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What is a Proxy System Model?

Proxy system models are pretty cool.

real tree PSM



• PRoxY System Modeling Progress:  

• Open-source, public PSM tools: PRYSM v1.0 and 2.0 

• Advanced Applications in Data-Model Comparison: 

• Data Assimilation and Paleoclimate Reanalyses with PSMs 

• Investigating parametric uncertainties ~ checking our 
understanding of the proxy system 

• Data-model comparison in the frequency domain using PSMs

A brief outline:  
developing best practices for model-data comparison



Building a PSM code package

Many PSMs are completed or in 
development 

We need a common model 
development framework 

Encourage feedback, expand 
use 

Format/structure for building 
and comparing PSMs 

Goals:  

Adaptable, modular, and public 

Consolidate inter-model 
redundancies 

Open Source 



PRYSM:  
a public PSM development platform

• synthesized from previously published 
work  

• current availability: high-resolution water 
isotope systems  

• enabled by recent water isotope-
enabled modeling efforts, SWING2 -> 
full forward modeling scheme 

• Sub-model framework, as in [Evans et al. 
QSR, 2013]

Author's personal copy

chemical, biological and/or geological understanding of the ways in
which environmental variation ultimately results in the observa-
tions used to retrieve paleoclimatic information. In this sense, these
models are forward, even if they may be empirically-derived: the
predictors are scientifically understood to cause variations in
the predictands, and parameters are realistically constrained.
Following the terminology and framework for proxy system
modeling proposed by James Annan and the SUPRAnet working
group,1 and following the ideas of Cohen (2003) and Lough and
Cooper (2011), an archive is the medium in which the response of
a sensor to environmental forcing is recorded (Fig. 1). Observations
are made on archives. Because proxy systems are effectively filters
of the climate system, sometimes in terms of time-dependent cir-
culation and mixing processes (Khatiwala et al., 2001), we may
clearly distinguish them frommodeling of the climate system itself.
Proxy system model subcomponents may be described that
represent, for example, the behavior of the sensor in response to
environmental forcing (sensor model), the way in which the sensor
either creates or emplaces the signal into the archive (archive
model), and the way inwhich observations are made on the archive
(observational model). Explicit or implicit in any of these sub-
models may be the way in which the processes depend on filtering
and integrating over time or space. Together with analytical and
statistical frameworks, proxy system models may enable us to
extract more accurate paleoclimate information from the available
paleodata, as well as develop a clearer or more explicit description
of their uncertainties.

To fully explore the potential of proxy system modeling, we
begin with elements of the generalized model. Although only a
component of the environment, climate is much more than a single
reconstruction target such as surface temperature. Some examples
of climatic variables that might be important for various sensors are
net or photosynthetically-active radiation, pressure and winds,
precipitation minus evaporation, and surface temperature (Fig. 2).
Fields of these variables often exhibit large-scale spatial structure
(Wallace,1996b), have a pronounced and generally highly energetic
annual cycle, and have characteristic patterns which may or may
not be frequency-dependent (Wallace, 1996a; Huybers and Curry,
2006).

The sensor acts in response to the environment and leaves an
imprint in the archive. The sensor model may realistically be
comprised of physical, chemical and biological components, and be
multivariate, seasonal and/or nonlinear or thresholded in its
response to environmental or climatic variation. Different sensors,
such as the upper continental crust (Huang et al., 2000; Mann et al.,
2009b), trees comprising contiguous forests (e.g. Fritts (1976);
Villalba et al. (2001)) and lakes (e.g. Williams and Shuman, 2008;
Viau et al., 2012) may respond to environmental forcing with
different temporal or spectral resolutions which arise from the
nature of the sensor or the archive (e.g. Evans et al., 2002; Moberg
et al., 2005 and see below). In turn, the degree to which their local

response represents synoptic or global-scale spatial variation may
also depend on a combination of location (Evans et al., 1998) and
temporal resolution (Wallace, 1996a,b).

