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Comparison between spatio-temporal random
processes and application to climate model data
Bo Lia*, Xianyang Zhangb and Jason E. Smerdonc

Comparing two spatio-temporal processes are often a desirable exercise. For example, assessments of the difference
between various climate models may involve the comparisons of the synthetic climate random fields generated as simula-
tions from each model. We develop rigorous methods to compare two spatio-temporal random processes both in terms of
moments and in terms of temporal trend, using the functional data analysis approach. A highlight of our method is that
we can compare the trend surfaces between two random processes, which are motivated by evaluating the skill of synthetic
climate from climate models in terms of capturing the pronounced upward trend of real-observational data. We perform
simulations to evaluate our methods and then apply the methods to compare different climate models as well as to evaluate
the synthetic temperature fields from model simulations, with respect to observed temperature fields. Copyright © 2016
John Wiley & Sons, Ltd.
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1. INTRODUCTION
The comparison between spatio-temporal random processes is often desired for addressing problems in atmospheric science, climatology,
and the environmental sciences more generally. For example, general circulation models (GCMs) have been widely used as global climate
models to simulate synthetic climates that are interpreted as reasonable emulations of the real-climate system. An important element of
model assessments is therefore to compare different GCMs as well as to evaluate their performance in comparison with the real climate. The
assessment of the difference between GCMs requires us to compare the synthetic climate generated from different climate models, while
the evaluation of their performance requires us to compare model-simulated climatic features to the real climate. Another example is that
to quantify the difference between the methods used for reconstructing spatio-temporal fields of past climates from climate proxies such as
tree-rings, ice cores, corals, and so on, a natural exercise is to compare the reconstructed climate fields that are derived from each method.
All these examples call for comprehensive means of comparing spatio-temporal random processes, which nevertheless, presents challenges
because of the high-dimensional characteristic and the typically complex dependency structure in spatio-temporal random fields.

To date, the literature on comparing two random fields primarily focuses on comparing either two spatial processes or two time series.
Briggs and Levine (1997), Shen et al. (2002), and Pavlicová et al. (2008) compared two spatial random fields over grids based on the wavelet
transform. Diebold and Mariano (1995) evaluated whether two competing forecasts in time series are equally accurate by examining whether
the loss function defined based on prediction errors is significantly different from zero. Later, Snell et al. (2000) and Wang et al. (2007)
extended Diebold and Mariano (1995) to the context of spatial data. Hering and Genton (2011) developed a hypothesis testing to evaluate the
difference between two spatial random fields in terms of user-chosen loss functions, and the innovation of their method lies in considering
the spatial correlation of the loss differential in estimating its uncertainty. Lund and Li (2009) for the first time evaluated the difference
between two time series by jointly examining the discrepancies in their mean and covariance structure.

The comparison between two spatio-temporal random fields is mainly conducted from either geostatistics or the functional data analysis
point of view. Enlightened by Lund and Li (2009), Li and Smerdon (2012) attempted to compare climate field reconstructions by integrat-
ing the difference in both the mean and covariance structure based on the two-sample Kolmogorov–Smirnov test of whitened random fields.
Their method nevertheless is unsatisfactory in several ways. Firstly, their approach treated each time-specific spatial field separately, although
it would be more advantageous to take their temporal dependence into account. Secondly, their testing method is sensitive to the misspec-
ification of the parametric covariance model chosen for the random field. And lastly, their approach assumed that the two spatio-temporal
random fields are independent from each other, yet this is not always the case in some testing applications that share underlying data. The
functional data analysis approaches include the tests for the equality of mean functions (Fan and Lin, 1998; Cuevas et al., 2004; Horváth et
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al., 2013), and the test for the equality of the second-order structure (Benko et al., 2009; Panaretos et al., 2010; Fremdt et al., 2013; Kraus
and Panaretos, 2012; Zhang and Shao, 2015).

All the aforementioned functional methods only test either the mean or covariance but not the two jointly. The methods also all assume
independence between the compared random fields except for Zhang and Shao (2015), which has several nice properties including the
consideration of temporal dependence and dependence between two functional datasets and the additional advantage of being non-parametric
compared with Li and Smerdon (2012). Motivated by the scientific interests of evaluating the comprehensive difference between global
climate models and the skill of each climate model in mimicking the real climate, in particular, their striking upward trend, we therefore
propose testing methods in the framework of Zhang and Shao (2015) to compare various characteristics between two spatio-temporal random
fields. Our proposed method inherits all the merits in Zhang and Shao (2015) and furthermore features the ability to jointly evaluate the first
and second moments of random fields and to evaluate the trend surfaces of the random fields. We will apply our method to synthetic climate
data generated from climate models and observed climate data.

