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ABSTRACT

A pseudoproxy comparison is presented for two statistical methods used to derive annual climate field

reconstructions (CFRs) for Europe. The employed methods use the canonical correlation analysis (CCA)

procedure presented by Smerdon et al. and the Bayesian hierarchical model (BHM) method adopted from

Tingley and Huybers. Pseudoproxy experiments (PPEs) are constructed from modeled temperature data

sampled from the 1250-yr paleo-run of the NCAR Community Climate System Model (CCSM) version 1.4

model by Ammann et al. Pseudoproxies approximate the distribution of the multiproxy network used by

Mann et al. over the European region of interest. Gaussian white noise is added to the temperature data to

mimic the combined signal and noise properties of real-world proxies. Results indicate that, while both

methods perform well in areas with good proxy coverage, the BHM method outperforms the CCA method

across the entire field and additionally returns objective error estimates.

1. Introduction

A concerted research effort over the last decade has

focused on reconstructing global or regional climate

during the Common Era (CE) using networks of climate

proxies [see, e.g., Jones et al. (2009) for a review]. A

significant area of focus has been over Europe and the

North Atlantic where instrumental, documentary, and

proxy data are abundant (e.g., Luterbacher et al. 1999,

2000, 2002, 2004, 2007; Pauling et al. 2003, 2006; Xoplaki

et al. 2005; Küttel et al. 2009, 2010; Riedwyl et al. 2009;

Guiot et al. 2005, 2010). These regional reconstructions

employ the same or similar methods used to reconstruct

global or hemispheric climatic fields, and therefore are

subject to many of the same challenges that have been

widely discussed for the latter group (e.g., Jones et al.

2009; Smerdon et al. 2011). For example, outstanding

methodological questions are tied to the impact of proxy

distributions and abundance (e.g., Pauling et al. 2003;

Küttel et al. 2007; Smerdon et al. 2011, and references

therein), the connections between climate and proxy

responses across different spectral domains and mul-

tiple environmental variables (e.g., Evans et al. 2006;

D’Arrigo et al. 2008), the role of teleconnections and

noise in the calibration data (e.g., Christiansen et al. 2009;

Smerdon et al. 2011), and the impact of methodological

choices on derived reconstructions (e.g.,Mann et al. 2007;

Hegerl et al. 2007; Lee et al. 2008; Christiansen et al.

2009; Tingley et al. 2012; Smerdon et al. 2011; Wahl and

Smerdon 2012). The answers to these questions are ul-

timately fundamental to successful reconstructions of

past climatic variability (e.g., North et al. 2006; Jansen

et al. 2007; Jones et al. 2009).

To address the existing challenges and improve CE

climate field reconstructions, multiple methodological

approaches have been emerging recently as alternatives

to the more traditional multivariate linear regression

schemes that have been widely used for reconstruction

problems. For instance, paleoclimatic data assimilation

schemes recently have been proposed and explored
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(Widmann et al. 2010; Goosse et al. 2010; Luterbacher

et al. 2010a). The paleoclimatic reconstruction problem

also can be formulated in Bayesian frameworks (Tingley

and Huybers 2010a,b; Li et al. 2010). Both assimilation

and Bayesian approaches generally have the benefit of

incorporating physical or process-based information

about the climate and the climate–proxy connection as

constraints on the reconstruction problem, while pro-

viding more comprehensive uncertainty estimates for

the derived reconstructions. These benefits alone justify

further application of these methods, as well as robust

comparisons between established methods and the

emerging efforts.

One important tool for assessing CE reconstruction

methods is millennium-length, forced transient simula-

tions with fully coupled general circulation models

(GCMs) (e.g., González-Rouco et al. 2003, 2006; Gómez-

Navarro et al. 2011; Ammann et al. 2007; Schmidt et al.

2011). These model simulations are used to derive con-

trolled and systematic reconstruction experiments for

methodological comparisons and evaluations—an ap-

proach known as pseudoproxy experiments (PPEs); see

Smerdon (2012) for a review. The motivation for PPEs

stems from the fact that real-world reconstructions are

derived frommany different methods, calibration choices,

and proxy networks. Uncertainty in any given real-world

reconstruction is therefore a combined result of the em-

ployed method, the adopted calibration data and cali-

bration time interval, the spatial and temporal sampling of

the proxy network, and the actual climate–proxy con-

nection of each proxy record used for the reconstruction.

If the objective is to isolate the impact of one of these

factors, it is difficult to do so from comparisons between

available real-world reconstructions. PPEs have allowed

some of the above challenges to be circumvented by

adopting a common framework that can be systemati-

cally altered and evaluated, and thus test reconstruction

methods and their dependencies.

Here we build on previous work to apply and evaluate

Bayesian algorithms for paleoclimate reconstructions

using PPEs for methodological evaluation. We specifi-

cally use the Bayesian Algorithm for Reconstructing

Climate in Space and Time (BARCAST) developed by

Tingley and Huybers (2010a), which was evaluated in

PPEs using instrumental data over North America.

BARCAST is further evaluated herein for the first time

in a European PPE framework built on output from a

millennium-length simulation from the National Center

for Atmospheric Research (NCAR) Community Cli-

mate SystemModel version 1.4 (CCSM) (Ammann et al.

2007). The longer time scale provided by the subsequent

PPEs based on themillennium-length simulation, relative

to the shorter time interval allowed by PPEs that use the

instrumental data (Tingley and Huybers 2010a), allows

us to expand the BARCAST evaluation to lower fre-

quencies and makes our results more directly compa-

rable to the wider array of methodological studies that

have used millennium-length simulations for PPEs. Our

focus on Europe builds on multiple other studies that

have evaluated reconstruction methods with millennial

simulations (Riedwyl et al. 2009; Küttel et al. 2007), and

the use of data derived from the same global simulation

experiments used by Smerdon et al. (2011) further

couches our efforts in a larger experimental context. We

also compare the BARCAST reconstructions to exper-

iments that employ the canonical correlation analysis

(CCA) method applied by Smerdon et al. (2010b).

2. Data

The employed data are based on the transient paleo-

climate simulation described by Ammann et al. (2007)

using the NCAR CCSM 1.4 driven by natural and an-

thropogenic forcings estimated from 850 to 1999 Com-

mon Era (CE). The resulting annual surface temperature

field output has been interpolated to a 58 longitude–

latitude grid using bilinear interpolation (Smerdon et al.

2008; Rutherford et al. 2008; Smerdon et al. 2010a). We

selected an area covering the northeastern Atlantic

Ocean, Europe, and North Africa (308–808N, 208W–

458E). The field is a subset of the global domain used in

earlier studies (e.g., Smerdon et al. 2010b, 2011).