For example, consider the reef-building corals, which are col-
onies of stationary polyps which live within optimal ranges of light,
temperature, salinity, nutrients, and turbidity. Depending on the
interplay of calcification rate, carbonate density and extension
(radial growth) rate, they produce aragonitic corallites in massive
colonial structures within permissible ranges of environmental
conditions (Fig. 3). The sensor response is thus multivariate,
nonlinear and potentially seasonally-filtered in that coral growth
will be suboptimal or nonexistent outside of optimal growing
conditions.

The output of the sensor is imprinted on an archive, which may
result from additional temporal, geological, biological, and/or
chemical processes, and whichmay be explicitly represented by an
archive model. In the case of the coral sensor described above, the
archive is the massive aragonite structure formed by generations
of polyps over time. Marine sediments are another important
paleoclimatological archive (Fig. 4). They may be comprised of the
commingled output of multiple sensors, including net inorganic,
biogenic, and organic sedimentation, which in turn may be
modified before observation by processes of dissolution, hydra-
tion, alteration, metabolism, mixing, sorting, transport, and
compression. Archive models that incorporate one or more of
these processes may be used to assess chronological uncertainty of
paleodata time series (Burgess and Wright, 2003; Bronk Ramsey,
2008, 2009; Blaauw and Christen, 2011; Klauenberg et al., 2011;
Parnell et al., 2011; Scholz and Hoffman, 2011; Anchukaitis and
Tierney, 2012).

What are generally referred to as climate “proxies” are the
actual observations that may be developed from an archive. This
may be a subset of all possible observations we might make, and
includes those used to estimate chronology. Maximum time reso-
lution of observations may be analytically-determined or archive-
limited. In general, the resulting time, frequency and signal reso-
lution of age-modeled paleodata series is limited by number, fre-
quency, time span, accuracy and precision of chronological
observations and stratigraphic constraints, slope of the ageedepth
curve, replication, and the extent of mixing, transport, integration,
diffusion and hiatuses imposed by the sensor, archive and obser-
vation processes (e.g. see Chatfield, 1989; Cook et al., 1995; Meese
et al., 1997; Evans et al., 1999; Huang et al., 2000; Burgess and
Wright, 2003).

For example, consider the science of dendrochronology, the
study of tree rings (Douglass, 1919; Fritts, 1976; Vaganov et al.,
2006). The sampling of the extant archive itself may involve high-
ly nonrandom sampling by location or species to optimize and
simplify interpretation of the observed sensor response to envi-
ronmental forcing (Fritts, 1976). The potential observational suite
(Hughes, 2011) includes all measurements which may be made
during the part of the year for which the sample of trees produces
woodymaterial in the stem,with information from the non-growth
season inferred from lagged-response processes or covariation
within the environment itself. Potential observations include
characteristics of the wood anatomy (Schweingruber et al., 1978);
total, early-season and late-season incremental growth (Meko and
Baisan, 2001; Griffin et al., 2011); radiocarbon and light stable
isotopic composition (McCarroll and Loader, 2004); and wood
chemistry (Guyette, 1991). From the commonly observed incre-
mental growth observation, multiple partial and complete repli-
cates may be used to establish chronology (Douglass, 1941; Stokes
and Smiley, 1968; Fig. 5) and statistically isolate patterns of vari-
ance from site samples (Wigley et al., 1984; Cook and Kairiukstis,
1990) for which signal interpretations may be inferred.

Fig. 1. Conceptual generalized proxy system model. An archive is the medium in which
the response of a sensor to environmental forcing may be observed. A proxy system
model is an idealized representation of the complete proxy system or selected com-
ponents thereof.

1 http://caitlin-buck.staff.shef.ac.uk/SUPRAnet/.
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Coral Aragonite PSM

Dee et al., 2015, JAMES

What goes into a proxy system model?



PRYSM on GitHub & Installation

https://github.com/sylvia-dee/PRYSM

git clone https://github.com/sylvia-dee/PRYSM.git 

1. Download zipfile 
2. In working directory: use Python  
>>  python setup.py install 
>> import psm

Dee et al., 2015, JAMES



PRYSM



icecore_driver.py
cellulose_driver.py
colal_driver.py
speleo_driver.py

>> these driver scripts walk you through running 
the PSM sub-models in succession.



you can run files in iPython to execute step-by-step...