The paper is organized as follows. Section 2 first reviews the method in Zhang and Shao (2015) and then proposes new statistical methods
for assessing the difference between two random fields in terms of mean surface and covariance structure, and the linear trend surface.
Section 3 reports simulation results to evaluate the sizes and powers of the proposed methods. Section 4 applies the proposed methods to
assess global climate models. Section 5 summarizes our methods and discusses the directions for further investigation, and Appendix section
demonstrates the proof for the theorem developed in this paper.

2. COMPARISON METHODS
Two hypothesis testings for comparing spatio-temporal random fields are developed. One extends the methods in Zhang and Shao (2015) to
jointly evaluate the mean and covariance structure, while the other evaluates the difference of temporal trends between two random fields.
The first method is motivated by offering a single measure of the difference between two climate models, and the second is motivated by
assessing their skill in capturing the pronounced upward trend of the recent climate change.

Let X.s; t / and Y.s; t / be two spatio-temporal random fields observed over spatial locations, s 2 D, and time points, t 2 Z. Because we
treat them here as two temporally dependent functional processes, we change their notation to fXt .s/g

N1
tD1 and fYt .s/g

N2
tD1 to better reflect

that they are considered as functional time series. Let H be the Hilbert space of square integrable functions over D � R2. For any functions
f; g 2 H, the inner product between f and g is defined as < f; g >D

R
D f .s/g.s/d s, and jjf jj D< f; f >1=2 denotes the inner product

induced norm. Define the operator f ˝ g.�/ D< f; � > g for f; g 2 H such that for a function h, the operator f ˝ g.h/ D< f; h > g maps
h to < f; h > g. Let LpH be the space of H-valued random variables X such that EjjX jjp <1 for some p > 0:

2.1. Testing mean and covariance function

Assuming that the functional time series are time invariant, that is, the spatio-temporal random fields are second-order stationary in time, we
define �X .s/ D EfXt .s/g and �Y .s/ D EfYt .s/g as their mean functions over s 2 D. Furthermore, we define CX .s; s0/ D EŒfXt .s/ �
�X .s/gfXt .s0/ � �X .s0/g� and CY .s; s0/ D EŒfYt .s/ � �Y .s/gfYt .s0/ � �Y .s0/g� as the covariance functions of Xt .s/ and Yt .s0/ over
s; s0 2 D, respectively. Depending on the problem of interest, three types of hypotheses on mean and covariance functions can be formulated
as follows:

I H0 W �X D �Y ; Ha W �X ¤ �Y ;
II H0 W CX D CY ; Ha W CX ¤ CY ;
III H0 W �X D �Y & CX D CY ; Ha W �X ¤ �Y or CX ¤ CY :

Here, “�X ¤ �Y ” and “CX ¤ CY ” mean that jj�X ��Y jj > 0 and
R
D�D jCX .s; s

0/�CY .s; s0/j2d sd s0 > 0, respectively. In particular,
Hypothesis III arises out of the interest in providing a comprehensive assessment between two climate fields in terms of the first and second
moment structures. Hypotheses I and II have been addressed by Zhang and Shao (2015), so here, we focus on Hypothesis III. Because our
method for Hypothesis III is an extension of the methods for Hypotheses I and II, we will first give a brief review of the techniques for
performing the first two hypotheses and then present our test statistic.

2.1.1. Review of methods in Zhang and Shao (2015)

Zhang and Shao (2015) developed their testing methods based on functional principal component analysis and the recently developed self-
normalization technique. Let N D N1 C N2 be the total time length for two random fields. Define the recursive sample mean functionsb�X;m D 1

m

Pm
tD1Xt , and b�Y;n D 1

n

Pn
tD1 Yt with 1 6 m 6 N1 and 1 6 n 6 N2, and the pooled sample covariance operator

bCXY D 1

N

24 N1X
tD1

˚
Xt �b�X;N1�˝ ˚Xt �b�X;N1�C N2X

tD1

˚
Yt �b�Y;N2�˝ ˚Yt �b�Y;N2�

35
The eigenvalues and eigenfunctions corresponding to bCXY are denoted by fb�j

XY
g and fb�j

XY
g. Then, define a sequence of vectors consisting

of the projected (recursive) mean differences on the first K eigenfunctions:

b k D �< b�X;bkN1=N c �b�Y;bkN2=N c;b�1XY >; : : : ; < b�X;bkN1=N c �b�Y;bkN2=N c;b�KXY >�T
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for 2 6 k 6 N , where bW c is the largest integer not greater than W 2 R. The test statistic for Hypothesis I is