From this dataset we select two subsets of data from

the CCSM field: one for the pseudoinstrumental data

and a second for the pseudoproxy network. Throughout

the article we refer to the model world, unless explicitly

stated, and thus drop the prefix ‘‘pseudo’’ in relation to

the simulated data. To mimic spatial data availability in

the instrumental period we approximate the Jones et al.

(1999) dataset by selecting only those grid points that

have less than 30% missing annual data, based on a

global analysis by Mann and Rutherford (2002). No ef-

fort wasmade to duplicate the changing data coverage in

time; that is, all instrumental data were assumed to be

available for all calibration years at the selected grid cells.

The annual temperature data at these locations were

directly used as the instrumental data for the climate

field reconstruction (CFRs).

The employed pseudoproxy network approximates

spatially the proxy network used by Mann et al. (1998)

restricted to the study area. However, the proxy network

remains stable in time: in contrast to real world CFRs all

proxies are available throughout the full reconstruction

period. Note that inMann et al. about half the employed

temperature sensitive proxy data in our reconstruction

area of interest comprise long instrumental time series
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(10 of 21 time series) and some were originally used as

predictors for precipitation. The spatial distribution of

pseudoproxy data is shown as dots in Fig. 2 (and sub-

sequent figures showing spatial characterizations of the

CFRs). Even thoughmore proxies have become available

through national and international projects and programs

such as the European Union (EU) sixth framework pro-

gram MILLENNIUM or Past Global Changes (PAGES)

(Newman et al. 2010), there still are fewmillennium-length

annually resolved temperature proxy time series available

over the area of study (e.g. Büntgen et al. 2011; Esper et al.

2012). The regional European–Mediterranean subset of

proxy data also used in earlier pseudoproxy experiments

(Smerdon et al. 2008; Rutherford et al. 2008; Smerdon et al.

2010b, 2011) can therefore be seen as a best-case scenario

when employing only highly resolved proxy data available

through the full reconstruction period. This selection also

allows for consistent comparisons between our results and

published experiments that have used other methods in

various reconstruction areas.

The proxy time series are constructed by adding white

Gaussian noise to the temperature data at the selected

proxy sites. The proxy signal-to-noise ratios (SNRs) in

terms of standard deviation used for this study were 0.5

and 0.25, roughly spanning the range of estimated SNRs

in real-world climate field reconstructions (CFRs) [cf.

also Smerdon (2012) for a review; a more detailed de-

scription of the data is given by Smerdon et al. (2010b)].

Note that the variety of different proxy types is ignored

in this study and the employed proxy response function

is simpler than encountered in the real world. However,

as a linear response function with white Gaussian noise

has been standard in previous pseudoproxy studies, it is

useful to use this traditional construction. We also pri-

marily aim to test and compare the general skill of the

adopted reconstruction methods, especially the ability

of the employed models to capture and reconstruct the

spatiotemporal evolution of the temperature field.

3. Reconstruction methods

Many different methods have been used to reconstruct

past climate during the Common Era. In principle the

reconstruction methods consist of two different parts:

a (usually statistical) model and an inference mechanism.

The inference mechanisms range from simple linear re-

gressions (Bürger et al. 2006; Luterbacher et al. 2004,

2007; Xoplaki et al. 2005; Riedwyl et al. 2009) or so-called

inverse regression (Mann et al. 1998) by minimizing an

error measure or maximizing a likelihood function (or a

combination thereof) or through application of neural

networks (Guiot et al. 2005, 2010) to scalings of composite

predictors (e.g., cf. Esper et al. 2005). A more complex

method isBayesian inference, where a likelihood function

is combined with a prior probability density function

(PDF) to yield a posterior PDF for the fields and also

the parameters; for example, see Gelman et al. (2003) or

Tingley and Huybers (2010a). As the full joint (multi-

variate) probability density functions are often compli-

cated, they can be estimated using the Gibbs sampler and

the Metropolis–Hastings algorithm. The employed sta-

tistical models can be either localized descriptions of the

climate field, such as the one presented by Tingley and

Huybers (2010a,b) and used herein, or based on spa-

tiotemporal eigenfunctions of the climate field and the

proxy network, similar to the approaches in multivariate

regressions such as CCA or principal component re-

gression (PCR) (see, e.g., Cook et al. 1994; Luterbacher

et al. 2000, 2002; Riedwyl et al. 2009).

a. Pointwise hierarchical model with Bayesian
inference

Many dynamical systems can be modeled using sta-

tistical descriptions (Gardiner 1990; Risken 1989); in

fact, stochastic modeling of deterministic dynamics is

the foundation of modern thermodynamics as shown in

the seminal papers of Einstein (1905, 1906). Stochastic

modeling can be employed to describe the evolution of

slowly varying characteristics of a dynamical system

with a distinct time scale separation: the fast, often high

dimensional degrees of freedom should be on a time scale

much shorter than the slowly varying quantity of interest.

In such cases, the effect of the fast degrees of freedom

on the slow variations can be replaced by a suitable noise

process [see Just et al. (2001) andKantz et al. (2004)]. The

parameters of the stochastic description often can be

derived by careful analysis of the time series to be mod-

eled (Just et al. 2003; Stemler et al. 2007; Anishchenko

et al. 2002). Specifically with regard to continental tem-

perature fields, the driving processes of annual tempera-

ture anomalies are on time scales of months (Rossby

waves), weeks (cyclonic activity), or faster (convection);

the evolution of ocean temperatures and circulation

patterns, however, extends to time scales of years and

longer. Our study area consists mainly of the European

landmass, thus—while of course being influenced by the

Atlantic Ocean—a time scale separation should never-

theless be present (cf. Hasselmann 1976), especially for

annual temperature anomalies. One additional chal-

lenge when modeling extended spatiotemporal systems

is the nonseparability of spatial and temporal dynamics

of many systems. Tingley et al. (2012) give the annual

temperature anomalies as an example for a nonseparable

system: nonuniformity of the temporal autocorrelation

(persistence) leads to nonseparability of the spatiotem-

poral cross-covariancematrix. In our area, the persistence
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is in fact mostly uniform, and spatiotemporal dynamics

(such as frontal systems) typically occur on shorter time

scales and are removed by the averaging process.

In contrast to the usual methods in stochastic model-

ing, where the model is derived by careful analysis of the

data, reasonable a priori assumptions, verified through

preliminary analysis of the data, about the processes are

used by Tingley and Huybers (2010a) and revisited be-

low to create a simple model. The model is then verified

to work reasonably well by checking diagnostics such as

the convergence of the posteriors or predictive experi-

ments. Those predictions can bemade by using the derived

set of parameters to estimate, for example, the tempera-

tures at locations where available data were withheld from

the initial experiment. In the context of pseudoproxy ex-

periments, the reconstructions can be interpreted as

predictive experiments.

