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S1. Experimental Design 
The pseudoproxy experiments (PPEs) performed in this study use two millennial-length 
Atmosphere-Ocean General Circulation Model (AOGCM) integrations: the NCAR CCSM 1.4 
paleo run [Ammann et al., 2007; hereinafter CCSM] and the GKSS ECHO-g ERIK2 run 
[González-Rouco et al., 2006; hereinafter ECHO-g].  The annual means of the modeled 
temperature fields are interpolated to 5° latitude-longitude grids and comprise the grid from 
which all samplings are performed [Smerdon et al., 2008].  These interpolated model fields do 
not suffer from processing problems previously described by Smerdon et al. [2010b].  
Pseudoproxies are sampled from the 104 temperature grid points that approximate the actual 
proxy locations in the most populated nest of the Mann et al. [1998; hereinafter MBH98] proxy 
network (Fig. S1); all pseudoproxies are taken as available for the entire reconstruction interval.  
This framework is consistent with all previous PPEs that have tested the performance of the four 
methods considered in this manuscript [e.g. von Storch et al., 2004, 2006; Mann et al., 2005, 
2007; Smerdon and Kaplan, 2007; Smerdon et al., 2008, 2010a; Christiansen et al., 2009].  
Nevertheless, recent index and field reconstructions have employed an updated multiproxy 
network containing a total of 1,209 proxies [Mann et al., 2008, 2009].  This network was 
screened to achieve ‘optimal’ reconstructions, yielding a total of 484 proxies in the most 
populated proxy nest (1800-55 C.E.).  By 1500 C.E. only 176 screened proxies were used and by 
1400 C.E. only 75 (Fig. S2).  The MBH98 distribution is therefore representative of sampling 
approximating the updated optimal network by 1400 or 1500 C.E., thus underestimating spatial 
sampling after this time period and overestimating sampling prior to the period.  The MBH98 
sampling network is thus a reasonable intermediate approximation of the spatial sampling of the 
Mann et al. [2008] network in PPEs that choose to impose constant sampling density with time, 
as we do here and as all previous studies have done.  Furthermore, sampling densities in the 
Mann et al. [2008] multiproxy network have largely increased in previously dense areas of the 
MBH98 network, thus not increasing the spatial extent of the proxy distribution significantly 
(Fig. S1).  We nevertheless perform additional PPEs later in this Auxiliary Material that test CFR 
performance with a pseudoproxy network approximating the most populated nest in the Mann et 
al. [2008] multiproxy network.  This approximation was achieved by sampling all grid cells that 
contained at least one record in the unscreened Mann et al. [2008] global network, yielding a 
total of 283 sampled grid cells (Fig. S1). 
 
All methods use the same network of white-noise pseudoproxies. Each of the sampled 
pseudoproxy series is perturbed at four white-noise levels: signal-to-noise ratios (SNRs) of 
infinity (no noise), 1.0, 0.5 and 0.25, by standard deviation.  The AOGCM field is also 
subsampled to approximate available instrumental temperature data in the Brohan et al. [2006] 
instrumental field resulting in a total of 1,732 grid cells in the global field [Mann et al., 2008].  
All tested methods are calibrated from 1856-1980 C.E.; all validation statistics are calculated 
during the reconstruction intervals from 850-1855 C.E. and 1000-1855 C.E. for the CCSM and 
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ECHO-g simulations, respectively.  The above conventions are simplifications of real-world 
conditions.  The noise in real proxies is typically multivariate (i.e. sensitive to climate variables 
in addition to temperature), non-stationary, and autocorrelated [e.g., Jacoby and D’Arrigo 1995; 
Briffa et al., 1998; Esper et al., 2005; Evans et al., 2002; Anchukaitis et al., 2006], while proxy 
sensitivity is typically seasonally dependent [e.g. Pauling et al., 2003].  The modeled climates 
are considered to reasonably mimic real-world field statistics, but important features such as the 
strength and character of teleconnections vary across simulations and can be different from 
observations.  Despite these assumptions and simplifications, the adopted experimental setup can 
be considered a best-case scenario for real-world conditions, whereas additional modifications to 
the PPE framework to more fully mimic real-world proxies will only degrade the results [e.g. 
von Storch et al., 2004, 2006; Mann et al., 2007]. 
 
