t_2)^T \right\rangle \\ &= S(t_1, t_2) \left\langle [\hat{x}(t_1) - x(t_1)] [\hat{x}(t_1) - x(t_1)]^T \right\rangle S(t_1, t_2)^T \\ &= S(t_1, t_2) \wedge(t_1) S(t_1, t_2)^T
\end{aligned}$$

Covariance Propagation: Example

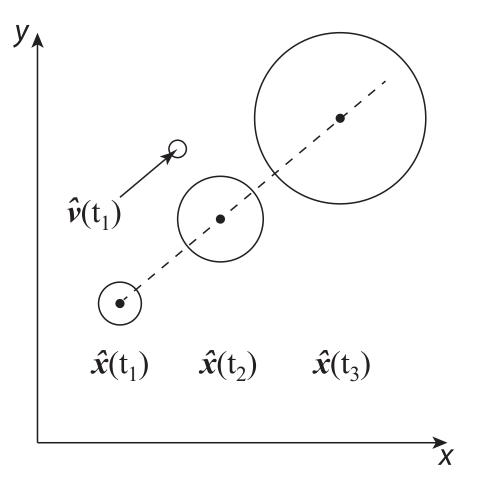
• Constant rate
$$S(t_1, t_2) = \begin{pmatrix} 1 & \Delta t \\ 0 & 1 \end{pmatrix}$$
, $\Delta t = t_2 - t_1$

• Assume
$$\Lambda(t_1) = \begin{pmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_v^2 \end{pmatrix}$$

• Then
$$\Lambda(t_2) = \Lambda(t_1 + \Delta t) = \begin{pmatrix} \sigma_x^2 + \sigma_v^2 (\Delta t)^2 & \sigma_v^2 \Delta t \\ \sigma_v^2 \Delta t & \sigma_v^2 \end{pmatrix}$$

• Note correlations introduced between x and v state parameters

State vector with 2-D position and velocity



Estimation of state vector parameters

- In many problems, parameters of the state vector are unknown and targets of an estimation procedure
- The entire state vector must be included as parameters in the least-squares solution
- For example, in constant velocity example, if we wish to estimate position we also need to include velocity in our least-squares parameter vector
- How does having a dynamic system change the sequential least squares solution?

Sequential least squares (No dynamics)

- 1. Starting parameter estimates \hat{x}_{\circ} , Λ_{\circ}
- 2. For each data set y_k with corresponding error covariance G_k , k = 1, ..., n:
 - (a) We use \hat{x}_{k-1} , Λ_{k-1} as prior constraints
 - (b) Design matrix for batch A_k
 - (c) Prefit residuals $\Delta y_k = y_k A_k \hat{x}_k$ (assume linear)
 - (d) Adjustments $\Delta \hat{x}_k = \hat{x}_k \hat{x}_{k-1}$

Sequential least squares (No dynamics)

- 1. Starting parameter estimates \hat{x}_{\circ} , Λ_{\circ}
- 2. For each data set y_k with corresponding error covariance G_k , k = 1, ..., n:
 - (a) We use \hat{x}_{k-1} , Λ_{k-1} as prior constraints
 - (b) Design matrix for batch A_k
 - (c) Prefit residuals $\Delta y_k = y_k A_k \hat{x}_k$ (assume linear)
 - (d) Adjustments $\Delta \hat{x}_k = \hat{x}_k \hat{x}_{k-1}$

Prediction

- 1. Epochs t_0, t_1, \ldots, t_n (not necessarily equally spaced)
- 2. Transition matrix $S(t_{k-1}, t_k) \rightarrow S_k$
- 3. Estimate of state determined using data $\forall t \leq t_k$
- 4. We will write this as $\widehat{x}_{k|k}$, $\Lambda_{k|k}$