1) THE BAYESIAN HIERARCHICAL MODEL

To actually employ a Bayesian hierarchical model

(BHM) in climate field reconstructions, the climate field

as well as the response of the different types of proxiesmust

be modeled as a hierarchy of stochastic processes (e.g.,

Tingley and Huybers 2010a; Tingley et al. 2012; Li et al.

2010). Another level of hierarchy is represented by the

model parameters that are not set to a fixed value, but

rather by postulating a probability density function esti-

mated from the data. The corresponding parameters are

called ‘‘hyperparameters’’ and they are used to represent

the prior knowledge about the system derived either from

an understanding of the processes themselves or through

initial analyses of the data. These parameters are discussed

in detail by Tingley and Huybers (2010a) and the specific

selections for our model are given in the appendix. Ulti-

mately, the BHM provides estimates for the posterior

PDFs of field variables and process parameters. These

posterior PDFs can be used to evaluate the derived results;

failure to converge can hint at problematic model assump-

tions, both in the model/likelihood and prior specifications,

and/or insufficient amounts of data. Similar conclusions are

implied by discrepancies between the posteriors and

expert knowledge entering through the prior PDFs.

The employed statistical model was originally pro-

posed by Tingley and Huybers (2010a). We will briefly

show and motivate the chosen model equations for the

temperature field at theN locations Tt 2 R
N at time step

t 2 [850, 1980] and the instrumental and proxy response

WP,t 2 R
N, WI,t 2 R

N:

Tt112m5a(Tt 2m)1 �T,t, WI,t 5HI,t(Tt 1 �I,t),

WP,t 5HP,t(b1Tt 1b01 �P,t) . (1)

The matrices HI/P,t 2 R
N3N are diagonal with one at

position (i, i) when an observation in year t at location (i)

was made and zero otherwise. The stochastic terms de-

noted by �P,t and �I,t are multivariate normal with a di-

agonal covariance matrix It2P and It2I . They are used to

model the local noise in the proxy response function and

the errors in the instrumental observations. The in-

terannual climate variability is described by the multi-

variate normal term �T,t ; N(0, §), where the spatial

covariance matrix § 2 R
N3N is given by

(§)i,j 5s2 exp(2fjxi 2 xjj) . (2)

In other words, a uniform local variance of the climate

field is assumed with a covariance matrix decreasing

isotropically with distance along the loxodrome con-

necting locations xi and xj. A temperature anomaly at

some location thus depends on its past value through the

spatially uniform persistence term a, but has a stochastic

component corresponding to interannual variability.

The temperature anomalies at two locations are related

to each other through the covariancematrix§ if they are

close together in space. A similar assumption is also used

by Cook et al. (1999) where the spatial covariance

structure is convex instead of concave. However, this

means that teleconnections caused by large-scale atmo-

spheric circulations, such as the Greenland temperature

seesaw [cf., e.g., Loewe (1937) and van Loon and Rogers

(1978), first described by Cranz (1770)], are ignored en-

tirely. This of course leads to reduced skill when trying

to reconstruct the climate field in a data sparse region.

In contrast to this, EOF-based methods regress patterns

of climatic fields and patterns of proxies, leaving some of

the spatial covariance intact. Thus they rely on the tem-

poral stationarity of identified spatial patterns. While we

use a very simple spatial covariance matrix, the de facto

nonuniformity of the spatial covariance should be ad-

dressed in future studies; in fact Tingley and Huybers

(2010a,b) and Tingley et al. (2012) already address pos-

sible extensions. Throughout the article, however, the

simple model will be used and evaluated.

The proxies WP are modeled as a linear response

function distorted by additive white noise. Inclusion of

more elaborate proxy response functions are of course

possiblewithin theBHMframework. Process-based proxy

models for tree-ring growth (Tolwinski-Ward et al. 2010),

pollen/habitat description (Ohlwein and Wahl 2012), and

forward modeling of coral d18O (Thompson et al. 2011)

represent potential future data model improvements.

2) BAYESIAN INFERENCE AND PRIOR SELECTION

From the above stochastic descriptions we can derive

the probability density function of the data conditional
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on the process parameters and values—the so-called

likelihood function. The probability density function of

the process u conditional on the data x is then derived

using Bayes formula:

P(u j x)}L(x j u)P(u) . (3)

Here L(x j u) is the likelihood function and P(u j x) is
the resulting posterior probability density function.

The term P(u) denotes the prior: knowledge about

the process enters the description here. For a more

detailed description on Bayesian inference, see, for

example, Gelman et al. (2003). A purported advantage

over a purely maximum likelihood estimation is the

ability to include expert knowledge through the prior,

which can be partly overcome by the data. Nevertheless,

an incorrectly chosen prior can still have a detrimental

effect on the overall results of the method, especially in

cases of limited data availability.

The prior PDFs of the parameters were selected to be

conjugate to the likelihood, as described by Tingley and

Huybers (2010a), with the exception of the prior of f.

The stochastic terms are Gaussian processes: thus the

conjugate priors for a, m are normal, while the priors for

s2 and t2I,P are inverse gamma. The selected hyper-

parameters are shown in Table A1 in the appendix in

the discussion of the convergence of the algorithm: cf.

Gelman (2006) for a discussion on the subtleties of prior

selection in hierarchical models.

The draws from the PDFs are created using a Gibbs

sampler with one Metropolis step for the draws of the

spatial covariance parameterf, as drawing directly from

its posterior is more complicated. The first steps of the

Gibbs sampler are iterated over the climate field only in

order to speed up convergence prior to running the full

Gibbs sampler. If the model fits the data reasonably

well, the sampler will converge to a final full probability

density function of field and parameters. The final set of

parameters then can be verified, for example, by pre-

dictive experiments using withheld data for validation.

We use an initial ensemble of four chains with 5000

iterations for the full Gibbs sampler each. After dis-

carding the first half of the runs, convergence of the

parameters is checked using the measure R̂ (cf. Gelman

et al. 2003; see Table A2). Usually all chains converge

during this first run of the code, scarcely needing a sec-

ond (longer) run of the estimation process. Following

Gelman et al., each subsequent run doubles the number

of steps. To facilitate data storage and processing the

second half of each chain is then thinned out to a mere

250 steps, leaving a total of 1000 draws to estimate the

posterior PDFs. The convergence also has been checked

by running the code with different initial conditions, and

no significant deviation in the resulting estimates was

detected. The code employed is an adaption of the al-

gorithm by Tingley and Huybers (2010a). It has been

converted fromMatlab to FORTRAN. Additionally, the

prior selection was changed to reflect knowledge of the

data that was acquired during preprocessing.

Note that the input data are standardized prior to

applying all reconstruction methods. This is standard

practice in multiproxy reconstructions that use proxy

records with variable units in calibration. This simplifies

implementation of the stochastic description given above.

