

Hydroclimate changes in the tropical Pacific over the last millennium: data-model comparisons and possible mechanisms

Alyssa Atwood*, David Battisti, Elynn Wu, Dargan Frierson, Julian Sachs Thank you to: Ashley Maloney, Yen-Ting Hwang, Aaron Donohoe

*UC Berkeley/Georgia Institute of Technology aatwood@berkeley.edu

NCDC/NCEI paleoclimate datasets

57 proxy records

- Hydroclimate records from the tropical Pacific region
- Span 100-1000 yr BP with temporal resolution \leq 100 yrs
- Dating error < 100 yrs

- Speleothems
- Lake and marine sediment
- Tropical glaciers

NCDC/NCEI paleoclimate datasets

-	Hydro
-	Span
_	Datin

Author, Year	Proxy	Author, Year	Proxy
Apaestegui, 2014	d180 speleo	Medina-Elizalde, 2010	d180 speleo
Atwood, 2014	dinosterol dD	Moy, 2002	Red color intensity
Baker, 2009	d180 diatom	Nelson, 2016	dD biomarkers
Berkelhammer, 2010	d180 speleo	Newton, 2006	d18O, Mg/Ca forams
3hattacharya, 2015	d180 authig carb	Novello, 2012	d18O speleo
3ird, 2011	d180 authig calcite	Novello, 2016	d180 speleo
Cai, 2010	d180 speleo	Oppo, 2009	d180, Mg/Ca forams
Cai, 2010	d180 speleo	Partin, 2007	d180 speleo
Larolin, 2016	d180 speleo	Reuter, 2009	d18O speleo
Cheng, 2013	d180 speleo	Rodbell, 1999	Greyscale
Curtic 1006	seament grain size	Rodvsill. 2012	d13Corg
Curtis, 1996	d180 gastrocod/ostrocods	Sachs. 2009	dDTLE
Curtis 1990	d180 gastrocod/ostrocods	Sinha. 2011	d180 speleo
Curtis, 1998	d180 gastrocod/ostrocods	Stansell, 2012	d180 ostrocod
Curtis, 1998	d180 gastrocod/ostrocods	Thompson, 2013	d18Oice
Dong, 2010	d180 speleo	Tierney, 2010	dD C30 fatty acid
Dong, 2010	d180 speleo	Toomev. 2016	, Ti/Ca
Dykoski, 2006	d180 speleo	van Breukelen, 2008	d180 speleo, d180/dD fluid
Griffiths, 2009	d180 speleo	Wang, 1999	d180 G. ruber (diatom)
Haug, 2001	Ti concentration	Wang, 2005	d180 speleo
Hillman, 2014	d180 authig calcite	Yan, 2011	Sediment mean grain size
Hodell, 2005	d180 gastrocod/ostrocods	Yan 2011	Sediment mean grain size
Hodell, 2008	lake sediment density	Yan 2011	Sediment mean grain size
Hu, 2008	d180 speleo	7hang 2008	d180 speleo
(anner, 2013	d180 speleo	7han 2015	d180 speleo
(ennett, 2012	d180 speleo	Cosford 2000	d_{180} speleo
Coneckey, 2013	du n-alkanoic acid	$T_{20} = 2011$	
.aciiiilet, 2012		1 all, 2011	atoo shelen

Longterm hydroclimate changes over LM

Longterm hydroclimate changes over LM

PMIP3 last millennium simulations

Volcanic forcing drove global cooling during the LIA

- LIA forcing dominated by volcanic forcing (65%)
- Land use (13%), GHG (12%) and solar (10%) changes make up much smaller contributions

Multi-model precip changes (LIA – MCA)

MME $\triangle P$ (mean annual)

*Stippling: 5/6 models agree on the sign of ΔP

During LIA in tropical Pacific:

- Drier Pacific ITCZ
- Eastward shift of SPCZ
- Drier E. Asia/ India

Atwood et al., (in prep)

Precip changes (LIA – MCA)

During LIA in tropical Pacific:

- Drier Pacific ITCZ
- Eastward shift of SPCZ
- Drier E. Asia/ India

Atwood et al., (in prep)

Multi-model precip changes (LIA – MCA)

MME $\triangle P$ (mean annual)

-0.2 -0.1 0.1 0.2 0 mm/day

During LIA in tropical Pacific:

- Drier Pacific ITCZ
- Eastward shift of SPCZ
- Drier E. Asia/ India

Atwood et al., (in prep)

*Stippling: 5/6 models agree on the sign of ΔP

Moisture budget decomposition

Seager et al., 2010

Atwood et al., (in prep)

Moisture budget decomposition

P-E changes:

- Global cooling drives drying in rainy regions
- Positive dynamical feedback in Pacific ITCZ

Atwood et al., (in prep)

Why might tropical precip shift south during the LIA?