Perhaps Python is not for you.. 

PRYSM





PRYSM GUI



GUI!







GUI!



in the works

marine and lacustrine indicators (e.g. leaf 
waxes) + bioturbation + compaction  

Bronwen Konecky & Jess Tierney 
VS-Lite, translated to python 
peat?!? 
discussion:  

what should this toolbox do in future 
extensions? 
what is the most appropriate platform? 
continuity and funding

PRYSM v2.0



• Proxy System Modeling progress:  

• Open-source, public PSM tools: PRYSM v1.0 

• Applications in Data Model Comparison 

• Data Assimilation and Paleoclimate Reanalyses with PSMs 

• Investigating parametric uncertainties ~ checking our 
understanding of the proxy system 

• Data-model comparison in the frequency domain using PSMs

A brief outline:  
developing best practices for model-data comparison



Applications 1: Data Assimilation and Paleoclimate Reanalyses with PSMs 

Last Millennium Reanalysis Project

THE DA TEAM THE PSM TEAM



Applications 1: Data Assimilation and Paleoclimate Reanalyses with PSMs 

Data Assimilation + PSMs to test common assumptions in Paleoclimate: 

(1) climate proxies can be modeled as linear, univariate recorders of temperature 

(2)  structural errors in GCMs can be neglected. 

Last Millennium Reanalysis Project
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Applications 1: Data Assimilation and Paleoclimate Reanalyses with PSMs 

Figure Courtesy of Julien Emile-Geay



PRYSM Simulated Multi-Proxy System Model Network, PAGES2k Phase 1 + Tier1 Corals

Tree Ring Ice Core Coral

Pseudoproxy experiment ~ ‘perfect model set’ up where all fields 
are known.  Assume pseudoproxies are the REAL proxies. 

Two climate field reconstructions:  

linearized, univariate mapping [LINEAR-UNIVARIATE-PSM] 

nonlinear, ‘full’ PSM mapping [NONLINEAR_PSM]

Question (1): Can climate proxies be modeled as linear,  
univariate recorders of temperature?



REPEAT FOR TWO PSEUDOPROXY EXPERIMENTS 

• linearized, univariate mapping [LINEAR PSM] 

• nonlinear, ‘full’ PSM mapping [NONLINEAR PSM]

1. Known Climate Fields

3. Reconstruct temperature (DA) for 
each year using noisy pseudo proxies
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2. Generate ‘Pseudo’ Proxy Data
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Evaluate reconstruction skill:

4. How good is the climate field reconstruction? 
Compare reconstructed temperature to original, 
‘true’ model temperature (known, unlike in nature!)

GCM: 
Last-Millennium 
simulation w/

isotopes

 Experimental Design

SPEEDY-IER



1300 1400 1500 1600 1700
Year

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0
S

ur
fa

ce
Te

m
pe

ra
tu

re
A

no
m

al
y

(K
)

SPEEDY-IER, LU-PSM, Surface Temperature

Reconstruction Mean
Target (True Model Temp)
2� error of MC ensemble

1300 1400 1500 1600 1700
Year

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

S
ur

fa
ce

Te
m

pe
ra

tu
re

A
no

m
al

y
(K

)

SPEEDY-IER, FULL-PSM, Surface Temperature

Reconstruction Mean
Target (True Model Temp)
2� error of MC ensemble

a. LU-PSM | Global Mean Temperature 

b. FULL-PSM | Global Mean Temperature

R=0.86, CE=0.47

R=0.84, CE=0.69

Dee, Steiger, Emile-Geay, Hakim, revised, JAMES

Results 1: Linear, Univariate Models: 

Applications 1: Data Assimilation and Paleoclimate Reanalyses with PSMs
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Results 1: Linear, Univariate Models 
Monlinear, multivariate PSMs offer 
improved reconstruction skill when the 
proxy response is clearly nonlinear and/or 
multivariate

Applications 1: Data Assimilation and Paleoclimate Reanalyses with PSMs 

$$$

$$$
FULL-PSM minus LU-PSM



Question (2): what is the impact of GCM structural errors?