S2. Methods 
S2.1. Mann et al. [1998] 
The MBH98 method was applied as emulated by von Storch et al. [2006]. The implementation of 
the method has been previously verified with the original proxy and instrumental temperature 
data used by MBH98 [von Storch et al., 2009]. No detrending was performed during the 
calibration interval [von Storch et al., 2006]. The number of EOF-PC pairs retained from the 
pseudo-instrumental temperature field was estimated by the N-rule [Overland and Preisendorfer, 
1982]. Because the number of pseudoproxies in the network is kept constant for the whole 
reconstruction period, the number of retained EOFs is also constant within each experiment, and 
is 8 and 9 for the CCSM and ECHO-g experiments, respectively. These numbers are also 
independent of the noise level in the pseudoproxies. 
 
S2.2. RegEM-TTLS 
RegEM reconstructions were performed using truncated total least squares (RegEM-TTLS) for 
regularization [Mann et al., 2007].  Our implementation of the RegEM-TTLS algorithm was 
originally validated using the codes and data made publicly available by Mann et al. [2007].  For 
these experiments (not shown), objective selection of the truncation parameter was performed in 
the high-frequency domain using a linear fit to the log-eigenvalue spectrum. The leading 
eigenvalues that were found to lie above the estimated linear function were retained. Within the 
low-frequency domain, the number of leading eigenvalues was set so that 50% of the target field 
variability was maintained.  Each of the above selection criteria is equivalent to those applied by 
Mann et al. [2007].  Reconstructed fields are not provided at the Mann et al. [2007] public 
website. We therefore did not verify our implementation based on derived fields, but instead 
used the publicly provided decadally filtered NHM time series for verification. Derived 
reconstructions produced filtered NHM time series that matched the archived time series within a 
correlation coefficient of 0.99 or better.  
 
RegEM CFR methods have typically employed hybrid-spectral approaches in which 
reconstructions are independently performed in high and low-frequency domains (usually split at 
the 20-year period) and then combined to form a full CFR [Rutherford et al., 2005; Mann et al., 
2005, 2007]. Differences between hybrid and non-hybrid reconstructions have been reported to 
be minimal [Rutherford et al., 2005; Mann et al., 2005, 2007], although recent discussions have 
debated the importance of hybrid calibrations on the skill of derived RegEM-TTLS 
reconstructions [Rutherford et al., 2010; Christiansen et al., 2010].  Unless otherwise noted, all 
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CFRs performed in our study are non-hybrid reconstructions to provide consistent comparisons 
with the other non-hybrid methods that we have tested.  In section S3 we explicitly compare the 
performance of the hybrid and non-hybrid RegEM-TTLS methods and show that most of the 
gross spatial features of the CFRs are similar. 
 
Non-hybrid RegEM-TTLS CFRs were calculated using a linear fit to the log-eigenvalue 
spectrum to determine the truncation parameter in the same manner that was advocated by Mann 
et al. [2007] for the high-frequency component of their hybrid reconstructions. For the hybrid 
reconstructions, a linear fit to the log-eigenvalue spectrum was again used to determine the 
truncation parameter for the high-frequency reconstructions, while the low-frequency truncation 
was determined by selecting the eigenvalue rank yielding 33% of the cumulative variance in the 
low-frequency field.  This reduction in the retained cumulative variance from 50%, as originally 
adopted by Mann et al. [2007], has been advocated in later publications by Rutherford et al. 
[2010] and Mann et al. [2009].  The selected truncation parameters for all of the RegEM-TTLS 
CFRs are given in Table S1, as well as the rank reduction of the target field.  In all hybrid and 
non-hybrid reconstructions, a value of 10-4 was used for the stagnation tolerance and the inflation 
parameter was set to 1. 
 
S2.3. Ridge Regression 
We apply standard ridge regressions [Hoerl and Kennard, 1970] for the ridge regression CFRs in 
this study.  The application of a single ridge regression is a break from earlier studies that have 
used ridge regression as the form of regularization in the iterative RegEM algorithm (RegEM-
Ridge).  The application of RegEM-Ridge for the purpose of Common Era CFRs has been 
discussed in detail in various publications [Schneider 2001; Mann et al., 2005; Smerdon and 
Kaplan 2007; Lee et al., 2007; Smerdon et al., 2008, 2010a; Christiansen et al., 2009].  Our 
motivation for applying a standard ridge regression in the present context is twofold: 1) a single 
ridge regression is simpler and more computationally efficient than the RegEM-Ridge algorithm; 
and 2) for the current problem, in which a uniform block comprises the missing values in the 
data matrix, the RegEM-Ridge solution converges to the single ridge regression result.  We have 
confirmed this latter finding using PPEs (results not shown).  The value of the ridge parameter 
for the single ridge regressions was determined in the same manner applied by Schneider [2001] 
to select the ridge parameter for RegEM-Ridge, namely by minimization of the generalized cross 
validation (GCV) function [Golub et al., 1979].  GCV selections of the ridge parameter in the 
ridge regression CFRs at SNRs of infinity, 1.0, 0.5 and 0.25 were 0.63, 1.24, 1.44, 2.18 and 0.63, 
1.19, 1.37, 1.47 for the CCSM and ECHO-g PPEs, respectively.  Given the uniform block matrix 
of missing values in the PPE context, each ridge regression used the singularly selected ridge 
parameter for all missing values.  
 