5. Prediction is
$$\hat{x}_{k+1|k} = S_k \hat{x}_{k|k}$$
, $\Lambda_{k+1|k} = S_k \Lambda_{k|k} S_k^T$

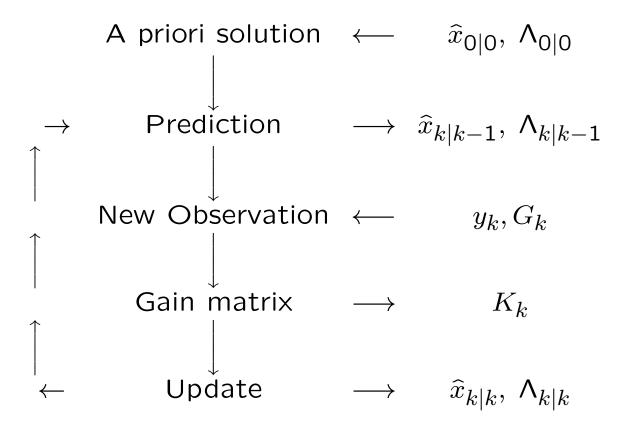
Sequential least squares with dynamics

- 1. Starting parameter estimates $\hat{x}_{0|0}$, $\Lambda_{0|0}$
- 2. For each data set y_k & covariance G_k, k = 1,...,n:
 (a) Prediction

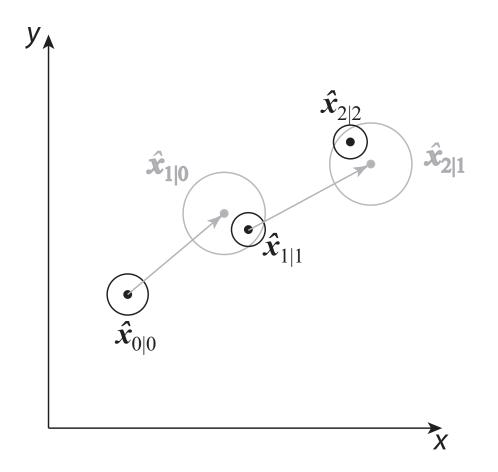
$$\begin{aligned} \widehat{x}_{k|k-1} &= S_k \, \widehat{x}_{k-1|k-1} & \wedge_{k|k-1} &= S_k \, \wedge_{k-1|k-1} \, S_k^T \end{aligned}$$
(b) Gain $K_k &= \Lambda_{k|k-1} A_k^T \left(A_k \Lambda_{k|k-1} A_k^T + G_k \right)^{-1}$
(c) Update

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k \Delta y_k \qquad \Lambda_{k|k} = (I - K_k A_k) \Lambda_{k|k-1}$$

Sequential least squares with dynamics



State vector with 2-D position and velocity with observations



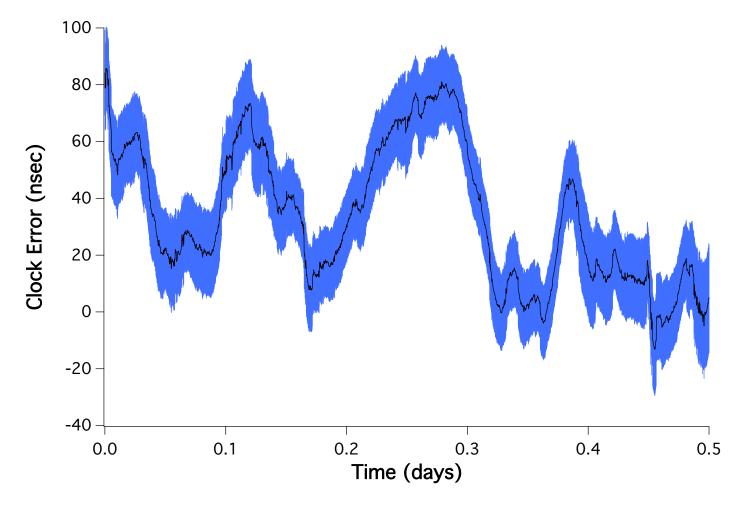
Introduction

- Stochastic filters estimation of a stochastic process
- A stochastic process is a collection of random variables indexed by \boldsymbol{t}
- Given the value of the process at time t_1 (and past values), it is not possible to predict with 100% certainty what its value will be at time $t_2 > t_1$
- Such processes are described by the familiar mathematics of probability and random variables

GPS-related examples of stochastic processes

- The wet delay, which is controlled over a range of timescales by turbulent transport of water vapor
- Site and satellite clocks errors
- GPS antenna positions under certain circumstances (vehicle tracking, glacier motion, earthquakes)

Estimated clock errors (Gonzak receiver)