GCMs are an imperfect representation of nature, and house errors

≠

GCMs: biased Reality: “unbiased”



We use ECHAM5 to approximate ‘nature,’ and try to reconstruct 
climate using ECHAM5-generated proxies with a SPEEDY prior. 

≠

δ18ΟP ‰

SPEEDY-IER ~ GCMs ECHAM5-wiso ~ Reality

Question (2): what is the impact of GCM structural errors?



Dee, Steiger, Emile-Geay, 
Hakim, revised, JAMES

Results 2: Structural Uncertainties in GCMs
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Applications 1: Data Assimilation and Paleoclimate Reanalyses with PSMs

Comparison of Skill Scores: 
Surface TemperatureDespite the 

improvement using 
FULL-PSM, errors 
in GCMs 
propagate forward 
through PSMs and 
may reduce 
reconstruction 
skill. 

(Not true for LU-
PSM, which is 
calibrated to the 
'true' model state).



Results: Data Assimilation with PSMs

Dee, Steiger, Emile-Geay, Hakim, revised. JAMES

2: Structural Uncertainties 

Despite the improvement 
using FULL-PSM, errors in 
GCMs propagate forward 
through PSMs and may 
reduce reconstruction skill.
(Not true for LU-PSM, which 
is calibrated to the 'true' 
model state).

Applications 1: Data Assimilation and Paleoclimate Reanalyses with PSMs

Two mitigating strategies:  

1. Back to Linear 
Calibration  

2. Bias Correct the GCM



The utility of PSMs for Data-Assimilation Based Reconstruction 
Techniques: 

• PSMs provide a physically-based estimate from GCMs to compare 
with observations.  

• Skill added using nonlinear models increases with increasing proxy 
sensitivity to variables other than temperature. 

• Structural uncertainties, which may prove prohibitive for using PSMs 
with DA and systematically reduce reconstruction skill, may be 
mitigated by bias-correcting GCMs 

• Caveat: need to repeat analysis with multiple isotope-enabled GCMs!

Applications 1: Data Assimilation and Paleoclimate Reanalyses with PSMs

LM-ISO-MIP?

Follow up questions: what is the fall out if our models for how 
proxies work are slightly wrong? (PSM parameter uncertainties) 



• checking our understanding of the proxy system 

Applications 2: Investigating PSM Parametric Uncertainties

Parametric uncertainties exist in our representation of proxy 
systems; we can use PSMs to constrain these uncertainties.

0 200 400 600 800 1000 1200 1400
Depth in Core (m)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
iff

us
iv

ity
(µ

m
2 /s

)

0 200 400 600 800 1000 1200 1400
Depth in Core (m)

0

50

100

150

200

250

300

D
iff

us
io

n
le

ng
th

(c
m

)

Ice Core Parameter Experiments: Diffusion Lengths vs. Temperature, T ± 10C

1460 1480 1500 1520 1540
Years

�11.8

�11.6

�11.4

�11.2

�11.0

�10.8

�10.6

�18
O

IC
E

Ice Core Parameter Experiments: Temperature

Original Site Temperature, T = 269.5K
Parameter Range, T = 269.5 ± 10

500 200 100 50 20 10 8 6 4
Period (Years)

10�5

10�4

10�3

10�2

10�1

100

PS
D

Power Spectral Density

�18OICE

�18OPRECIP

Ice Core Parameter Experiment 1: Temperature

T+10

T-10

T=269.5K

+10

-10

T+10

T-10

TSITE

1460 1480 1500 1520 1540
Years

�11.8

�11.6

�11.4

�11.2

�11.0

�10.8

�10.6

�18
O

IC
E

Ice Core Parameter Experiments: Accumulation

Original Site Accumulation, b = 0.75
Parameter Range, b = [0.1 � 1.5]m/yr

500 200 100 50 20 10 8 6 4
Period (Years)

10�5

10�4

10�3

10�2

10�1

100

PS
D

Power Spectral Density

�18OICE

�18OPRECIP

0 200 400 600 800 1000 1200 1400
Depth in Core (m)

�0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

D
iff

us
iv

ity
(µ

m
2 /s

)