TS1.K/ D Nb T
NV�1 .K/b N

where V .K/ D
1
N 2

PN
kD1 k

2.b k � b N /.b k � b N /T. The parameter K is a user-chosen number that determines the number of
eigenfunctions to be used in the test. It is also associated with the cumulative percentage of total variation with respect to the pooled sample
covariance.

The K-length vector b k consists of projected differences, with the j th element being projected onto the j th eigenfunction b�j
XY

. The
index k for b k indicates the kth paired difference between the recursive estimates of mean functions. Because of these recursive estimates
that are the kernel of the self-normalization technique, we allow each individual data to be temporally correlated and moreover the two data
sets to be correlated if additionally assuming N1=N2 ! 1.

Similarly, to test the covariance function, we define the recursive covariance estimators bCX;m D 1
m

Pm
tD1fXt �b�X;N1g˝fXt �b�X;N1g

and bCY;n D 1
n

Pn
tD1fYt � b�Y;N2g ˝ fYt � b�Y;N2g with 1 6 m 6 N1 and 1 6 n 6 N2. Then, we define a sequence of matrices formed

by the projected covariance differences, Ck D Œc
i;j
k
�, where

c
i;j
k
D<

�bCX;bkN1=N c � bCY;bkN2=N c�b�iXY ;b�jXY >; 2 6 k 6 N; 1 6 i; j 6 K
Let b̨k be the vectorized Ck , which contains the elements on and below the main diagonal of Ck (i.e., vectorizing only the lower triangular
part). The test statistic for Hypothesis II is

TS2.d/ D Nb̨T
NV�1˛ .d/b̨N

where d D K.K C 1/=2 and V˛.d/ D 1
N 2

PN
kD1 k

2.b̨k � b̨N /.b̨k � b̨N /T. Again, K is a user-chosen number and represents the
cumulative percentage of total variation.

The pivotal limiting distributions of TS1.K/ and TS2.d/ are derived in Zhang and Shao (2015). Define Bq.r/ as a q�dimensional vector
of independent standard Brownian motions. Let Wq D Bq.1/TJ�1q Bq.1/, where Jq D

R 1
0 fBq.r/ � rBq.1/gfBq.r/ � rBq.1/gTdr , then

TS1.K/ and TS2.d/ converge to WK and Wd , respectively. The empirical distributions of Wq for any q can be obtained numerically by
approximating the standard Brownian motion with the standardized partial sum of i.i.d standard normal random variables.

2.1.2. Test for Hypothesis III

In addition to examining the mean and covariance function separately, it is also of great interest to assess the climate fields by jointly
evaluating their first moment and second moment structures. Therefore, we propose a test statistic for Hypothesis III by integrating the test
statistics for Hypotheses I and II.

Proposition 2.1 Denote by b̌k D .b T
k
;b̨T
k
/T with 2 6 k 6 N . Let s D K.KC 3/=2 and Vˇ .s/ D

1
N 2

PN
kD1 k

2.b̌k � b̌N /.b̌k � b̌N /T.
Under Assumptions 6.1, 6.2, 6.4, and 6.5 in the Appendix, we have

TS3.s/ D Nb̌T
NV�1ˇ .s/b̌N

converges to Ws . Furthermore, assume N1=N2 ! 1, then the conclusion also holds with Assumption 6.2 replaced by Assumption 6.3.

Notice that by replacing Assumption 6.2 with 6.3, we allow the two time series to be dependent. The proof of Proposition 2.1 follows the
arguments in demonstrating the limiting distributions of TS1 and TS2 in Zhang and Shao (2015). The details are omitted. The test statistics
essentially examined the aggregated differences of the mean surface and covariance structure projected onto the directions of major variation.