S2.4. Canonical Correlation Analysis 
The canonical correlation analysis (CCA) method was applied as described in Smerdon et al. 
[2010a]. Dimensions of the proxy and instrumental fields were both reduced by eigenvalue 
truncation, as were the number of retained canonical coefficients.  These dimensional reductions 
were selected based on ‘leave-half-out’ cross-validation statistics, as described by Smerdon et al. 
[2010a]. The CCA dimensional selections are given in Table S2 for the minimum cross-
validation root mean square error (RMSE), as well as those achieved for preferred dimensions 
taken as the first local minimum of the RMSE space to guard against artificial skill [Smerdon et 
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al., 2010a].  These preferred dimensions are used in all of the CCA CFRs in this study.  In those 
cases where the preferred dimensional selections were different from those of the absolute 
minimum RMSE, the mean RMSE is increased by only several thousandths of a Kelvin degree. 
 
S2.5. Assessment Metrics 
We plot or summarize four different statistics to assess reconstruction skill: 1) the Pearson’s 
correlation coefficient; 2) the difference between the reconstruction and target means, i.e. the 
bias; 3) the ratio between the reconstruction and target standard deviations; and 4) the RMSE. 
We use RSME as a summary statistic that combines both the resolved variance and the bias into 
a single assessment.  The coefficient of efficiency (CE) and reduction of error (RE) statistics are 
often used in the paleoclimate literature as additional statistical validation measures. Advocates 
of these statistics point out that RE and CE measure both the resolved variance and reconstructed 
mean in derived reconstructions (e.g., Wahl and Ammann [2007]), a characteristic that is also 
shared by the RMSE statistic adopted in this study.  The chosen assessment metrics collectively 
characterize the variance and the fidelity of local means in the derived reconstructions and 
transparently decompose the uncertainty of the CFRs into individual error categories.  While not 
all of the methods include straightforward derivations of error estimates, these out-of-sample-
assessment metrics collectively define the residuals that are often used to derive empirically 
based uncertainty estimates for paleoclimatic reconstructions.   
 
S3. Comparisons of Hybrid and Non-Hybrid RegEM-TTLS CFRs 
A precursory evaluation of our emulation of the RegEM-TTLS method is possible based on skill 
results published by Mann et al. [2007], in which skill statistics were reported for their versions 
of the hybrid RegEM-TTLS method.  These results were affected by processing errors [Smerdon 
et al., 2010b], resulting in PPEs that use pseudoproxy and target distributions unrepresentative of 
the realistic distributions used in the present study.  Nevertheless, the relative behavior of our 
RegEM-TTLS CFRs is consistent with the mean field r2 (called multivariate r2 by Mann et al. 
[2007]) and the r2 for the NHMs, as they were reported by Mann et al. [2007] (Table S3).  The 
overall effect of the different sampling schemes appears to be slightly reduced skill in the CFRs 
that we have performed based on realistic sampling schemes. 
 