The data are standardized to have zero mean and uni-

form variance in the calibration period (simulation years

1856–1980). As remarked by Tingley (2012), standardi-

zation of autocorrelated data over a limited time interval

leads to variance inflation outside the standardization

interval. As the autocorrelation coefficient of the data is

on the order of 0.2 only and the interval is 125 years long,

the effect is negligible when compared to the other un-

certainties in the data. The resulting reconstructions

must subsequently be rescaled. At locations without any

data, heremainly the region north of 708N, the calibration

mean and standard deviation are of course unknown. The

values at these locations are estimated as weighted av-

erages of the nearest neighbors; reconstructions at these

locations therefore contain additional uncertainties.

b. Multivariate linear regression

In contrast to the BHM,multivariate linear regression

is the underlying formalism of most climate field re-

construction methods used to date. The fundamental

approach relates a matrix of climate proxies to a matrix

of climate data during a common time interval of over-

lap (generally termed the calibration interval) using a

linear model. For instance, letP 2R
m3n and T 2R

r3n be

the matrices of the pseudoproxy network and the in-

strumental temperature records, wherem is the number

of proxies, r is the number of spatial locations in the in-

strumental field, and n is the temporal dimension cor-

responding to the period of overlap between the proxy

and instrumental data. Here P and T can be written in

terms of their standardized (centered and normalized;

denoted with a prime) form as

P5Mp1SpP9, T5Mt 1StT9 ,

whereMp is a matrix of identical columns with each row

corresponding to the across-column time average of the

matrix P, and Sp is a diagonal matrix with elements

equal to the standard deviations of the rows of P;Mt and

St are similarly defined for T. Multivariate linear re-

gression derives a relationship between P9 and T9 of the
form
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T95BP91 � ,

where B is a matrix of regression coefficients and � is the

residual error. The mean squared error is minimized ifB

is chosen as

B5 (T9P9T)(P9P9T)21 ,

where the superscript T denotes the matrix transpose.

The above formalism works best when the temporal

dimension is larger than the spatial dimension of both

matrices. In global CFR applications, this condition is

almost never met; specifically, the time dimension in the

calibration interval is often an order ofmagnitude smaller

than the number of spatial grid points that are targeted

for reconstruction. The inversion above is therefore

underdetermined and the problem requires regulariza-

tion. For theEuropean case considered herein, however,

the number of grid cell locations is 101 and the number

of years in the calibration interval is 124. Regularization

is therefore not strictly required, but is still applied here

to filter noise and weigh the most strongly correlated

target and proxy patterns.

c. Canonical correlation analysis

Our general approach employs the canonical corre-

lation analysis (CCA) formalism described in Smerdon

et al. (2011). CCA employs singular value decomposition

(SVD) to perform three matrix reductions of 1) the

standardized proxy matrix, 2) the standardized in-

strumental matrix, and 3) the cross-covariance matrix

that emerges in the expression for B above. The de-

composition of the normalized proxy and instrumental

matrices using SVD is written as

P95Up§pV
T
p , T95Ut§tV

T
t , (4)

where the columns of Up and Ut are spatial patterns

(empirical orthogonal functions) and the rows of §pV
T
p

and §tV
T
t are corresponding orthogonal time series

[principal components (PCs)]. The diagonal matrices§t

and§p contain the ordered nonnegative singular values,

the squares of which are proportional to the percent vari-

ance explained by each principal component. It is often

the case in climatological data that the ordered singular

values decrease quickly so that a subset of EOF–PC pairs

accounts for most of the variance in the original climatic

field. Thus we can find sets of dp and dt leading EOF–PC

pairs that are good approximations of the P9 and T9 ma-

trices, respectively. These reduced-rank versions arewritten

P9r 5Ur
p§

r
pV

rT
p , T9r 5Ur

tS
r
tV

rT
t , (5)

where P9r and T9r are the rank-reduced estimates of P9
and T9 and the superscript r denotes the truncation of

a matrix so that only the first r singular values are re-

tained. Substituting the matrices P9r and T9r into the

expression for B given above yields

B5Ur
t§

r
tV

rT
t Vr

p(§
r
p)

21UrT
p .

Applying the classical CCA regularization yields

Bcca 5Ur
t§

r
tO

r
t§

r
ccaO

rT
p (§r

p)
21UrT

p , (6)

where Or
t§

r
ccaO

rT
p is the truncated SVD of the cross-

covariance matrix VrT
t Vr

p that retains a number dcca of

canonical coefficients.Note that the upward limit of dcca is

given by the dimensions of VrT
t Vr

p, or dcca # min(dp, dt).

The application of CCA thus requires the selection of

three truncation parameters dp, dt, and dcca for each

reconstruction. Following Smerdon et al. (2010b), we

employ a ‘‘leave half out’’ cross-validation technique to

optimize the selection of the three CCA dimensions. To

perform the leave-half-out cross-validation procedure,

the target period is split into two temporal halves. Two

sets of reconstructions are generated using all possible

parameter combinations and calibrated on each half of

the target data. Cross-validation RMSE is calculated on

the left-out halves of the target data. These validation

statistics from both experiments are combined to yield

the statistics for the entire target interval, from which

optimal parameter combination are determined. In this

manner, full-rank representations of T9, P9 and the ca-

nonical coefficient matrix are allowed and can in prin-

cipal be selected based on the cross-validation statistics.

Recent studies (e.g., Smerdon et al. 2010b, 2011)

showed that the overall error associated with different

multivariate linear regression method is quite similar.

It should therefore be sufficient to use one of them as

a benchmark for the performance of multivariate

regression methods. Additionally, principal component

regression, which has been the preferred method of re-

construction over the EU domain (e.g., Luterbacher

et al. 2004; Pauling et al. 2006; Riedwyl et al. 2009), is

similar to CCA. In PCR the regression matrix is left at

full rank while CCA not only truncates the singular

value spectra of the instrumental and proxy matrices T9
and P9 but also of the regression matrix B. Thus, CCA is

a suitable and applicable method for evaluating per-

formance of multivariate linear regression based CFRs

over the European/Mediterranean domain.

4. Results

In this section we compare the climate field re-

constructions fromCCA and BHM to the known CCSM
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model target during the reconstruction interval. We fo-

cus on pointwise error measures in order to assess the

performance of the two methods discussed above. Ad-

ditionally we show qualitative results from selected lo-

cations to illustrate some properties of the CFRs.

a. Qualitative comparison

Figure 1 shows a comparison of annual reconstructions

from the BHM and CCA methods using a SNR of 0.5.

