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What do we agree on?
(1)  Megadroughts have happened. 
(2)  ENSO has a major influence on drought in Western North America (WNA). 
(3)  Late 20th century is “well observed.”  
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We want 
•  Test stochastically-forced, linearly damped 

paradigm (Hasslemann)  
•  But, accommodate: 
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 Spatially-correlated “noise”  
 Autcorrelation 
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Newman et al., 2011 (GRL)

relation of these projections for each initial/evolved pair
indicates that this potential optimal SST growth does occur
as expected from multivariate red noise; that is, the case‐to‐
case evolution of anomalies is well captured by (1), with the
slopes of the least square lines matching the expected
amplification factors, plus some remaining scatter due to
noise. In contrast to earlier studies suggesting that CP events
are warm phase only [e.g., Kug et al., 2009], Figure 3b
shows that CP‐ENSO events of both signs occur (as by
Yu and Kim [2011]), which is also seen in separate positive
and negative composites constructed from SST anomalies six
months following all dates on which either the EP‐ENSO or
CP‐ENSO optimal structure amplitudes exceeded 1 standard
deviation (blue dots in Figures 3a and 3b). The EP (CP)
composite in Figures 3c and 3e (Figures 3d and 3f) is con-
sistent with the expected six‐month evolution of the leading
(second) optimal pattern. Anomalies with initially high pro-
jection on both optimal patterns (indicated by green dots)
evolve in a correspondingly mixed manner (not shown).
Moreover, no trend exists in the time series of either the CP

optimal or evolved pattern; the EP optimal and evolved pattern
time series have weak trends that are not significant.

4. Variations of EP and CP Events Driven
by Noise

[11] Given that multivariate red noise matches the observed
interannual variability of both EP and CP events in the
Tropics, we can now assess the potential range of EP and CP
variability over multidecadal epochs, assuming no under-
lying change in either the dynamics or the overall statistics
of noise. Using the DJF mean each year of the 24000‐year
integration we computed the same statistical measures as
Yeh et al. [2009]: the simultaneous value of r(Niño3,
Niño4), and the occurrence ratio of CP/EP El Niño (i.e.,
warm event only) defined as the ratio of CP‐El Niño to
EP‐El Niño events, using Yeh et al.’s classifications noted
in section 1. Results for the full integration are shown in
Figure 4a, where both measures are determined from 30‐yr
long intervals centered 10 years apart. Ranges of values for
the integration are summarized in Table 1 by determining
95% confidence bounds from the large number of samples,

Figure 3. (top) Projection of observations upon the optimal initial condition for SST anomaly amplification over a
six‐month interval, versus the projection on the optimal evolved SST state 6 months later, for (a) the EP pattern and
(b) the CP pattern. Note that the tropical SST growth factor for the EP pattern is almost 4 times greater than for the CP
pattern. Blue dots indicate initial anomalies with large projection (magnitude greater than 1 standard deviation) on either
the EP‐ENSO or CP‐ENSO optimal structure amplitudes, but not both; green dots indicate initial anomalies with large pro-
jection (over 1 standard deviation) on both optimal structures. (bottom) HadISST [Rayner et al., 2003] SST composite
anomalies constructed six months following the dates represented by the blue dots. Composites are constructed separately
for (c and d) positive (warm phase) and (e and f) negative (cold phase) projection values. Anomalies with initially high
projection on both optimal patterns (i.e., green dots) are excluded from the composites.
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Figure 6. Reconstructing the PDO as the sum of three different dynamical processes. (a-h) Contributions to the 
PDO from (a) the second (“North Pacific”; Fig. 6b), (c) third (“Central Pacific ENSO”; Fig. 6d) and (e) fourth 
(“Eastern Pacific ENSO”; Fig. 6f shows most energetic phase of this complex eigenmode [essentially, cosine 
phase], with least energetic phase [sine phase] not shown) eigenmodes of the LIM described in the paper. Note 
that unlike EOFs, these eigenmodes are nonorthogonal. Contour interval is the same in all three eigenmode 
panels; all eigenmodes are normalized to have unit amplitude. The LIM is determined in a reduced EOF space 
(with 25 degrees of freedom) that retains about 85% of the SST variance in the Tropics and North Pacific 
deomains. (d) “PDO reconstruction”, the sum of the time series shown in panels a, c, and e. (h) PDO index time 
series (same as Fig. 1c but with three-month running mean smoothing applied). In the time series panels, heavy 
black lines represent the application of the same 6-yr lowpass smoother as in Fig. 1b, and vertical green lines 
indicate times of PDO “regime shifts”.   

From “The Pacific decadal oscillation, revisited” Newman et al., 2016 (JCLIM)
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From Ault et al., 2013 (GRL)

AULT ET AL.: TROPICAL PACIFIC DEC-CEN VARIABILITY
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Figure 2. NINO3.4 power spectra from: (a) the CCSM4 20th century ensemble (light blue) and the instrumental data
(brown); (b) an ensemble of NINO3.4 reconstructions (green), the CCSM4 control run (light blue), and the CCSM4 last
millennium simulation (light orange); (c) an ensemble of unforced Zebiak-Cane simulations (gold); and (d) unforced CMIP5
simulations (light blue). See Figures S2 and S3 for individual CMIP5 model runs. In all panels, the distribution of variance
generated from the LIM ensemble is shown in gray with black lines marking the upper and lower bounds. The range
encompassed by the reconstructions is shaded in Figures 2b and 2d, while the individual spectrum from each product is
shown in Figure 2c for clarity. (e) Mean densities of NINO3.4 spectra on centennial (200 to 1000 year) timescales are
shown. Gray shading indicates the range simulated by the LIM. Symbols, from left to right, represent estimates from the
following products: the three reconstructions of Emile-Geay et al. [2013a] (squares); the RegEM-based reconstructions
of NINO3 [Mann et al., 2009] and NINO3.4 [Wilson et al., 2010] (circles: the two Wilson et al. [2010] reconstructions
differ in their predictor networks, with “TEL” composed of teleconnected predictors, and “COA” developed from “center
of action” sites in the tropical Pacific); the distribution of unforced ZC simulations shown in Figure 2 (gold vertical line);
the unforced control simulations (piControls) of the CMIP5 archive (triangles); and the forced, last millennium simulations
(past1000) (diamonds) over the period 1000–1850 C.E. for valid intermodel comparison (not all modeling groups ran
transient simulations from 850 to 2005). Models with both long (>500 year) control runs and last millennium simulations
are color-coded according to the legend on the right.
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From Ault et al., 2016 (Pages2K conference at Lamont)
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A robust null hypothesis for the role of the Tropical Pacific in

