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Sequential Least Squares

• A type of constrained least-squares solution in which
the entire observation set is broken down into in-
dependent subsets (“batches”) that are analyzed
sequentially

• At each stage, results from the previous analysis
are used as the a priori solution in the subsequent
analysis

• Sequential least-squares can be used to process data
in real time, and can be extended to the case where
the parameter values chance in time
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Sequential Least Squares

1. Starting parameter estimates x̂◦, Λ◦

2. For each data set yk with corresponding error co-
variance Gk, k = 1, . . . , n:

(a) We use x̂k−1, Λk−1 as prior constraints (dropping
hats)

(b) Design matrix for batch Ak

(c) Prefit residuals ∆yk = yk −Akx̂k (assume linear)

(d) Adjustments ∆x̂k = x̂k − x̂k−1
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Sequential Least Squares

3. Using constrained least-squares that we’ve used per-
viously, solutions are:

x̂k = x̂k−1+
(
ATkG

−1
k Ak + Λ−1

k−1

)−1
AkG

−1
k

(
yk −Akx̂k−1

)
and

Λk =
(
ATkG

−1
k Ak + Λ−1

k−1

)−1

Note: k does not have to index time, but it commonly
does
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Practical Considerations

• If new data are acquired, we don’t have to reanalyze

the entire batch, only add new batch

• A new batch can have as few as Nk = 1 observation

• With M parameters, for each batch we have to per-

form two inversions of M ×M symmetric matrices,

or store Λk−1 and perform one inversion
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Sequential Least Squares: Alternative
Formulation

• Standard formulation:

x̂k = x̂k−1+
(
ATkG

−1
k Ak + Λ−1

k−1

)−1
AkG

−1
k

(
yk −Akx̂k−1

)
Λk =

(
ATkG

−1
k Ak + Λ−1

k−1

)−1

• Matrix identities (“inside out”):(
ATG−1A+ Λ−1

)−1
ATG−1 = ΛAT

(
AΛAT +G

)−1

(
ATG−1A+ Λ−1

)−1
= Λ− ΛAT

(
AΛAT +G

)−1
AΛ
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Sequential Least Squares: Alternative
Formulation

• Therefore, we can write the sequential least-squares
solution as

x̂k = x̂k−1+Λk−1A
T
k

(
AkΛk−1A

T
k +Gk

)−1 (
yk −Akx̂k−1

)
Λk = Λk−1 − Λk−1A

T
k

(
AkΛk−1A

T
k +Gk

)−1
AkΛk−1

• The standard approach has a matrix inversion of
order M (# params): ATG−1A+ Λ−1

• The alternative approach has a matrix inversion of
order N (# obs this batch): AΛAT +G
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Gain Matrix

• Define the gain matrix K as

Kk = Λk−1A
T
k

(
AkΛk−1A

T
k +Gk

)−1

• Then the sequential least-squares solution can be

written as

x̂k = x̂k−1 +Kk
(
yk −Akx̂k−1

)
Λk = Λk−1 −KkAkΛk−1 = (I −KkAk) Λk−1
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Gain Matrix

Kk = Λk−1A
T
k

(
AkΛk−1A

T
k +Gk

)−1
x̂k = x̂k−1+Kk∆yk Λk = (I −KkAk) Λk−1

• What is meaning of K?

• Case 1: Kk = 0

– x̂k = x̂k−1 and Λk−1 = Λk

– No information in new observations yk

• Case 2: KkAk = I

– Implies A−1
k exists and G = 0

– Then x̂k = A−1
k yk and Λk = 0

– No information in old observations

• Note that Kk does not depend on the observations
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Example

Model: yk = a+ bk with σ = 1, σa,◦ = σb,◦ = 100
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Why positive gain for intercept and negative
for slope?

