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Combine paleoclimate and instrumental
data with forced and control simulations
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Apply to hydroclimate over
the Common Era (C.E.)
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Paleoclimate record of the Common Era is best
chance of extending the instrumental record
with similar temporal and spatial resolution

(with more uncertainty)

Forced-transient coupled model simulations
are available for the Common Era
(with forcing and model uncertainties)



Why should we care?
Projecting Future Hydroclimate!

* How will hydroclimate respond to increasing
greenhouse gas concentrations over the next decade

to century?

* How will these forced changes combine with internal
climate variability to determine the actual impacts of

hydroclimate change?

* Are models able to capture the full range of internal
and forced components of past hydroclimate?



An example of each:

1) Megadroughts over the AW

(Decadal-to-centennial timescale variability)

2) North Amer. Pan-continental droughts
(Infrequent climate features)



1) Megadroughts over the AW

(Decadal-to-centennial timescale variability)



North American Drought Atlas (NADA)

-Tree-ring based reconstruction of hydroclimate
variability

-0.5° lat.-lon. grid

-Reconstructs Palmer Drought Severity Index (PDSI):
Standard metric of drought, used over many regions and
timescales



North American Drought Atlas (NADA)
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Megadroughts are hydroclimate
change on the timescale over which
we hope to project future climate
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Why should we care?
Projecting Future Hydroclimate!

- Do models simulate megadroughts?
- If so, what are the underlying dynamics?

* Are models able to capture the full range of internal
and forced components of past hydroclimate?



Underlying dynamics?
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Underlying dynamics?
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Exogenous SST Boundary
-Trace Gasses ENSO
-Solar PDO Tropical Pacific

-Volcanic -AMO



Rank droughts by persistence and severity
(Coats et al.,J. Clim., 2013; 2015; Stevenson, J. Clim., 2015)



Rank droughts by persistence and severity
(Coats et al. J. Clim., 2013; 2015; Stevenson, J. Clim., 2015)
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North American Southwest Average PDSI
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North American Southwest Average PDSI
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What about models?

- Do models simulate megadroughts?

v

- What are the atmosphere-ocean
dynamics? Not exogenously forced



Percent Occurence During Megadroughts
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CCSM is exceptional in simulating
megadroughts consistently forced
by the tropical Pacific
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- |s there a role for the tropical
Pacific?
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What about models?

- Do models simulate megadroughts?

v

- |s there a role for the tropical
Pacific?
CCSM does (Bonus: Why?)



Hypothesis (Coats et al., J. Clim.,
2013): large magnitude multidecadal
ocean variability and strong and
stationary teleconnections will
produce megadroughts driven by
tropical Pacific



Conclusions: Megadroughts

* Models simulate megadroughts.

* No consistent role for the Tropical Pacific or
exogenous forcing.

* Characteristics of models important in
determining atmosphere-ocean dynamics
underlying megadroughts.



2) North Amer. Pan-continental droughts
(Infrequent climate features)



PC Drought

Pan-Continental Drought



North American Regions

Northwest (NW)
42°N-50°N, 125°W-110°

Cook et al. 2014

Central Plains (CP)
34°-46°N, 102°-92°W

Southwest (SW)
32°-40°N, 125°-105°W

Southeast (SE)
30°N-39°N, 92°W-75°W



Pan Continental Drought
occurs when three or all
four regions have drought

Five “Flavors”: SW+CP+SE; SW+CP+NW:
SW+NW+SE: CP+NW+SE; SW+CP+NW+SE



What do we know?

* Cook et al. (2014) used NADA to extend drought record

* PC Drought is consistent, but infrequent, feature of
Common Era hydroclimate

- Few degrees of freedom to define how dynamics produce PC drought

Flavor |t roo e
SW+CP+SE 7/
SW+CP+NW 1
SW+NW+SE 1
CP+NW+SE 5
SW+CP+NW+SE 6

Cook et al. 2014



Use a paleo-model data
comparisons framework to
analyze PC drought

1) More degrees of freedom to analyze
dynamics

2) Assess if models capture such
variability and why



Data

e The NADA (Cook et al. 2007) will be used as the
ground truth

* Tree-ring based reconstruction of JJA PDSI for North
America from 1000-2005 C.E.

* PDSI (Palmer Drought Severity Index) is a model of
soil moisture balance

« Six LM and pre-industrial control simulations from
CMIPS

« JJA PDSI calculated offline from precipitation and net
surface radiation



Do models capture PC drought statistics?
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What are the atmosphere-ocean
dynamics that drive PC drought?



Dynamics of Recon over Instrumental Interval

For 1854-2005 C.E. PC drought predominantly
driven by negative PDO and ENSO and positive

AMO:

-No longer consider PC Drought as separate
“flavors” for greater N

-Use a basic Bayesian framework to assess
Impact of different atmosphere-ocean states
on frequency of PC Drought occurrence



Dynamics of Recon over Instrumental Interval
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Dynamics of Recon over Instrumental Interval
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Dynamics of Recon over Instrumental Interval
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Dynamics of Recon over Instrumental Interval
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Dynamics of Recon over Instrumental Interval

0.06+ — 1854-2005
— Pos. AMO
— Neq. PDO
— Neg. Niho3.4
P
‘v 0.04- .
§ Frequency For
> Data Subset
E
qv)
0
O 0.02
al
0 | ‘
0.1 0.3 0.5 0.7

Drought Frequency (p)



Dynamics of Recon over Instrumental Interval
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Dynamics of Recon over Instrumental Interval
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Model Dynamics

= Full Control === Pos. AMO === Neg.PDO == Neg.Nino3.4 ==AllThree
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Model Dynamics

= Full Control ==—Pos. AMO ===Neg.PDO == Neg.Nino3.4 ===AllThree =--=NADA (1000-2005)
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Model Dynamics

= Full Control ==—Pos. AMO ===Neg.PDO == Neg.Nino3.4 ===AllThree =--=NADA (1000-2005)
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Probability Density

Model Dynamics
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Probability Density

Model Dynamics
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Model Dynamics

= Full Control ==—Pos. AMO ===Neg.PDO == Neg.Nino3.4 ===AllThree =--=NADA (1000-2005)
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Probability Density

Model Dynamics
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Conclusions: PC Drought

* Models largely capture the characteristics and
statistics of PC drought.

 ENSO is most dominant dynamical driver.

* Different models simulate PC drought in different
ways depending on specific model characteristics.



Conclusions: Overarching

* No real role for exogenous forcing in simulated
hydroclimate variability during C.E.

* Different models simulate hydroclimate features in
different ways depending on specific model
characteristics.

* Need better records of the atmosphere-ocean
state during the Common Era to determine if any
model dynamics are realistic.