2.2. Assessment of trends between two random fields

When the trend appears a major feature of the spatio-temporal random fields, it is often of interest to compare the trends between two random
fields. In order to formulate this problem, we consider the following model:

Xt .s/ D �X .s/C tˇX .s/C �X;t .s/; t D 1; 2; : : : ; N1;

Yt .s/ D �Y .s/C tˇY .s/C �Y;t .s/; t D 1; 2; : : : ; N2
(2.1)

where �X;t and �Y;t are both mean zero and stationary in time. We use ˇX .s/ and ˇY .s/ to represent the spatially varying (linear) trends in
Xt .s/ and Yt .s/, respectively. Hence, our hypothesis for comparing the trends between two spatio-temporal random fields, Xt .s/ and Yt .s/,
can be written into

IV H0 W ˇX D ˇY I Ha W ˇX ¤ ˇY

where “ˇX ¤ ˇ
00
Y

means that jjˇX �ˇY jj > 0: Because ˇX and ˇY are defined over an infinite dimensional functional space, it is necessary
to reduce the dimensionality in developing the test statistic for Hypothesis IV. With some abuse of notation, let CXY D �1E�X;1 ˝ �X;1 C
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�2E�Y;1 ˝ �Y;1, where N1=N ! �1 and N2=N ! �2. Denote by f�j
XY
g the eigenfunctions of CXY . To reduce the dimensionality, we

project (2.1) onto the space spanned by f�j
XY
gKjD1, that is,

< Xt ; �
j
XY

> D< �X ; �
j
XY

> Ct < ˇX ; �
j
XY

> C < �X;t ; �
j
XY

>;

< Yt ; �
j
XY

> D< �Y ; �
j
XY

> Ct < ˇY ; �
j
XY

> C < �Y;t ; �
j
XY

> :

Let MXt D .< Xt ; �
1
XY

>; : : : ; < Xt ; �
K
XY

>/T, M�X;t D .< �X;t ; �
1
XY

>; : : : ; < �X;t ; �
K
XY

>/T, M�X D .< �X ; �
1
XY

>; : : : ; <

�X ; �
K
XY

>/T, and M̌X D .< ˇX ; �
1
XY

>; : : : ; < ˇX ; �
K
XY

>/T. These are the projections of each term in (2.1) on the first K joint
eigenfunctions. These projections reduce the dimension of the data to K. Similarly, we can define MYt , M�Y;t , M�Y , and M̌Y . Thus, we have

MXt D M�X C t M̌X C M�X;t ;

MYt7 D M�Y C t M̌Y C M�Y;t

In practice, CXY is unknown and needs to be estimated from the data. Given preliminary estimators Q̌X ; Q̌Y ; Q�X , and Q�Y and by letting
QmX D Q�X C t Q̌X and QmY D Q�Y C t Q̌Y , we define the estimator for CXY as

bCXY D 1

N

24 N1X
tD1

fXt � QmX g ˝ fXt � QmX g C
N2X
tD1

fYt � QmY g ˝ fYt � QmY g

35
Let fb�j

XY
g be the eigenfunctions of bCXY . By projecting (2.1) onto the space spanned by fb�j

XY
gKjD1, we have

< Xt ;b�jXY > D< �X ;b�jXY > Ct < ˇX ;b�jXY > C < �X;t ;b�jXY >;
< Yt ;b�jXY > D< �Y ;b�jXY > Ct < ˇY ;b�jXY > C < �Y;t ;b�jXY >

where j D 1; 2; : : : ; K. Define �X D . M�
T
X ;
M̌T
X
/T and �Y D . M�

T
Y ;
M̌T
Y
/T. Let Zt;K D .IK ; tIK/T 2 R2K�K , where IK denotes the K �K

identity matrix. The recursive (least squares) estimator for �X is given by

b�X;k D �b�T
X;k ;

b̌T
X;k

�T
D

0@ kX
tD1

Zt;KZ
T
t;K

1A�1 kX
tD1

Zt;MbX t
where bX t D .< Xt ;b�1XY >; : : : ; < Xt ;b�KXY >/T. Analogously, we can define the recursive (least squares) estimator for �Y .