0 200 400 600 800 1000 1200 1400
Depth in Core (m)

0

50

100

150

200

250

300

D
iff

us
io

n
le

ng
th

(c
m

)

Ice Core Parameter Experiments: Diffusion Lengths vs. Accumulation, b = [0.1m : 1.5m]

Ice Core Parameter Experiment 2: Accumulation Rate

b=1.5 m/yr

b=0.1 m/yr

b=0.75 m/yr

1.5

0.75

0.1

+

-

b=0.1 m/yr

b=1.5 m/yr

b=0.75 m/yr

WHAT IS THE CONTRIBUTION OF EACH CLIMATE INPUT TO THE FINAL SIGNAL?



Applications 2: Investigating PSM Parametric Uncertainties
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PSMs allow us to:  
evaluate the contribution of each input climate variable (and its 
variability) on the final measured signal 
quantify uncertainties in signal interpretation

Related: how do proxy system processes affect the spectrum of 
variability observed in paleoclimate data? 



Laepple & Huybers, PNAS 2014

Applications 3: Enhanced Data-Model Comparison with PSMs

How does this comparison 
change when GCM 
simulated climate fields are 
converted to proxy units 
using PSMs? 

• Data-model comparison in 
the frequency domain 
(building on Thomas Laepple, 
Toby Ault’s work, but from 
the forward direction). [see 
Laepple & Huybers, PNAS 2014, Ault et al., 
2013] 

β

β



Part 4: Additional ApplicationsApplications 3: Enhanced Data-Model Comparison with PSMs

Dee et al., in prep
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a. Explicit Simulation: ! = 6 months to 5 Years b. Resampling/Error Space: ! = 6 months to 5 Years
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Modeled �18OCALCITE, ⌧ = 1 yr, �I =-0.7, �D =-0.6

Modeled �18OCALCITE, ⌧ = 2 yr, �I =-1.2, �D =-0.8

Modeled �18OCALCITE, ⌧ = 3 yr, �I =-1.4, �D =-1.0

Modeled �18OCALCITE, ⌧ = 4 yr, �I =-1.3, �D =-1.2

Modeled �18OCALCITE, ⌧ = 5 yr, �I =-1.5, �D =-1.3

�18OCALCITE, OBSERVED

SPEEDY-IER + Speleothem PSM: Effects of Karst Transit Time (⌧ ) at Cascayunga Cave

Processes such as diffusion, karst water storage, soil moisture seasonality/
memory and detrending all have an impact on the proxies’ power spectra. 
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Modeled �18OP , � = 0, �I =-0.1, �D =-0.1

Modeled �18OICE, � = 1x, �I =-4.9, �D =-0.1

Observed �18OICE, �I =-0.1, �D =0.0

SPEEDY-IER [1000-2005] + Ice Core PSM at NGRIP: Effects of Diffusion on �
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Wild Rose, CO

Temperature
Precipitation
VS-Lite (no de-trending)
Negative Exponential Proxy
Negative Exponential Pseudoproxy
Error [5, 95] CI for Estimated Growth Parameters
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Upper Wright Lakes, CA

Temperature
Precipitation
VS-Lite (no de-trending)
Negative Exponential Proxy
Negative Exponential Pseudoproxy
Error [5, 95] CI for Estimated Growth Parameters

Tree Ring With, Model vs. Observations
SPEEDY-IER-generated TRW for Southwest US Trees
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Malpais, NM

Temperature
Precipitation
VS-Lite (no de-trending)
Negative Exponential Proxy
Negative Exponential Pseudoproxy
Error [5, 95] CI for Estimated Growth Parameters
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Beef Basin, UT

Temperature
Precipitation
VS-Lite (no de-trending)
Negative Exponential Proxy
Negative Exponential Pseudoproxy
Error [5, 95] CI for Estimated Growth Parameters

a. b.

c. d.