We sample from three points with different amounts of

proxy information: 1) the top row (62.58N, 17.58E) is

a location in Fenno-Scandia that has no local proxy data

but several proxy sites close by; 2) the middle row

(47.58N, 12.58E) is collocated with a proxy site in the

Alps; and 3) the bottom row (32.58N, 42.58E) is the grid

cell in the southeastern corner of the reconstruction

area, remote from any proxy information. We plot the

annual anomaly data with respect to the 1856–1980 pe-

riod for CCA using red lines (right column); for the

BHM CFR, we choose the mean of the posterior PDFs

(heavy blue lines in the left column) as the best estimate

and the uncertainty band (light blue area) is the area

between the upper and the lower 10% quantiles in the

corresponding years. The black lines in all figures show

the CCSM target.

The CCA CFR reconstructs, at least for the central

and northern sites (top and center row in Fig. 1), much of

the variability of the CCSM target time series, albeit

with some (small) bias and a reduced variance. For the

bottom row, however, the reconstructed temperatures in

the grid cell in the southeastern corner of the recon-

struction area (bottom row of Fig. 1) yield a variance

that is greatly reduced and a larger bias.

For the BHM CFR, the reconstructed annual tem-

perature anomalies encompass most of the target vari-

ance. The target remains close to the uncertainty range,

which is slightly wider in the top row, corresponding to

a slightly higher uncertainty as the proxy information is

not collocated with the reconstructed field at this point.

For the southeastern corner of the area (bottom row in

Fig. 1), the trajectories returned by the Gibbs sampler

cover a very high temperature range, fluctuating around

the regional reconstruction mean. The estimate pro-

vided by the algorithm for this location is very uncertain,

although the reconstructed trajectory is still close to the

target time series. This result is not surprising, because

the model selected for the BHM-based CFR has a simple

spatial covariance structure; namely, the dependence

of temperature anomalies at two locations decreases

exponentially with distance between them. The spatial

FIG. 1. Comparison of reconstructed gridpoint time series—(left) column BHM, blue line: median, shaded area:

80% uncertainty band; (right) column CCA, red lines—at a proxy SNR of 0.5 for three different locations: (top)

62.58N, 17.58E, a location surrounded by proxy data; (middle) 47.58N, 12.58E, directly at a proxy location; and

(bottom) 32.58N, 42.58E, in the southeastern corner of the reconstruction area. Black lines are the target field.
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correlation length is estimated by the algorithm to be on

the order of some 1000 km. The considered point (32.58N,

42.58E) is far away from the closest proxy site, so any

estimate for the annual temperature anomaly is uncertain,

even if the returned estimate looks very promising.

b. Pointwise

To assess the spatial skill of the reconstructions, we

use several local error measures used by Smerdon et al.

(2011, 2010b). All skill measures are evaluated over the

reconstruction period unless explicitly stated.A summary

of the skill measures can be found in Table 1, in which

the median values of the spatial skill over the full re-

construction region are shown.

Local cross-correlation coefficients are first calculated

between the reconstructions provided by both methods

and the target field. The result is displayed in Fig. 2 for

both reconstruction methods and noise strengths (top:

SNR 5 0.5, bottom: SNR 5 0.25). All reconstructions

exhibit substantially higher cross-correlation coeffi-

cients in areas with dense proxy sampling. The Atlantic

Ocean and the southeastern target areas where there is

no proxy sampling yield correlation coefficients below

0.5, even for the larger SNR case. This leads to an overall

decrease of the correlation coefficient shown in Table 1.

The BHM CFR performs better for both noise levels,

even when including areas that are severely limited by

the choice of the model; locations distant from proxy

information by design cannot be reconstructed with

good skill as information on the climate field exponen-

tially decreases with distance. Note that the BHM returns

estimates also for the locations where no instrumental

information was available during the calibration period.

TABLE 1. Summary of the spatial skill measures (correlation

coefficient, rms error, mean bias, and standard deviation ratio).

The median of the skills depicted in Figs. 2–5 for CCA and BHM

and both noise levels.

Method Correlation RMSE Bias SDR

BHM (SNR 0.5) 0.49 0.81 0.10 0.58

BHM (SNR 0.25) 0.29 0.98 0.21 0.55

CCA (SNR 0.5) 0.28 0.86 0.32 0.32

CCA (SNR 0.25) 0.15 0.85 0.41 0.17

FIG. 2. The correlation coefficient between the reconstructed climate field and the target field (the simulation data)

over the reconstruction period at time lag zero. The (left) BHM and (right) CCA climate field reconstructions are

derived for two different noise strengths, (top) SNR5 0.5 and (bottom) SNR5 0.25. Points mark location of proxy

data. The boxplots to the right of the color bars show the distribution of the grid point correlation coefficients.
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Those points, the area north of 708N and three grid

points in northern Africa, are not reconstructed by the

CCA method since the regression needs target data

during the instrumental period. No additional input data

were used for the BHM-based method, but the algo-

rithm uses the spatial covariance structure in the model

equations (1) to fill the gaps. As discussed in section 3,

results in these regions should be interpreted carefully

owing to the unknown calibration period mean and

variance in the grid cells. They are, however, included in

the distributions shown as boxplots to the right of the

color bars in Figs. 2–4.

Reconstruction errors are additionally measured us-

ing the rms error (RMSE). The overall picture plotted in

Fig. 3 (again with BHM and CCA in the left and right

columns, respectively, and stronger noise in the bottom

row) is comparable to that shown by the cross correla-

tion. The RMSE nevertheless can be large in some lo-

cations. The CCA CFR has an error of more than 38C
over Iceland, where the RMSE of the BHM CFR also

approaches 38C. Judging from the overview in Table 1,

both reconstruction methods perform on average about

equally well. In general, central European temperature

anomalies are again reconstructed more skillfully than

northern European/Atlantic Ocean ones. In contrast to

the median of the correlation coefficient, the median of

the RMSE of the CCA CFR is lower than that of the

BHM CFR in the stronger noise case, indicating better

performance. Comparing the two box plots in Fig. 3

shows that the bulk of the distribution of RMSEs (the

box) covers a similar range for both methods, the result

for the CCA CFR is more skewed and has higher values

at several points (marked by the outliers).

The correlation coefficient is calculated with respect

to the mean of the time series and normalized by the

standard deviation (e.g., cf. Taylor 2001). To decouple

the errors in mean and amplitude of climate variability,

we evaluate both the mean bias of the reconstruction

relative to the target and the standard deviation ratio

between the CFR and target fields. The spatial distri-

bution of mean bias of both reconstructions is shown in

Fig. 4. Note that the BHM-based reconstruction (left

panels) exhibits an overall lower temperature bias than

the CCA reconstruction (right panels) for both noise

FIG. 3. The local rms error (RMSE) of the reconstruction during the reconstruction period only. The (left) BHM

and (right) CCA climate field reconstructions are derived for two different noise strengths, (top) SNR 5 0.5 and

(bottom) SNR 5 0.25. Points mark location of proxy data. The boxplots show the distribution of the RMSE for the

corresponding map.
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levels. This can also be seen in Table 1 in which the

average mean bias is 0.088 and 0.218C for the BHMCFR

with a SNR of 0.5 and 0.25, respectively. The values are

substantially higher for both CCACFRs (0.32 and 0.41),

although large biases are limited to the northernmost

portion of the reconstruction area where it exceeds 28C
in some areas. The BHMCFR can dealmuch better with

the recent warming, except for northern Europe—the

higher rate of recent warming in that area cannot be

reconstructed using a uniform mean m. Clearly some

refinement of the model is thus needed in the future.