To compare the trends, define

O�k D
Ǒ
X;bkN1=N c �

Ǒ
Y;bkN2=N c; k D 2; : : : ; N D N1 CN2

Notice that if N1 D N2, we can simply define O�k D Ǒ
X;k �

Ǒ
Y;k for k D 2; : : : ; N1: We propose the following test statistic for

Hypothesis IV:

TN D O�
T
N

8<: 1

N 5

NX
kD2

k4
�
O�k �

O�N

� �
O�k �

O�N

�T

9=;
�1b�N

It is worth noting that the normalization matrix in TN has a different weight k4 in comparison with the weight k2 in the usual self-
normalization statistic. It is demonstrated in our (unreported) simulation studies that such weighting scheme significantly improves the
performance of the test under the null. In the following, we establish the asymptotic null distribution for TN when N1=N2 ! 1.

Theorem 2.2 Suppose Assumptions 6.3 and 6.4 in the Appendix hold with fXt g replaced by f�X;t g and fYt g replaced by f�Y;t g. Under
Assumptions 6.6, 6.7 in the Appendix, and the H0 W ˇX D ˇY ,

TN !
d QWK.1/

T

(Z 1

0
r4
n
QWK.r/ � QWK.1/

o n
QWK.r/ � QWK.1/

oT
dr

)�1
QWK.1/

where

QWK.r/ D
1

r3

Z r

0
tdBK.t/ �

1

2r2

Z r

0
dBK.t/
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Proof. See the Appendix.

Remark 2.1 Because of the linear trends in (2.1), the limiting distribution for TN is different from those considered in Zhang and Shao
(2015). We point out that the nonstandard limiting distribution in Theorem 2.2 can be approximated by

v0n

8<: 1

n5

nX
kD2

k4.vk � vn/.vk � vn/
0

9=;
�1

vn

where

vk D
1

k.k2 � 1/

0@ kX
tD1

tet �
k C 1

2

kX
tD1

et

1A
for fet g �i:i:d N.0; IK/, and n is a large enough positive integer, for example, 1000.

Remark 2.2 We use the following approach to obtain the preliminary estimators Q̌X ; Q̌Y ; Q�X , and Q�Y . Let f j1;j2.s/gj1;j2 be a
sequence of basis functions, such that  j1;j2.s/ D Q j1.s1/ Q j2.s2/ with f Q j .s/g being the cubic b-spline basis functions. One can relabel
f j1;j2.s/gj1;j2 as f j .s/gMjD1. Define

. Q�X;1; : : : ; Q�X;M ; Q̌X;1; : : : ; Q̌X;M /
T D

0@ N1X
tD1

Zt;MZ
T
t;M

1A�1 N1X
tD1

Zt;M QXt

where QXt D .< Xt ;  1 >; : : : ; < Xt ;  M >/0. The preliminary estimator is then given by Q̌X .s/ D Q̌X;1 1.s/C : : :C Q̌X;M M .s/.

3. MONTE CARLO SIMULATIONS
We conduct simulations to evaluate the empirical sizes and powers of the proposed tests for Hypotheses III and IV. All space-time random
fields in the simulation are generated from the below model,

Xt .s1; s2/ D �X .s1; s2/C

mX
iD1

nX
jD1

cij .t/�i .s1/�j .s2/; t D 1; : : : ; T (3.1)

where .s1; s2/ are the two components of s, �X .s1; s2/ denotes a spatially varying mean function, f�i .s/g are cubic b-spline basis functions,
and cij .t/ D 	cij .t � 1/ C �ij .t/ with f�ij .t/ W i D 1; 2; : : : ; nI j D 1; : : : ; mg following a zero mean Gaussian random process with
covariance matrix†X . We obtain the positive definite covariance matrix †X using an exponential covariance function 
2

X
exp.�jjhjj=�X /

for h D si � sj for any 1 6 i; j 6 n. The process Yt .s1; s2/ is also generated based on model (3.1) but with �X .s1; s2/ and †X replaced
by �Y .s1; s2/ and †Y which consists of 
2

Y
and �Y . The spatial locations are generated as a 21 � 21 grid over Œ0; 1� � Œ0; 1�. We choose

m D n D 4 and set 	 D 0:1; 0:3; 0:6. Each simulation setup in the succeeding text is run with T D 250; 500; 1000, respectively, to study the
effect of sample size to the results, and all the results are based on 1000 simulations.