Upper Wright Lakes, CA Wild Rose, CO

Malpais, NM Beef Basin, UTIce Cores: Diffusion 
and Compaction

Speleothems: Groundwater 
Residence Time

TRW: soil moisture and 
detrending method

What processes inherent to the proxy system itself can alter its power spectrum?
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SPEEDY-IER [1000-2005] + Ice Core PSM at NGRIP: Effects of Diffusion on �
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Median Spectrum with White Noise Input Data (n=10,000)

Ice Core �18O: PSM Spectral Fingerprint (�I = 0.86, �D = 0.26)

200 100 50 20 10 8 6 4 2
Period (Years)

10�2

10�1

100

101

P
S

D

Median Spectrum with White Noise Input Data (n=10,000)

Tree Ring Width: PSM Spectral Fingerprint (�I = 1.53, �D = 0.06)

a. Ice Core δ18O: βI = 0.86, βD=0.26

“Spectral Fingerprints” By Proxy Type

b. Speleothem δ18OCALCITE: βI = 0.91, βD=0.12

d. Tree Ring δ18OCELLULOSE: βI =-0.005, βD=-0.004c. Tree Ring Width: βI = 1.53, βD=0.06

Dee et al., in prep

Applications 3: Enhanced Data-Model Comparison with PSMs
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Applications 3: Enhanced Data-Model Comparison with PSMs

Bottom Line: 
converting climate 
model output to proxy 
units helps us compare 
models and data in a 
more meaningful way. 

Dee et al., in prep



Discussion Points: Challenges in Proxy System Modeling

Complexity and design choices: 

How ‘fancy’ does the model have to be do be realistic and yield 
valuable insight?  

How do these fanciness choices differ across: 

proxy types 

location / regional vs. global scale (tropical vs. mid-lat vs. high lat) 

resolution in time and space 

Compatibility with instrumental data and GCM output (PSM inputs) 

>> PSM session at AGU (w/Bronwen Konecky and Corinne Wong): 
“Advances in proxy system modeling and data-model comparison” (PP)



Volcanic Solar Greenhouse 

Climate Forcing

Climate Model(s)

⌅uo, To

Ta, qa,

P r, ⌥ua

Water 
Isotope
Module

�18Osw

�18Ov, �
18OP

complete state 
vector

SSTA

Proxy System Models

Sensor Model

Archive Model

Observation Model
ti = ti�1 � 1� �i

�i = P �1
i �min(P �2

i , 1)

�18Om = �18O
o

+ ⇥

� � N (0,⇥2)

Observations

�18OICE =

P
p · �18OPP

p
+A

�18Om = D ⇤ �18OICE

Forward Climate-to-Proxy Modeling GCM + PSM

Data Assimilation

prior obs/proxies           PSM

analysis/update
xa = xb +K[y �H(xb)]

          “innovation” 

A Formal Data-Model Comparison Strategy



Thank you! 

Coauthors ~ Data Assimilation w/PSMs: 
Nathan Steiger, Julien Emile-Geay, Greg Hakim 

Coauthors ~ Data-Model Comparison with 
PSMs:  Luke Parsons, Garrison Loope,     
Toby Ault, Jonathan Overpeck



Improved paleoclimate 
signal interpretation 

Tracking external 
forcing from climate to 
proxy 

Sensor Placement 

Categorizing extremes 
in hydroclimate 
variability

Variance Reduction 
ΔσJ(s), s in Tier 2 
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Stochastic Climate states (SST, SSS)!
q x n ensemble state matrix X        δX, J, δJ 
q: spatial dimension 
n: ensemble of time realizations

   Tier 1

Kalman Update δX

Monte Carlo simulation: repeat m times

Greedy Optimization: p cycles

Kalman Update δX

s* = argmax E[ΔσJ(s)] 
s in tier 2 

s* DA

Tier 1 DA

DA: Data Assimilation  24oS 
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Proxy System Model
+

Optimal Paleoclimate Sampling

Comboul et al., revised

How does this proxy work?

[Evans (2007), Evans (2004), Barbour et al. (2004), Roden (2000)]

Figure from Roden (2000)

δ18OCELLULOSE

δ18OPRECIP ~ f (T,P)

δ18OSOILWATER

δ18OVAPOR

Some serious plant biology

Leaf Water Processes

Future Work: PSM Applications