We also present the standard deviation ratios (SDRs)

of the temperature anomalies, indicating how well the

interannual temperature variability is reconstructed. The

standard deviation of the temperature reconstructions

at the different grid points is calculated and then divided

by the standard deviation of the target field’s tempera-

ture anomalies at that point. The aforementioned fea-

ture of the BHM method, the drawing of several

thousand trajectories of the climate field, can lead to

problems when calculating the climate variability be-

cause an average of the returned trajectories for the field

reconstruction is used. The variability of this average

can be substantially smaller than that of the different

trajectories. This can be seen in the bottom panels of

Fig. 1 when comparing the width of the uncertainty band

made by the different reconstruction trajectories to the

variability of the best guess (median). When comparing

the variability of the reconstructions to that of the target,

we therefore use the trajectory variability, which is in

turn the stochastic term s in Eq. (1) corrected by the

normalization parameters of the input data.

The result is shown in Fig. 5. The CCA-based recon-

struction (right panel) underestimates the variability for

many locations in the targeted region. This is a common

feature in regression-based CFRs (Smerdon et al. 2011;

Christiansen et al. 2009). For northeastern Europe, how-

ever, the climate variability is overestimated in a few grid

cells. The BHM-based method, shown in the left panel of

Fig. 5, performs differently: a slight overestimation of

the climate variability in the north and in the west can be

identified.While we normalize the input instrumental and

proxy data, we still attribute this outcome to the higher

interannual temperature variability in the north in the

FIG. 4. The local mean bias of the reconstructions over the reconstruction period. The (left) BHMand (right) CCA

CFRs are derived for two different noise strengths, (top) SNR5 0.5 and (bottom) SNR5 0.25. Points mark location

of proxy data. The box plots to the right of the color bars show the distribution of the bias.
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CCSM field and, for the northernmost cells, the esti-

mation of the correct normalization parameters from

the neighboring locations.

c. Area averages

Figure 6 (top row) compares the area mean of the two

reconstruction methods (CCA in red, BHM in blue) for

SNR5 0.5 with themodel target field (black), smoothed

using an 11-yr floating average; all the error measures

for the averaged temperature anomalies over the full

reconstruction region are shown in Table 2. While both

reconstructions follow the general shape of the target

quite well—the decadal variations of both show good

agreement with the target—the CCACFR exhibits both

a higher temperature bias and reduced variability. These

findings are also represented in the box plot (right panel

in Fig. 6) for the annual averaged temperature anoma-

lies. The BHM CFR shows a comparatively lower bias;

however, interannual variability is inflated. The CCA

CFR shows again a substantially higher bias and a re-

duced variability.

Using only data from the area (408–608N, 08–208E)
results in an improvement for CCA (cf. Fig. 6, bottom

row), while the interannual variability of the BHM-

based results is slightly decreased. Omitting the proxy-

sparse region, where performance of CCAwas relatively

poor, leads to substantially better performance. It is

worth noting that some of the CCA performance on the

fringes of the domain could potentially result from the

constrained identification of the EOF patterns. These

patterns in the European domain may be better identi-

fied in hemispheric or global reconstructions, and thus

improve skill for EOF-based multivariate regression

approaches such as CCA.

5. Conclusions and outlook

While BHM-based reconstructions perform well over

areas with dense proxy networks, the performance of the

model used herein decreases with spatial distance from

proxy sites. The discussed stochastic model provides a

mechanism to estimate pointwise climate field variables

FIG. 5. The pointwise standard deviation ratio (SDR) of the reconstruction and the simulation (target field) over

the reconstruction period. The (left) BHM and (right) CCACFRs are derived for two different noise strengths, (top)

SNR5 0.5 and (bottom) SNR5 0.25. Points mark location of proxy data. The box plots to the right of the color bars

show the distribution of the SDR.
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from more than one data source, as the reconstruction

takes into account not only the collocated data but also

data that are modeled to share a common signal. The

employed model does, however, rely on a stationary

stochastic description of the climate field and a suitable

model for each type of proxy considered. While efforts

exist to provide such models, for example, for pollen–

biome relations (Ohlwein and Wahl 2012), coral

(Thompson et al. 2011), or tree-growth-based climate

reconstructions (Tolwinski-Ward et al. 2010), inversion

of these models is cumbersome and calculation of the

full posterior PDFs in a computationally convenient

form remains challenging. While it would be possible to

formulate the entire problem using only Metropolis-like

steps, the computational costs are currently significant.

In contrast to this, theEOF- andmultivariate regression–

based reconstruction methods do not rely on a definite

proxy response function, facilitating inclusion of many

different proxy types. Skill in data-sparse regions nev-

ertheless was found to be limited and CCA recon-

structions suffer both from a substantial bias and

variance loss. The returned CFRs, while not directly ac-

companied with a suitable error measure in CCA, should

thus be considered with care, taking into account the

behavior observed in the presented pseudoproxy results.

However, one advantage is that the computational costs

of regression-based methods are substantially lower

when not factoring in elaborate estimation of error

measures.

The results from this study indicate that a BHM CFR

is generally superior to CCA CFRs over the European/

Mediterranean area. This result is not limited to a single

error measure: all of the measures considered in this

article show better performance of the BHMCFRwhen

compared to the CCA CFR with the exception of the

field RMSE for SNR5 0.25. Additionally, a comparison

FIG. 6. Weighted area averages over (top) the whole reconstruction domain and (bottom) western central Europe

(408–608N, 08–208E). (left) Time series: weighted area average of the target field (black), BHM reconstruction (blue)

with 80% uncertainty band (shaded), and CCA reconstruction (red), all smoothed with an 11-yr running average.

(right) Box plots of the weighted area average (annual data); note the different ranges of the ordinates.

TABLE 2. Table of skill measures for the weighted average temperature anomalies over the reconstruction area, both for annual and

decadally smoothed (11-yr floating average) anomalies.