Comparisons between the hybrid and non-hybrid RegEM-TTLS reconstructions yield mixed 
results that do not necessarily advocate for one methodological version over the other.  The 
correlation coefficients and standard deviation ratio patterns are broadly similar for both 
versions, while the mean biases are significantly improved for the hybrid version (Fig. S3 and 
Table S4).  Non-hybrid RegEM-TTLS CFRs outperform the hybrid counterparts (or are 
minimally worse) in mean field correlations, standard deviation ratios and RMSE for all noise 
levels (Table S4), except for the highest noise case in which the hybrid version is modestly more 
skillful.  Note that mean standard deviation ratios in both sets of CFRs indicate preservation of 
variance in regions of small correlation coefficients, thus larger mean standard deviation ratios 
are not necessarily a good measure of CFR success.  Except for an SNR of 1.0, the hybrid CFRs 
outperform the non-hybrid CFRs in Northern Hemisphere mean correlations (NHMCs).  The 
reduced mean biases noted in the overall field, are also more evident in the hybrid version of the 
NHM time series (Fig. S7).  This difference may or may not be a consistent difference between 
the two methodological options and should be tested with more realizations of pseudoproxy 
noise and model simulations.  Nevertheless, it should be underscored that even in the case of the 
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hybrid RegEM-TTLS CFR, in which skillful NHM reconstructions are evident, the field statistics 
presented in Fig. S3 and Table S4 indicate that evaluation of NHM performance is insufficient 
for a full assessment of CFR skill.   
 
With the exception of the differences in the mean biases in the hybrid and non-hybrid CFRs, 
there appears to be only modest differences between the two methodological choices.  
Comparisons between either of the RegEM-TTLS versions are therefore appropriate in the 
context of our study, and our choice to use non-hybrid versions of the RegEM-TTLS method is 
warranted.  It is also worth noting that with the exception of the mean biases, in which either the 
hybrid or non-hybrid RegEM-TTLS CFRs outperform the other methods at almost all noise 
levels, the hybrid RegEM-TTLS CFRs are less skillful than all other methods in both the mean 
field correlations and the overall error in the field for all noise levels except at an SNR of 0.25.  
This again underscores the limited value of using NHMs as indicators of field skill, while 
suggesting that none of the evaluated methods can be necessarily considered to have 
characteristics that are significant improvements over another.  This discussion also points to the 
need to further investigate how best to compare the field skill of CFRs, as well as determine 
robust spatial skill metrics for CFR assessments. 
 
S4. MBH98 vs. Mann et al. [2008] Pseudoproxy Networks 
We tested the impact of an updated pseudoproxy network based on the distribution of the Mann 
et al. [2008] multiproxy network using CCA CFRs.  The selected dimensions for the CCA 
reconstructions using either the MBH98 or Mann et al. [2008] pseudoproxy networks are given 
in Table S2.  Field statistic comparisons and NHM time series are given for the two CCA PPEs 
in Figs. S4 and S8 and in Table S4. 
 
In all cases, CCA CFRs that used pseudoproxies representing the most populated nest in the 
Mann et al. [2008] network yielded improved reconstruction skill relative to the equivalent 
MBH98 pseudoproxy CFRs.  Correlation coefficients over the more densely sampled areas of 
North America and Eurasia showed significant improvements and further reflect the observation 
that the largest correlation coefficients concentrate in highly sampled regions.  NHMCs also 
showed marked increases, although the mean biases and variance losses evident in the CCSM 
NHMs derived from the CCA CFRs were not wholly mitigated by the updated network (Fig. S8).  
Despite improvements, however, the updated network did not eliminate all of the spatial errors 
observed in CFRs that used the MBH98 network (Fig. S4 and Table S4).  Large areas of the 
Southern Hemisphere, for instance, still appear poorly resolved in the CFRs using the updated 
network (Fig. S4).  Heterogeneous variance losses and mean biases are also still evident (Fig. 
S4).  While the improvements in the CFRs that use the updated network are therefore promising, 
particularly in the NH, the richer Mann et al. [2008] network appears unlikely to mitigate all of 
the spatial errors in the CFRs as we have characterized them. This finding likely stems from the 
fact that increased proxy densities in the new network have occurred primarily in previously 
densely sampled areas.  Expanding multiproxy networks to undersampled regions such as the 
ocean basins and Southern Hemisphere therefore should be an important goal of the paleoclimate 
community.  It should also be noted that PPEs are useful for the general conclusion that spatial 
skill can concentrate in densely sampled areas, but they cannot be used for optimal site selections 
because the spatial statistics in model fields (e.g. teleconnections) are not necessarily 
representative of the real-world climate.  Optimal site selection studies are nevertheless possible 
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with proxy data [e.g. Evans et al. 1998] or with instrumental data alone, and represent a useful 
evaluation of how to improve CFRs through increased spatial sampling. 
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Figure S1. Comparison of the pseudoproxy networks used in this study to 
approximate the most populated nests in the MBH98 (red dots) and Mann et al. 
[2008] (grey squares) multiproxy networks. 

