## Interpreting past hydroclimate variability from sedimentary records: Challenges & considerations

### **Jessica Tierney** The University of Arizona







**Marine Sediments Lake Sediments Tree Rings Corals** 

#### c) Temporal Availability



PAGES2K, 2016, Scientific Data, in prep



# Some nice features of sediment archives

- Long, continuous records
- Multiple sensors and proxies can be measured

# Sedimentary Observations (Proxies) with hydroclimate information

- Oxygen isotopes ( $\delta^{18}$ O) on foraminifera (marine)
- Lake levels
- Things sensitive to lake levels (Mg/Ca of minerals,  $\delta^{18}$ O of authigenic carbonate).
- δD of leaf waxes
- Runoff indicators (Ti concentration, varves)
- Microfossil assemblages (pollen, diatoms)



# Some challenging features of sediment archives

- Age uncertainty is usually large
- Bioturbation mixes signals
- The archive itself adds red noise (e.g. lakes).

# Interpreting sedimentary archives: an overview

![](_page_6_Figure_1.jpeg)

Figure made by Martin Tingley

# Proper interpretation of hydroclimate data from sediments requires:

- Proxy (observation) forward model(s)
- An archive model to account for smoothing/reddening
- A way to deal with age uncertainty

# Archive issues: Age Uncertainty

## The time uncertainty continuum

#### **Cross-dated Archives**

(Tree rings)

#### **Layer-counted archives**

(varves, ice cores, corals)

#### **Radiometrically dated - Gaussian**

(U/Th on speleothems,<sup>210</sup>Pb in sediments)

#### **Radiometric dating - non-Gaussian**

(<sup>14</sup>C on sediments)

# 100 75 50 25 ( Uncertainty in Years

# Annually resolved $\neq$ time certain

![](_page_10_Figure_1.jpeg)

![](_page_11_Figure_0.jpeg)

### LAKE NAIVASHA, KENYA (<sup>14</sup>C DATED)

Verschuren et al., 2000, Nature

![](_page_12_Figure_2.jpeg)

![](_page_13_Figure_0.jpeg)

### **Age Modeling Techniques**

Simplest approach uses MC iteration and the constraint of superposition. More complex approaches make assumptions about the sedimentation process

![](_page_13_Figure_3.jpeg)

Depth

# Monte Carlo EOF

#### East Africa MCEOF1; 10,000 simulations

![](_page_14_Figure_2.jpeg)

# Archive issues: **Bioturbation**

### **Unless you have this:**

# You need to account for bioturbation!

![](_page_16_Picture_3.jpeg)

# Example

#### PALEOCEANOGRAPHY

#### Dynamical excitation of the tropical Pacific Ocean and ENSO variability by Little Ice Age cooling

Gerald T. Rustic,<sup>1,2</sup>\*† Athanasios Koutavas,<sup>1,2,3</sup> Thomas M. Marchitto,<sup>4</sup> Braddock K. Linsley<sup>3</sup>

#### Rustic et al., 2015

![](_page_17_Figure_5.jpeg)

![](_page_17_Figure_6.jpeg)

# **The Problem:**

#### **Record is only ca. 15 cm long, and is not laminated.**

![](_page_18_Figure_2.jpeg)

Calendar Age (CE)

# Using the Suess effect to assess bioturbation

![](_page_19_Figure_1.jpeg)

# **Bioturbation models**

Typically modeled as an impulse response function that describes instantaneous mixing of initial deposition in the "bioturbation layer" (H).

e.g., Berger and Heath (1968) and Bard et al., (1987) model:

```
dC/dt = 1/H * (C_{dh}-C_H)
```

or, the diffusion model of Guinasso and Schink, 1975, JGR:

 $dC/dt = D d^2C/dx^2 - v^*dc/dx$ 

where D is diffusivity and v is sed rate.

![](_page_20_Figure_7.jpeg)

Bard et al., 1987, Clim. Dyn.

### Archive issues: **Reddening of the signal** (lake level proxies)

![](_page_22_Figure_0.jpeg)

## **Example: Lake Victoria**

![](_page_22_Figure_2.jpeg)

# **Spectral comparison**

![](_page_23_Figure_1.jpeg)

# Ways forward

- Ad-hoc approach: only use/interpret lowest frequencies (drawbacks: qualitative only, plus archive creates low frequency, so is this variability even "real"?)
- Better idea: start forward modeling sedimentary records from climate models.

### Envisioning a hierarchical model for sediments

$$SST_{t+1} - \mu = \alpha \cdot (SST_t - \mu) + \epsilon_t$$
  
oral  
$$\sum_{i,j} = \sigma^2 exp(-\phi|x_i - x_j|)$$

$$logit(U_{37}^{K'})|SST = \alpha + \beta \cdot SST + \epsilon,$$
  
$$\epsilon \sim \mathcal{N}(0, \tau^2) \text{ IID.}$$

$$logit(U_{37}^{K'})|\mathcal{T}, SST = \alpha + \beta \cdot \Lambda^{\mathcal{T}} \cdot SST + \epsilon,$$
  
$$\epsilon \sim \mathcal{N}(0, \tau^2) \text{ IID.}$$

# Level 3: Archive model (bioturbation or other sedimentary features)

$$U_{37obs}^{K'} | U_{37}^{K'} = \sum_{t_n} U_{37t_1+t_n}^{K'} \cdot g(t_n) + \epsilon(t_1),$$
  
$$\epsilon(t_1) \sim \mathcal{N}(0, \tau^2) \text{ IID.}$$

# Shameless Plug: Awesome Postdoctoral position available in my lab!

![](_page_26_Picture_1.jpeg)

- Part of the "Data Assimilation for Deep Time" Project. We're doing DA from the LGM to present...and also for the PETM!
- Looking for someone with good quant skills, and expertise in paleoclimate/climate dynamics/climate modeling.