To evaluate the empirical sizes and powers for Hypothesis test III, we first set �X .s1; s2/ D 0, 
2
X
D 1 and �X D 0:05. Then, we set

�Y .s1; s2/ D r�Z.s1; s2/ for r� D 0; 0:1; 0:2, where Z.s1; s2/ is obtained through a Gaussian random process but was held fixed once
generated. We further set 
2

Y
D 1; 1:2; 1:4 and �Y D 0:05; 0:1; 0:15, respectively, to ensure that random fields Yt can have the same/different

mean and covariance structure as Xt . Different combinations of those parameter values allow us to evaluate both the sizes and powers of the
test. See the details of the combinations in Tables 1–3. We choose seven eigenfunctions that correspond to 90% of total variation to report
the sizes and powers. Fixing 	 D 0:1, Table 1 shows that the sizes are close to the nominal level 0.05, even at T D 250. The powers raise
quickly when the mean and covariance structures of Yt deviate from those of Xt . In order to evaluate the powers to different variances and
powers to different range parameters separately, we conduct additional simulations as reported in Tables 2–3. The results indicate that either
violation of the equal covariance will lead to a rejection of the test. Viewing the results for 	 D 0:3 and 	 D 0:6, we observe that when 	
increases, the sizes at a smaller number of eigenfunctions still remain correct even at T D 250, but at a larger number of eigenfunctions
maintaining the correct sizes requires a larger T . The effect of temporal correlation on powers is also more obvious at T D 250. A larger
	 in general reduces the power, but a large T eliminates this effect. We omit the results for 	 D 0:6 in this article while presenting the
results for 	 D 0:3 in Table 4 because the climate model data we analyze in Section 4.1 has estimated temporal autocorrelation around 0.3.
In unreported simulation results, we also evaluated the powers for a special case in which �Y is a constant over space and takes the values
0.1,0.2, and 0.3, respectively. The results clearly show that the test is highly sensitive to this type of difference.
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Table 1. Sizes and powers of testing the mean and covariance between two random fields
given 	 D 0:1, �X D 0, 
2

X
D 1 and �X D 0:05

r� 
2
Y

�Y T  1  2  3  4  5  6  7

0 1 0.05 250 0.061 0.054 0.056 0.06 0.068 0.067 0.074
0 1 0.05 500 0.042 0.040 0.039 0.053 0.054 0.047 0.055
0 1 0.05 1000 0.042 0.055 0.044 0.043 0.051 0.066 0.061

0.1 1 0.05 250 0.608 0.499 0.472 0.463 0.454 0.449 0.464
0.1 1 0.05 500 0.860 0.823 0.793 0.774 0.781 0.761 0.748
0.1 1 0.05 1000 0.972 0.963 0.961 0.975 0.985 0.984 0.979

0.2 1 0.05 250 0.960 0.964 0.973 0.983 0.986 0.983 0.989
0.2 1 0.05 500 0.997 0.997 0.999 0.999 1 1 1
0.2 1 0.05 1000 1 1 1 1 1 1 1

0 1.2 0.1 250 0.344 0.401 0.422 0.428 0.464 0.477 0.476
0 1.2 0.1 500 0.582 0.681 0.765 0.791 0.831 0.821 0.834
0 1.2 0.1 1000 0.834 0.912 0.950 0.969 0.990 0.994 0.997

0.1 1.2 0.1 250 0.733 0.721 0.731 0.748 0.763 0.778 0.780
0.1 1.2 0.1 500 0.929 0.930 0.952 0.956 0.966 0.973 0.977
0.1 1.2 0.1 1000 0.991 0.993 0.997 0.999 1 1 1

0.2 1.2 0.1 250 0.965 0.962 0.976 0.990 0.992 0.989 0.994
0.2 1.2 0.1 500 0.998 0.993 1 0.999 1 1 1
0.2 1.2 0.1 1000 1 1 1 1 1 1 1

0 1.4 0.15 250 0.873 0.939 0.978 0.981 0.994 0.991 0.993
0 1.4 0.15 500 0.983 0.994 0.998 0.998 1 1 1
0 1.4 0.15 1000 1 0.998 1 1 1 1 1

0.1 1.4 0.15 250 0.934 0.973 0.983 0.989 0.996 0.997 0.998
0.1 1.4 0.15 500 0.990 0.994 0.996 1 1 1 1
0.1 1.4 0.15 1000 1 0.999 1 1 1 1 1

0.2 1.4 0.15 250 0.992 0.989 0.998 0.996 1 0.999 1
0.2 1.4 0.15 500 0.999 1 1 1 1 1 1
0.2 1.4 0.15 1000 1 1 1 1 1 1 1

r� D 0, 
2
Y
D 1 and �Y D 0:05 correspond to sizes, and all other cases correspond to

powers.