 
 
 
 
 
 
 
 
 

 
Figure S2. Total and categorized proxy abundances in the global Mann et al. [2008] proxy 
network for: (a) the full dataset; and (b) the culled dataset as screened and used by Mann et al. 
[2008].  The plotted abundances are as published in the Supporting Information by Mann et al. 
[2008]. 
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Figure S3. Field statistic comparisons for CFRs derived using the non-hybrid (left column) and 
hybrid (right column) versions of the RegEM-TTLS method and the CCSM PPE framework.  
Field statistics are computed as shown in Figs. 1-3 of the main article and correspond to 
correlation coefficients (top row), standard deviation ratios (middle row) and mean biases 
(bottom row). 
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Figure S4. Field statistic comparisons for CCA CFRs and pseudoproxy networks approximating 
the MBH98 (left column) and Mann et al. [2008] (right column) multiproxy networks in the 
CCSM PPE framework.  Field statistics are computed as shown in Figs. 1-3 of the main article 
and correspond to correlation coefficients (top row), standard deviation ratios (middle row) and 
mean biases (bottom row). 
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Figure S5. Mean temperature differences between the calibration and reconstruction interval 
means in the CCSM (left panel) and ECHO-g (right panel) simulations. 
 

 
 
 
 
 

 
Figure S6. Area-weighted NHM time series computed from CFRs derived from the four 
non-hybrid methods, the two model experiments, and pseudoproxies with an SNR of 0.5. 
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Figure S7. Area-weighted NHM time series computed from hybrid and non-hybrid 
versions of the RegEM-TTLS method and the CCSM PPE framework. 

 
 
 
 
 
 
 

 
Figure S8. Area-weighted NHM time series computed from CCA CFRs and pseudoproxy 
networks approximating the MBH98 and Mann et al. [2008] multiproxy networks in the CCSM 
PPE framework. 
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Table S1. Truncation parameters used in the RegEM-TTLS CFRs 
performed in this studya. 

 Non-Hybrid Hybrid 
SNR Full Spectrum Instrumental 

PCs Retained 
High- 

Frequency 
Low-

Frequency 
Infinity 6 (4) 6 6 1 

1.0 6 (4) 6 5 1 
0.5 4 (2) 4 4 2 
0.25 4 (2) 4 4 3 

aAll numbers are for CCSM reconstructions, except those shown in 
parentheses, which report the selections for the ECHO-g reconstructions.  The 
total instrumental PCs retained are shown for the hybrid reconstructions, 
while the total number of retained PCs for the non-hybrid reconstructions are 
equal to the given values of the truncation parameters in all cases. 

 
 

Table S2. Dimensional selections and associated calibration 
period RMSE values for all CCA CFRs performed in this 
studya.  
 Absolute Minimum Preferred Dimensions 
SNR dcca,dp,dt RMSE dcca,dp,dt RMSE 

 CCSM (MBH98 Pseudoproxy Network) 
Inf 20,23,49 0.53 15,15,49 0.53 
1.0 18,20,50 0.58 13,23,20 0.58 
0.5 10,19,10 0.64 7,18,10 0.64 

0.25 5,29,5 0.68 2,28,3 0.68 
 CCSM (Mann et al. [2008] Pseudoproxy Network) 

Inf 37,37,49 0.47 33,33,48 0.47 
1.0 36,36,50 0.52 27,28,49 0.52 
0.5 32,34,49 0.59 19,35,30 0.59 

0.25 6,44,6 0.66 6,44,6 0.66 
 ECHO-g (MBH98 Pseudoproxy Network) 

Inf 18,21,45 0.47 18,21,45 0.47 
1.0 23,25,32 0.52 4,32,4 0.54 
0.5 16,24,19 0.59 3,41,3 0.59 

0.25 4,38,4 0.67 4,38,4 0.67 
aThe preferred dimensions were those used for all of the analyzed CCA 
CFRs herein and were selected as the first local minimum in the RMSE 
space [Smerdon et al., 2010a].   

 
 
Table S3. CCSM verification statistics (850-1855 C.E.) computed for RegEM-TTLS CFRs 
in Mann et al. [2007] and in this studya. 