driving Megadrought in western North America
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1 Figures

Figure 1: Correlation maps between NINO3.4 and PDSI calculated from observations (top
left) and 11 LIM realizations chosen at randomly. The iteration number of each LIM
realization is shown on the bottom left of each panel.
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Consistency with observations



Figure 2: Power spectra computed from NINO3.4 time series. The gray shading encom-
passes the lower 2.5% and 97.5% quantiles (e.g., 95% of the distribution of all realizations
at all frequencies). The three thin red lines are spectra computed from NINO3.4 time se-
ries derived from the following gridded observational data products: Kaplan SST (Kaplan
et al., 1998), ERSSTv3v (Smith et al., 2008), and HadSST1 (Rayner et al., 2003)

.
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Consistency with observations



m
m

/y
ea

r

 a) Great Plains precipitation

 

 

300

350

400

450

Decadal drought
Raw precip.
Smooth precip.
Drought threshold

 b) Southwest precipitation

m
m

/y
ea

r

Year
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

150

200

250

300

Fig. 2. Eleven-year running means of normalized paleoclimate reconstructions for 20th
century precipitation data from: a) the US Southwest, and b) the Great Plains. Precipita-
tion data are from the University of East Anglia’s Climate Research Unit’s TS3.1 dataset
(Mitchell and Jones 2005). We identify decadal droughts as −0.5 standard deviations of raw
data in the 11 year mean (vertical gray bars).
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Definition of megadrought



“Worst” megadrought from NADA





NADA	













Can’t rule out �
“ENSO + Noise + Autocorrelation”�

(e.g., linearly damped, �
stochastically forced)

Can rule out
“ENSO – only”



The road ahead…
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What do we agree on?
(1)  Megadroughts have happened. 
(2)  ENSO has a major influence on drought in Western North America (WNA). 
(3)  Late 20th century is “well observed.”  
à  The distribution of variance across the power spectrum helps inform 

        megadrought risk 



Megadrought risk in different noise models 



a white noise time series Xw(t), and filter it to conform
to a predefined value of b:

~Xp(k)5ck !
N

t51
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2i2pk[(t21)/N], k5 0, . . . ,N2 1,

(3)

where k are the standard Fourier frequencies and N is
the length of the time series. The term ck rescales the

Fourier coefficients so that they are approximately
power-law distributed:
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Here the value of b is divided by
ffiffiffi
2

p
because it is being

applied to the raw Fourier coefficients, which have am-
plitudes proportional to the square root of the power
spectrum.
The rescaled Fourier series ~Xp(k) is then used to

generate power-law time series Xp(t) by taking the real
part of the inverse Fourier transform of ~Xp(k):
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(
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N
!
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k50

~Xp(k)e
2i2pk[(t21)/N]

)

, t51, . . . ,N .

(5)

Finally, the mean and variance are restored to the values
of the original white noise data (zero and unity, in this
case).
We used a value of 0.5 for b to rescale each realization

ofXw(t), which was suggested as an appropriate estimate
by Ault et al. (2013) from synthesis of tree-ring re-
constructions of precipitation, PDSI, and streamflow as
well as non-tree-ring estimates of hydroclimate. As
a check, we calculated the power laws of the noises after
they had been rescaled. We found that the actual values
of b varied from one realization to the next, but were
generally between 0.4 and 0.6. This range agrees well
with instrumental and paleoclimate estimates of this
parameter for the region, and is certainly within the
observational uncertainty (Ault et al. 2013). Impor-
tantly, time series with spectra scaled by power laws of
;0.5 will also appear to exhibit autocorrelation of about
0.3, which in turn implies that the AR(1) and power-law
realizations will behave very similarly on short time
scales, but not necessarily on longer ones (e.g., Pelletier
and Turcotte 1997; Ault et al. 2013). Finally, our use of
power-law noises does not make any assumptions about
the underlying climate dynamics governing the shape of
the power spectrum of hydroclimate: linear and non-
linear processes alike may produce such spectral distri-
butions (Milotti 1995; Penland and Sardeshmukh 2012).
Table 1 highlights a few key features of the two

models employed here. In particular, the noise models
used to estimate drought risk use parameters that do not
vary across space, and all are scaled to the twentieth-
centurymean and variance. The autocorrelation parameter
of 0.3 is a middle-of-the-road value from the time series

FIG. 6. Statistics summarizing Monte Carlo simulations: (a) dis-
tributions of years spent in decadal ($11 yr) drought conditions for
each type of noise (as a percentage of all realizations), (b) risk of at
least one decadal ($11 yr) drought during any given 50-yr window
in any realizations, and (c) risk of a multidecadal ($35 yr) drought
during any 50-yr window. Risk in (b) and (c) is expressed as
a percentage of the total number of simulations.
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Megadrought risk in different noise models 

From Ault et al., 2014 (JCLIM)