Table 2. Powers of Hypothesis test III in terms of �Y given �X D 0:05

�Y T  1  2  3  4  5  6  7

0.1 250 0.075 0.088 0.085 0.091 0.096 0.079 0.087
0.1 500 0.136 0.120 0.110 0.095 0.094 0.088 0.087
0.1 1000 0.240 0.211 0.192 0.158 0.155 0.158 0.137

0.15 250 0.470 0.449 0.459 0.406 0.372 0.370 0.346
0.15 500 0.758 0.753 0.758 0.693 0.691 0.678 0.649
0.15 1000 0.932 0.925 0.965 0.96 0.969 0.963 0.945

0.2 250 0.862 0.863 0.885 0.856 0.858 0.828 0.798
0.2 500 0.982 0.982 0.988 0.987 0.984 0.986 0.991
0.2 1000 1 0.996 1 0.999 1 1 1
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Table 3. Powers of Hypothesis test III in terms of 
2
Y

given 
2
X
D 1


2
Y

T  1  2  3  4  5  6  7

1.2 250 0.143 0.212 0.235 0.241 0.290 0.302 0.305
1.2 500 0.290 0.366 0.436 0.461 0.498 0.544 0.564
1.2 1000 0.484 0.651 0.746 0.804 0.869 0.908 0.924

1.4 250 0.441 0.561 0.659 0.710 0.804 0.838 0.861
1.4 500 0.709 0.857 0.917 0.937 0.979 0.986 0.995
1.4 1000 0.902 0.970 0.996 0.998 0.999 1 1

1.6 250 0.684 0.850 0.892 0.950 0.970 0.987 0.99
1.6 500 0.898 0.960 0.989 0.999 1 1 1
1.6 1000 0.983 0.998 1 1 1 1 1

Table 4. Sizes and powers of testing the mean and covariance between two random fields
given 	 D 0:3 �X D 0, 
2

X
D 1 and �X D 0:05

r� 
2
Y

�Y T  1  2  3  4  5  6  7

0 1 0.05 250 0.051 0.061 0.065 0.087 0.084 0.112 0.126
0 1 0.05 500 0.046 0.048 0.053 0.060 0.079 0.084 0.070
0 1 0.05 1000 0.039 0.054 0.048 0.050 0.056 0.061 0.078

0.1 1 0.05 250 0.447 0.365 0.35 0.363 0.378 0.413 0.440
0.1 1 0.05 500 0.722 0.662 0.618 0.608 0.621 0.625 0.621
0.1 1 0.05 1000 0.919 0.894 0.893 0.893 0.914 0.900 0.900

0.2 1 0.05 250 0.897 0.878 0.918 0.921 0.932 0.948 0.958
0.2 1 0.05 500 0.987 0.984 0.988 0.991 0.996 0.997 0.999
0.2 1 0.05 1000 0.999 1 1 1 0.999 1 1

0 1.2 0.1 250 0.319 0.363 0.398 0.422 0.470 0.507 0.533
0 1.2 0.1 500 0.524 0.617 0.694 0.728 0.791 0.794 0.806
0 1.2 0.1 1000 0.783 0.853 0.925 0.954 0.976 0.990 0.991

0.1 1.2 0.1 250 0.595 0.608 0.628 0.664 0.702 0.722 0.762
0.1 1.2 0.1 500 0.864 0.875 0.910 0.909 0.937 0.945 0.951
0.1 1.2 0.1 1000 0.968 0.980 0.988 0.997 0.998 1 1

0.2 1.2 0.1 250 0.923 0.917 0.929 0.955 0.961 0.976 0.979
0.2 1.2 0.1 500 0.988 0.989 0.997 0.996 0.998 0.999 0.999
0.2 1.2 0.1 1000 1 1 1 1 1 1 1

0 1.4 0.15 250 0.841 0.919 0.959 0.974 0.986 0.992 0.993
0 1.4 0.15 500 0.972 0.985 0.995 0.999 1 1 1
0 1.4 0.15 1000 0.996 0.999 0.999 1 1 1 1