Line predicted 
from previous data

New observation
New line (increased slope, 
decreased intercept)
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Example
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Linear Dynamic Systems

• State vector: Set of quantities sufficient to com-
pletely describe “unforced” motion of dynamic sys-
tem

• Transition matrix S relates the states at t1 and t2

x(t2) = S(t1, t2)x(t1)

• Properties of S:

– S(t, t) = I

– S(t1, t3) = S(t1, t2)S(t2, t1)
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– S(t1, t2)S(t2, t1) = I



Example: 1-D velocity

If the state vector is

x(t) =

[
z(t)
ż(t)

]

Then we might have

x(t2) =

(
1 t2 − t1
0 1

)
x(t1)

Note that in this model ż(t) is constant
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State Estimates

• Suppose we have an estimate x̂(t1) of the state at

time t1 with covariance Λ(t1)

• The estimate is a random variable, whether or not

the state is

• We relate x̂(t1) to the expectation (mean, 〈·〉) and

Λ to the mean-square error:

x̂(t1) = 〈x(t1)〉

Λ =
〈
[x̂(t1)− x(t1)] [x̂(t1)− x(t1)]T

〉
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Covariance Propagation

• Given the estimate x̂(t1) and covariance Λ(t1), what

are the estimate and covariance at t2 ≥ t1?

x̂(t2) = 〈x(t2)〉 = 〈S(t1, t2)x(t1)〉
= S(t1, t2) 〈x(t1)〉
= S(t1, t2) x̂(t1)

Λ(t2) =
〈
[x̂(t2)− x(t2)] [x̂(t2)− x(t2)]T

〉
=

〈
S(t1, t2) [x̂(t1)− x(t1)] [x̂(t1)− x(t1)]T S(t1, t2)T

〉
= S(t1, t2)

〈
[x̂(t1)− x(t1)] [x̂(t1)− x(t1)]T

〉
S(t1, t2)T

= S(t1, t2)Λ(t1)S(t1, t2)T

16



Covariance Propagation: Example

• Constant rate S(t1, t2) =

(
1 ∆t
0 1

)
, ∆t = t2 − t1

• Assume Λ(t1) =

(
σ2
x 0

0 σ2
v

)

• Then Λ(t2) = Λ(t1+∆t) =

(
σ2
x + σ2

v (∆t)2 σ2
v∆t

σ2
v∆t σ2

v

)

• Note correlations introduced between x and v state

parameters
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State vector with 2-D position and velocity

x

y

v(t1)ˆ

x(t1)ˆ x(t3)ˆx(t2)ˆ
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Estimation of state vector parameters

• In many problems, parameters of the state vector
are unknown and targets of an estimation procedure

• The entire state vector must be included as param-
eters in the least-squares solution

• For example, in constant velocity example, if we
wish to estimate position we also need to include
velocity in our least-squares parameter vector

• How does having a dynamic system change the se-
quential least squares solution?
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Sequential least squares (No dynamics)

1. Starting parameter estimates x̂◦, Λ◦

2. For each data set yk with corresponding error co-

variance Gk, k = 1, . . . , n:

(a) We use x̂k−1, Λk−1 as prior constraints

(b) Design matrix for batch Ak

(c) Prefit residuals ∆yk = yk −Akx̂k (assume linear)

(d) Adjustments ∆x̂k = x̂k − x̂k−1
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Sequential least squares (No dynamics)

1. Starting parameter estimates x̂◦, Λ◦

2. For each data set yk with corresponding error co-

variance Gk, k = 1, . . . , n:

(a) We use x̂k−1, Λk−1 as prior constraints

(b) Design matrix for batch Ak

(c) Prefit residuals ∆yk = yk −Akx̂k (assume linear)

(d) Adjustments ∆x̂k = x̂k − x̂k−1
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Prediction

1. Epochs t0, t1, . . . , tn (not necessarily equally spaced)

2. Transition matrix S(tk−1, tk)→ Sk

3. Estimate of state determined using data ∀t ≤ tk

4. We will write this as x̂k|k, Λk|k

5. Prediction is x̂k+1|k = Sk x̂k|k, Λk+1|k = Sk Λk|k S
T
k
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Sequential least squares with dynamics

1. Starting parameter estimates x̂0|0, Λ0|0

2. For each data set yk & covariance Gk, k = 1, . . . , n:

(a) Prediction

x̂k|k−1 = Sk x̂k−1|k−1 Λk|k−1 = Sk Λk−1|k−1 S
T
k

(b) Gain Kk = Λk|k−1A
T
k

(
AkΛk|k−1A

T
k +Gk

)−1

(c) Update

x̂k|k = x̂k|k−1+Kk∆yk Λk|k = (I −KkAk) Λk|k−1
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Sequential least squares with dynamics