Energetic constraints:

Greater cooling of NH than SH causes southward shift of ITCZ during LIA

Why might tropical precip shift south during the LIA?

Theory:

Greater cooling of NH than SH causes southward shift of ITCZ during LIA

Possible mechanisms:

- I. Hemispheric asymmetry in climate forcings
 - Volcanic, land use, solar, orbital forcing
- 2. Hemispheric asymmetry in feedbacks
 - Snow/sea ice extent
 - Clouds
- 3. Changes in ocean heat transport (e.g. change in AMOC)

What led to the southward shift in tropical precip?

Forcing mechanisms

- 1. Volcanic forcing
- 2. Land use forcing
- 3. Solar/orbital forcing

Climate feedbacks

- 1. Ice albedo feedback
- 2. Cloud feedback
- 3. Water vapor feedback

Ocean heat transport

APRP Method (Taylor et al., 2007)

Decompose changes in TOA SW flux into changes in sfc albedo, clouds, and non-cloud scattering and absorption

 $\Delta Q_s = \Delta S(1-A) - S\Delta A$ (change in shortwave flux at TOA)

 $\Delta A = \Delta A_{\mu} + \Delta A_{\gamma} + \Delta a_{\alpha}$ $\Delta A_{\alpha} = A(\mu, \gamma, \alpha_2) - A(\mu, \gamma, \alpha_1)$ A = sfc albedo $1 - \mu = fraction of incident rad absorbed by atm$ $\gamma = scattering coeff$

What led to the southward shift in tropical precip?

Forcing mechanisms:

- Volcanic forcing (✓)
 Land use forcing (✓)
- 3. Solar/orbital forcing

Climate feedbacks

- 1. Ice albedo feedback
- 2. Cloud feedback
- 3. Water vapor feedback

Conclusions

- Southward shift in tropical Pacific LIA precip occurs in models and proxies
- In models, southward shift is accompanied by anomalous northward cross-eq. AHT driven by volcanic forcing and land use changes
- Regional precip changes during LIA:
 - Drying in N. Pacific ITCZ and SE Asia (eastward shift of SPCZ, moistening in eq. Atlantic)
 - Driven by thermodynamic changes and enhanced by strong positive dynamical feedback.

Precip response to NH volcanos

Precip response to NH volcanos

LIA global cooling contributions

FIG. 7. Global cooling contributions from Eq. (18) due to volcanic, land use, solar, and GHG forcings and the SW and LW feedbacks compared to the total globally averaged temperature change between the LIA (1600–1850 CE) and MCA (950–1200 CE). The difference between the total cooling and the sum of the forcings and feedbacks is the Planck response. Global cooling contributions were not calculated for HadCM3 and CSIRO because of data unavailability (see text for details).

Atwood et al., J. Clim (2016)

LIA global cooling contributions

Fig. S1. Little Ice Age (1600-1850 CE) minus Medieval Climate Anomaly (950-1200 CE) change in globally averaged TOA energy fluxes (ΔR) associated with the forcings (volcanic, land use, solar, greenhouse gas), SW feedbacks (surface albedo, SW cloud, SW q, SW residual) and LW feedbacks (Planck, lapse rate, LW q, LW cloud, LW residual). The globally averaged surface energy flux (ΔE_{sfc}) is also plotted. Decomposition of SW and LW feedbacks was not performed for CSIRO due to the implementation of the volcanic forcing (see text for details), while decomposition of LW feedbacks was not performed for HadCM3 due to data availability.

Atwood et al., J. Clim (2016)

Seasonal precip changes (LIA – MCA)

dP MME (DJF)

dP MME (MAM)

dP MME (JJA)

dP MME (SON)

FIG. 4. LIA (1600–1850 CE) minus MCA (950–1200 CE) surface air temperature changes in the CMIP5–PMIP3 simulations. The value in parentheses next to each model name represents the global mean surface temperature change.

Atwood et al., J. Clim (2016)

FIG. 5. As in Fig.4, but for sea ice concentration. Sea ice data were not available for IPSL.

Atwood et al., J. Clim (2016)

Multi-model precip changes (LIA – MCA)

dP MME (mean annual)

- Drier N. branch of ITCZ

During LIA:

- Eastward shift of SPCZ
- Wetter eq.
 Atlantic/drier
 Sahel
- Drier EASM/ ISM

*Stippling: 5/6 models agree on the sign of ΔP

Southward precip shift from MCA \rightarrow LIA

Similar for "LIA" period from 1200-1850 AD