Stochastic processes and dynamic systems

• A stochastic process acts to "force" the dynamic system

$$x_k = S_k x_{k-1} + R_k \xi_k$$

• ξ_k is a zero-mean stochastic-process vector

•
$$\left\langle \xi_j \xi_k^T \right\rangle = Q_k \delta_{jk}$$

• R_k is a matrix

•
$$\left\langle R_j \xi_j x_k^T \right\rangle = 0$$
 for $j > k$

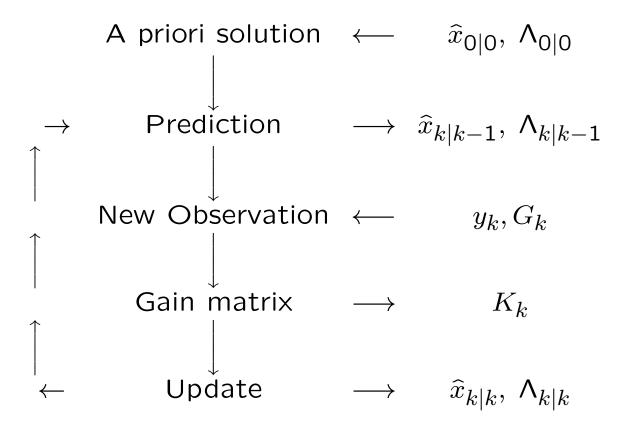
Update with stochastic process

• Since $\langle \xi_k \rangle = 0$ we have (using same math as before, and taking advantage of independence)

$$x_{k+1|k} = S_k x_{k-1|k-1}$$
$$\Lambda_{k+1|k} = S_k \Lambda_{k-1|k-1} S_k^T + R_k Q_k R_k^T$$

• How else would sequential least-squares change?

Sequential least squares with dynamics



Kalman Filter equations

Prediction

$$\widehat{x}_{k|k-1} = S_k \,\widehat{x}_{k-1|k-1}$$
$$\wedge_{k|k-1} = S_k \,\wedge_{k-1|k-1} \,S_k^T + R_k \,Q_k \,R_k^T$$

Gain

$$K_{k} = \Lambda_{k|k-1} A_{k}^{T} \left(A_{k} \Lambda_{k|k-1} A_{k}^{T} + G_{k} \right)^{-1}$$

Update

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k \Delta y_k$$
$$\Lambda_{k|k} = (I - K_k A_k) \Lambda_{k|k-1}$$

32

Point positioning example

- Let us take the example of point positioning using pseudorange with GPS
- Each epoch t_k we observe n_k satellites from a static (non-moving) receiver
- Our simplified observation equation for the jth satellite $(j = 1, ..., n_k)$ is

$$R^j(t_k) = |\vec{x}_s^j - \vec{x}^r| + c(t_k)$$

where R^{j} is the LC pseudorange corrected for the satellite clock error, \vec{x}_{s}^{j} is the satellite position, \vec{x}^{r} is receiver position, and $c(t_{k})$ is the receiver clock

Point positioning example: State vector

- We will treat the clock error as a stochastic process
- The parameter (state) vector will be

$$x_k = \begin{bmatrix} x_r \\ y_r \\ z_r \\ c_k \end{bmatrix}$$

where $c_k = c(t_k)$

Point positioning example: Noise model

- We will assume, for this example, a zero-mean Gaussian white-noise model for the clock error
- This model implies that

$$\langle c_j \rangle = 0$$
$$\langle c_j c_k \rangle = \sigma_c^2 \delta_{jk}$$

Point positioning example: Dynamic model

• Putting these two equations together we can write our dynamic model as

$$x_{k+1} = \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}}_{S_k} x_k + \underbrace{\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ R_k \end{pmatrix}}_{R_k} c_{k+1}$$

• We also have that Q_k is a scalar with $Q_k = \sigma_c^2$

Point positioning example: Prediction

• The prediction step gives us

$$\hat{x}_{k|k-1} = \begin{bmatrix} \hat{x}_{k-1|k-1}^{r} \\ \hat{y}_{k-1|k-1}^{r} \\ \hat{z}_{k-1|k-1}^{r} \\ 0 \end{bmatrix}$$
$$\wedge_{k|k-1} = \begin{pmatrix} \frac{P_{k-1|k-1} & 0}{0 & \sigma_{c}^{2}} \end{pmatrix}$$

where \boldsymbol{P} is the position sub matrix of the covariance matrix