A priori solution ←− x̂0|0, Λ0|0y
→ Prediction −→ x̂k|k−1, Λk|k−1x y

New Observation ←− yk, Gkx y
Gain matrix −→ Kkx y

← Update −→ x̂k|k, Λk|k
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State vector with 2-D position and velocity
with observations

x

y

x0|0ˆ

x1|1ˆ

x2|2ˆ

x1|01|0ˆ x2|12|1ˆ
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Introduction

• Stochastic filters estimation of a stochastic pro-
cess

• A stochastic process is a collection of random vari-
ables indexed by t

• Given the value of the process at time t1 (and past
values), it is not possible to predict with 100% cer-
tainty what its value will be at time t2 > t1

• Such processes are described by the familiar math-
ematics of probability and random variables
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GPS-related examples of stochastic processes

• The wet delay, which is controlled over a range of

timescales by turbulent transport of water vapor

• Site and satellite clocks errors

• GPS antenna positions under certain circumstances

(vehicle tracking, glacier motion, earthquakes)
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Estimated clock errors (Gonzak receiver)
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Stochastic processes and dynamic systems

• A stochastic process acts to “force” the dynamic
system

xk = Sk xk−1 +Rk ξk

• ξk is a zero-mean stochastic-process vector

•
〈
ξjξ

T
k

〉
= Qkδjk

• Rk is a matrix

•
〈
Rjξjx

T
k

〉
= 0 for j > k
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Update with stochastic process

• Since 〈ξk〉 = 0 we have (using same math as before,

and taking advantage of independence)

xk+1|k = Sk xk−1|k−1

Λk+1|k = Sk Λk−1|k−1 S
T
k +RkQkR

T
k

• How else would sequential least-squares change?
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Sequential least squares with dynamics

A priori solution ←− x̂0|0, Λ0|0y
→ Prediction −→ x̂k|k−1, Λk|k−1x y

New Observation ←− yk, Gkx y
Gain matrix −→ Kkx y

← Update −→ x̂k|k, Λk|k
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Kalman Filter equations

Prediction

x̂k|k−1 = Sk x̂k−1|k−1

Λk|k−1 = Sk Λk−1|k−1 S
T
k +RkQkR

T
k

Gain

Kk = Λk|k−1A
T
k

(
AkΛk|k−1A

T
k +Gk

)−1

Update

x̂k|k = x̂k|k−1 +Kk∆yk

Λk|k = (I −KkAk) Λk|k−1
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Point positioning example

• Let us take the example of point positioning using
pseudorange with GPS

• Each epoch tk we observe nk satellites from a static
(non-moving) receiver

• Our simplified observation equation for the jth satel-
lite (j = 1, . . . , nk) is

Rj(tk) = |~xjs − ~xr|+ c(tk)

where Rj is the LC pseudorange corrected for the
satellite clock error, ~xjs is the satellite position, ~xr

is receiver position, and c(tk) is the receiver clock
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Point positioning example: State vector

• We will treat the clock error as a stochastic process

• The parameter (state) vector will be

xk =


xr
yr
zr
ck


where ck = c(tk)
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Point positioning example: Noise model

• We will assume, for this example, a zero-mean Gaus-

sian white-noise model for the clock error

• This model implies that

〈cj〉 = 0

〈cjck〉 = σ2
c δjk
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Point positioning example: Dynamic model

• Putting these two equations together we can write

our dynamic model as

xk+1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


︸ ︷︷ ︸

Sk

xk +


0
0
0
1


︸ ︷︷ ︸
Rk

ck+1

• We also have that Qk is a scalar with Qk = σ2
c
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Point positioning example: Prediction

• The prediction step gives us

x̂k|k−1 =


x̂rk−1|k−1
ŷrk−1|k−1
ẑrk−1|k−1

0



Λk|k−1 =

(
Pk−1|k−1 0

0 σ2
c

)
where P is the position sub matrix of the covariance

matrix
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