Annual Decadal

Method Correlation RMSE Bias SDR Correlation RMSE Bias SDR

BHM (SNR 0.5) 0.83 0.28 0.07 1.33 0.93 0.13 0.08 0.89

BHM (SNR 0.25) 0.53 0.52 0.21 1.11 0.70 0.28 0.21 0.92

CCA (SNR 0.5) 0.72 0.57 0.48 0.51 0.86 0.50 0.48 0.43

CCA (SNR 0.25) 0.46 0.71 0.60 0.32 0.65 0.63 0.60 0.21
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of weighted area averages over both the full recon-

struction area and an area with high proxy availability

shows that the BHM CFR 1) has smaller warm biases, 2)

recovers the interannual variability much better than the

CCA CFR, and 3) the performance increase for higher

proxy availability is more enhanced for the regression

based method.

Over larger and less homogeneous areas (e.g., the full

Northern Hemisphere), the BHM CFR based on the dis-

cussed model cannot be used. The model must be refined

significantly to reflect, for example, the different behavior

of landmasses versus oceans. Also, the information gain

from long-range teleconnections that CCA CFRs rely on

is likely much higher. Through long range atmospheric

waves, the synoptic situation over the Atlantic Ocean

does indeed influence Europe, a relationship that is

exploited by using proxy information from that region.

The stochastic model used in the BHMCFR needs to be

adapted to make use of these teleconnections.

The results from our version of BARCAST are

encouraging—even with a stochastic model that is far

from optimal, as indicated by some of the posterior

PDFs of the parameters, performance is superior to the

multivariate regression based CCA CFRs used herein.

These results, along with the added value of impartial

error estimates, warrant both the additional scientific

work needed to develop and invert appropriate sto-

chastic models and the computational costs associated

with the Bayesian inference used in this method.

Future work to use similar methods to reconstruct real-

world seasonal temperature and precipitation variability

over the European/Mediterranean area, using new high-

resolution data from different archives and collaborations

such as the PAGES 2K initiative (Newman et al. 2010)

and the sixth EU framework programMILLENNIUM, is

underway. While some parts of the stochastic model can

remain as is, problems such as the time scale separation

should be addressed more closely, both through careful

analysis of observation and model data and theoretical

consideration of the dynamical processes involved.
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APPENDIX

Performance of BARCAST in This Study

In Table A1 we show the selected priors for the model

parameters and the hyperparameters. The priors were

chosen to be conjugate to the likelihoods to facilitate

formulation of the problem. The hyperparameters were

chosen after analyzing the input data. The mean for the

persistence parameter,am, was estimated throughKramers–

Moyal expansion of the instrumental data, also verifying

the uniform persistence (except for some grid cells over

the Atlantic Ocean). The standard deviation as is rela-

tively wide, indicating the uncertainty of this pre-

liminary data analysis, as only 130 years of instrumental

data are used. The prior of the mean temperature, m, is

also normally distributed with mean of the instrumental

period mm 5 0 (as given by normalization of the data)

and a large standard deviation (ms 5 5). The prior of the

interannual temperature variability s2 is inverse gamma,

with shape 5 3.5, scale 5 35, as estimated from the

temperature data of the instrumental period. The prior

of the spatial correlation length f is lognormal [logf ;
N(Fm, Fs)]. It is centered around Fm 5 27 (corre-

sponding to about 1000 km) with a relatively wide

standard deviation of Fs 5 1.2 (corresponding to a

range between some 100 and 3500 km; cf. Tingley and

Huybers 2010a). The priors of both the instrumental

measurement error and the proxy noise, t2I,P respec-

tively, are inverse gamma. Shape and scale for t2I are

0.5 each, corresponding to one observation with a stan-

dard deviation of 1. The shape and scale of the prior for

t2P are 0.5 and 5, respectively, corresponding to one

observation with a standard deviation of 2. This was also

a selection by Tingley and Huybers (2010a). Both priors

are relatively wide and uninformative. The priors of the

parameters of the linear proxy response function Wt 5
b0 1 b1Tt are both normal. As the data have been pre-

processed to have zero mean and unit variance, the

scaling b1 is expected to be [(12 t2P)(12a2)/s2](11/2),

which was chosen as the prior mean with a rather large

TABLE A1. Overview of the prior PDFs and their parameters for

the BHM-based CFR.

Parameter Form Hyperparameters

a Normal N(am, as), am 5 0.1, as 5 0.1

m Normal N(mm, ms), mm 5 0, ms 5 5

s2 Inv-gamma shape 5 3.5, scale 5 42

f Lognormal logf ; N(Fm, Fs), Fm 5 27, Fs 5 1.2

t2I Inv-gamma shape 5 0.5, scale 5 0.5

t2P Inv-gamma shape 5 0.5, scale 5 5

b0 Normal N(b0,m, b0,s), b0,m 5 0, b0,s 5 4

b1 Normal N(b1,m, b1,s), b1,m 5 0.73, b0,s 5 4
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variance of 8. The offset b0 is related to the mean tem-

perature and the mean proxy value in the instrumental

period: due to the normalization we expect it to be zero

but, as with the scaling, add a substantial uncertainty to

this estimate.

We now evaluate convergence of the parameters. A

purely qualitative and often misleading (cf. Gelman

et al. 2003) way is the visual inspection of the draws. In

Fig. A1 we display the parameters versus the iteration

step for all chains for a SNR of 0.5. All parameters sta-

bilize around a mean value after about 1000 iteration

steps. Discarding the first 2500 steps, we now evaluate

the measure R̂, following the definition by Gelman et al.

(2003, chapter 11). The measure essentially compares

the within chain variance to the between chain variance.

If all chains fluctuate around the same mean with a

similar variability, the value of R̂ is close to one. The

values of R̂ for both noise strengths and all eight pa-

rameters are displayed in Table A2. Convergence of the

parameters can indeed be achieved after a few hundred

iterations. Note that convergence of the parameters

does not imply convergence of all temperature values.

As there are 1132 3 130 temperature values to be

checked we do not display results for those. In Fig. A2

we show histograms of the draws (steps 2501 to 5000 of

the Gibbs sampler) for the parameters. The prior

probability density functions are omitted: As discussed

above and shown in Table A1 the priors are relatively

wide and uninformative and no insights could be gained

from visual comparison of prior and estimated posterior

PDFs. The resulting estimates for the posterior PDFs

are all of the expected form as derived from the model

with the exception of the interannual variability s2 and

the spatial correlation length f. Note that this can be

attributed to the strong conditional dependence be-

tween those two parameters (cf. Tingley and Huybers

2010a,b). This can also be readily recognized in Fig. A3.

The expected logarithmic interdependence from the

FIG. A1. Draws of the Gibbs sampler of the model parameters vs the step number of the sampler.

After about 2500 steps (dashed vertical line), the algorithm converges to a final distribution.

TABLE A2. Overview of the convergence measures R̂ for all

parameters and both noise levels.