 Mann et al. [2007] This Study (Hybrid) This Study (Non-Hybrid) 
 

SNR 
Mean-Field 

r2 
r2 for NH 

Means 
Mean-Field 

r2 
r2 for NH 

Means 
Mean-Field 

r2 
r2 for NH 

Means 
Infinity 0.30 0.87 0.21 0.76 0.24 0.76 

1.0 0.23 0.86 0.19 0.69 0.22 0.71 
0.5 0.19 0.83 0.15 0.65 0.15 0.58 

0.25 0.06 0.34 0.07 0.40 0.07 0.27 
aNumbers are not directly comparable because of problems in the Mann et al. [2007] pseudoproxy network 
and target field as reported by Smerdon et al. [2010b].  The relative behavior in these statistics is nevertheless 
consistent, while suggesting that the updated PPE framework in this study that reflects real-world sampling 
distributions slightly reduces the skill in the hybrid RegEM-TTLS method tested by Mann et al. [2007]. 
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Table S4. Verification statistics computed for all reconstructions performed in this studya. 
 

SNR 
 

NHMC 
Mean Field 
Correlation 

Mean STD 
Ratio 

 
Mean Bias (K) 

Mean RMSE 
(K) 

MBH98 
Inf 0.874 (0.932) 0.504 (0.553) 0.586 (0.604) 0.004 (-0.005) 0.530 (0.494) 
1.0 0.847 (0.899) 0.474 (0.517) 0.532 (0.578) 0.056 (0.018) 0.543 (0.507) 
0.5 0.739 (0.813) 0.391 (0.444) 0.503 (0.575) 0.099 (0.050) 0.588 (0.538) 

0.25 0.437 (0.562) 0.226 (0.280) 0.451 (0.573) 0.199 (0.146) 0.674 (0.620) 
RegEM-TTLS (Non-Hybrid) 

Inf. 0.873 (0.926) 0.460 (0.506) 0.614 (0.584) 0.018 (-0.024) 0.561 (0.514) 
1.0 0.842 (0.900) 0.433 (0.481) 0.631 (0.620) 0.027 (-0.017) 0.571 (0.524) 
0.5 0.759 (0.818) 0.350 (0.408) 0.616 (0.572) 0.108 (-0.001) 0.632 (0.546) 

0.25 0.517 (0.640) 0.229 (0.307) 0.622 (0.618) 0.172 (0.040) 0.707 (0.585) 
RegEM-TTLS (Hybrid) 

Inf.    0.874    0.429    0.578   -0.019  0.575 
1.0    0.833    0.402    0.570   -0.017  0.579 
0.5    0.808    0.359    0.583   -0.026  0.607 

0.25    0.632    0.244    0.680   -0.017  0.666 
Ridge Regression 

Inf. 0.947 (0.960) 0.649 (0.667) 0.699 (0.695) 0.017 (-0.011) 0.417 (0.413) 
1.0 0.874 (0.912) 0.524 (0.554) 0.477 (0.537) 0.103 (0.041) 0.518 (0.483) 
0.5 0.757 (0.804) 0.385 (0.433) 0.344 (0.431) 0.179 (0.126) 0.603 (0.546) 

0.25 0.425 (0.597) 0.178 (0.258) 0.157 (0.326) 0.279 (0.253) 0.691 (0.639) 
CCA 

Inf. 0.922 (0.953) 0.581 (0.628) 0.676 (0.713) 0.007 (-0.005) 0.470 (0.442) 
1.0 0.870 (0.895) 0.507 (0.518) 0.549 (0.561) 0.060 (0.009) 0.521 (0.513) 
0.5 0.772 (0.783) 0.390 (0.425) 0.392 (0.504) 0.142 (0.065) 0.597 (0.547) 

0.25 0.391 (0.567) 0.177 (0.280) 0.214 (0.447) 0.254 (0.162) 0.681 (0.602) 
CCA (Mann et al. [2008] Pseudoproxies) 

Inf.    0.972    0.642    0.781   -0.002 0.394 
1.0    0.940    0.566    0.597    0.035 0.450 
0.5    0.867    0.463    0.451    0.116 0.532 

0.25    0.638    0.281    0.311    0.202 0.639 
aUnless otherwise noted in the subheadings, all reconstructions are non-hybrid and performed using the MBH98 
pseudoproxy network.  All numbers given outside of parentheses are for CCSM experiments (850-1855 C.E. 
validation period); numbers in parentheses are for the ECHO-g experiments (1000-1855 C.E. validation period). For 
all PPEs that used the MBH98 pseudoproxy network, the numbers given in bold black (grey) correspond to the best 
(second best) performance in each metric category for each noise level.  In cases of ties, numbers from both methods 
have been bolded. 