Parameter

s m s2 f t2I t2P b0 b1

R̂SNR 0:5 1.0044 0.9999 0.9999 1.0007 1.0006 0.9999 1.0044 1.0015

R̂SNR 0:25 1.0057 0.9999 0.9999 1.0008 1.0008 0.9999 1.0007 1.0161
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model indeed seems to be present in the subsequent

draws.Additionally the resulting spatial correlation length

is rather large. This can probably in part be attributed to

the recent, almost uniform warming over most of the re-

construction area in the instrumental period. Also, when

evaluating correlation patterns over the target area, the

first patterns (the warming and two large-scale dipole

patterns) already explain far in excess of 85% of the var-

iability. This is also expressed by the strong link between

temperature anomalies in Poland and mean European

temperature anomalies discussed by Luterbacher et al.

(2010b). Additionally, the assumption of an isotropic

spatial variance–covariance structure is not optimal.

The resulting modes of the posterior PDFs of the

other parameters do match the outside knowledge. The

persistence is slightly overestimated due to the few At-

lantic Ocean grid cells as discussed above. Estimates for

the interannual variability in low and high noise case

differ a bit, as does the spatial correlation length: the

stronger noise decreases spatial correlation in the re-

construction period and increases the resulting vari-

ability in the posterior PDFs of the temperatures. Draws

for the proxy noise are close to the true constructed

values of 80%noise variance and 94%noise variance for

SNR5 0.5 and SNR5 0.25, respectively. The draws for

the linear proxy response function roughly match the

expected values.
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E. Zorita, 2011: A regional climate simulation over the Iberian

Peninsula for the last millennium. Climate Past, 7, 451–472,

doi:10.5194/cp-7-451-2011.
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Just, W., H. Kantz, C. Rödenbeck, and M. Helm, 2001: Stochastic

modelling: Replacing fast degrees of freedom by noise.

J. Phys., 34A, 3199, doi:10.1088/0305-4470/34/15/302.
——, ——, M. Ragwitz, and F. Schmüser, 2003: Nonequilibrium
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Riedwyl, N., M. Küttel, J. Luterbacher, and H. Wanner, 2009:

Comparison of climate field reconstruction techniques: Ap-

plication to Europe. Climate Dyn., 32, 381–395.

Risken, H., 1989: The Fokker–Planck Equation: Methods of Solu-

tion and Applications. Springer-Verlag, 472 pp.

Rutherford, S., M. Mann, E. Wahl, and A. C., 2008: Reply to

comment by Jason E. Smerdon et al. on ‘‘Robustness of proxy-

based climate field reconstruction methods.’’ J. Geophys. Res.,

113, D18107, doi:10.1029/2008JD009964.

Schmidt, G. A., and Coauthors, 2011: Climate forcing recon-

structions for use in PMIP simulations of the last millennium

(v1.0). Geosci. Model Dev., 4, 33–45, doi:10.5194/gmd-4-33-

2011.

Smerdon, J. E., 2012: Climate models as a test bed for climate re-

construction methods: Pseudoproxy experiments. WIREs

Climate Change, 3, 63–77, doi:10.1002/wcc.149.

——, A. Kaplan, and D. Chang, 2008: On the origin of the stan-

dardization sensitivity in RegEM climate field reconstruc-

tions. J. Climate, 21, 6710–6723.

——, ——, and D. E. Amrhein, 2010a: Erroneous model field

representations in multiple pseudoproxy studies: Corrections

and implications. J. Climate, 23, 5548–5554.

——, ——, D. Chang, and M. N. Evans, 2010b: A pseudoproxy

evaluation of the CCA and RegEM methods for re-

constructing climate fields of the last millennium. J. Climate,

23, 4856–4880.

——, ——, E. Zorita, J. F. González-Rouco, and M. N. Evans,

2011: Spatial performance of four climate field reconstruction

methods targeting the Common Era. Geophys. Res. Lett., 38,

L11705, doi:10.1029/2011GL047372.

Stemler, T., J. P. Werner, H. Benner, and W. Just, 2007: Stochastic

modeling of experimental chaotic time series. Phys. Rev. Lett.,

98, 044102, doi:10.1103/PhysRevLett.98.044102.

Taylor, K., 2001: Summarizing multiple aspects of model perfor-

mance in a single diagram. J. Geophys. Res., 106 (D7), 7183–

7192.

Thompson,D.M., T. R.Ault,M.N. Evans, J. E. Cole, and J. Emile-

Geay, 2011: Comparison of observed and simulated tropical

climate trends using a forward model of coral d18O. Geophys.

Res. Lett., 38, L14706, doi:10.1029/2011GL048224.

Tingley, M. P., 2012: A Bayesian ANOVA scheme for calculating

climate anomalies, with applications to the instrumental

temperature record. J. Climate, 25, 777–791.

——, and P. Huybers, 2010a: A Bayesian algorithm for re-

constructing climate anomalies in space and time. Part I: De-

velopment and applications to paleoclimate reconstruction

problems. J. Climate, 23, 2759–2781.

——, and ——, 2010b: A Bayesian algorithm for reconstructing

climate anomalies in space and time. Part II: Comparison with

the regularized expectation–maximization algorithm. J. Cli-

mate, 23, 2782–2800.

——, P. F. Craigmile, M. Haran, B. Li, E. Mannshardt-Shamseldin,

and B. Rajaratnam, 2012: Piecing together the past: Statistical

insights into paleoclimatic reconstructions.Quat. Sci. Rev., 35,

1–22.

Tolwinski-Ward, S. E., M. N. Evans, M. K. Hughes, and K. J.

Anchukaitis, 2010: An efficient forward model of the climate

controls on interannual variation in tree-ring width. Climate

Dyn., 36, 2419–2439.

van Loon, H., and J. C. Rogers, 1978: The seesaw in winter tem-

peratures between Greenland and northern Europe. Part I:

General description. Mon. Wea. Rev., 106, 296–310.

Wahl, E. R., and J. E. Smerdon, 2012: Comparative performance of

paleoclimate field and index reconstructions derived from

climate proxies and noise-only predictors.Geophys. Res. Lett.,

39, L06703, doi:10.1029/2012GL051086.

Widmann, M., H. Goosse, G. van der Schrier, R. Schnur, and

J. Barkmeijer, 2010: Using data assimilation to study extra-

tropical Northern Hemisphere climate over the last millen-

nium. Climate Past, 6, 627–644, doi:10.5194/cp-6-627-2010.

Xoplaki, E., J. Luterbacher, N. S. H. Paeth, D. Dietrich,

M. Grosjean, and H. Wanner, 2005: European spring and

autumn temperature variability and change of extremes over

the last half millennium. Geophys. Res. Lett., 32, L15713,

doi:10.1029/2005GL023424.

1 FEBRUARY 2013 WERNER ET AL . 867