0.1 1.4 0.15 250 0.909 0.945 0.971 0.983 0.993 0.997 0.998
0.1 1.4 0.15 500 0.980 0.992 0.998 0.999 1 1 1
0.1 1.4 0.15 1000 0.998 0.999 1 1 1 1 1

0.2 1.4 0.15 250 0.971 0.976 0.990 0.997 1 0.999 1
0.2 1.4 0.15 500 0.997 0.997 1 1 1 1 1
0.2 1.4 0.15 1000 1 1 1 1 1 1 1

r� D 0, 
2
Y
D 1 and �Y D 0:05 correspond to sizes, and all other cases correspond to

powers.
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Table 5. Sizes and powers of testing the trend between two random fields

	 rˇ T  1  2  3  4  5  6  7

0.1

1 250 0.030 0.045 0.043 0.054 0.053 0.051 0.062
1 500 0.069 0.065 0.063 0.059 0.064 0.066 0.078
1 1000 0.057 0.051 0.049 0.035 0.044 0.044 0.066

1.05 250 0.525 0.435 0.391 0.357 0.337 0.327 0.364
1.05 500 0.998 0.994 0.989 0.986 0.989 0.989 0.993
1.05 1000 1 1 1 1 1 1 1

1.1 250 0.959 0.914 0.904 0.897 0.883 0.884 0.925
1.1 500 1 1 1 1 1 1 1
1.1 1000 1 1 1 1 1 1 1

0.3

1 250 0.030 0.051 0.046 0.06 0.063 0.066 0.080
1 500 0.072 0.07 0.069 0.063 0.072 0.073 0.084
1 1000 0.058 0.055 0.049 0.037 0.041 0.046 0.070

1.05 250 0.379 0.316 0.287 0.26 0.255 0.244 0.302
1.05 500 0.989 0.961 0.953 0.956 0.949 0.945 0.965
1.05 1000 1 1 1 1 1 1 1

1.1 250 0.871 0.801 0.777 0.769 0.747 0.759 0.807
1.1 500 1 1 1 1 1 1 1
1.1 1000 1 1 1 1 1 1 1

0.6

1 250 0.042 0.064 0.066 0.087 0.106 0.105 0.141
1 500 0.084 0.087 0.082 0.076 0.091 0.096 0.104
1 1000 0.058 0.057 0.056 0.044 0.052 0.055 0.084

1.05 250 0.22 0.205 0.172 0.188 0.198 0.197 0.252
1.05 500 0.862 0.802 0.791 0.764 0.766 0.764 0.789
1.05 1000 1 1 1 1 1 1 1

1.1 250 0.599 0.548 0.504 0.49 0.496 0.509 0.564
1.1 500 0.999 1 0.999 0.993 0.994 0.994 0.997
1.1 1000 1 1 1 1 1 1 1

rˇ D 1 corresponds to sizes; rˇ > 1 corresponds to powers.

To evaluate the sizes and powers for Hypothesis test IV, we set EfXt .s1; s2/g D ˇX .s1; s2/t with ˇX .s1; s2/ generated from the
following model:

ˇX .s1; s2/ D

mX
iD1

nX
jD1

cij �i .s1/�j .s2/

where fcij W i D 1; 2; : : : ; nI j D 1; 2; : : : ; mg is generated from a Gaussian random process with an exponential covariance function but
is held fixed throughout the simulation once obtained. The generated ˇX .s1; s2/ is scaled to reflect the magnitude of actual trend of the
observed climate. We then set EfYt .s1; s2/g D ˇY .s1; s2/t with ˇY .s1; s2/ D rˇˇX .s1; s2/. By setting rˇ D 1; 1:05; 1:1, respectively, we
are allowed to evaluate both the sizes and powers of comparing the trend between two random fields. Table 5 reports the simulation results
for different combinations of rˇ and T at 	 D 0:1; 0:3; 0:6, respectively. It is seen that when 	 is moderately low, the sizes are close to the
nominal level 0.05 even at T D 250 and the powers of the test are satisfactory even at small differences such as r D 1:1. When 	 is large,
the sizes at a small number of eigenfunction still remain correct, yet sizes at a large number of eigenfunctions are elevated for small T . In the
latter case, a large T is helpful to retain the appropriate sizes. The powers at large 	 also become weakened compared with those at small 	 if
T is small, but the powers increase quickly as T increases. It is worth mentioning that the first-order temporal autocorrelation for reanalysis
data and climate modeled data in Section 4.2 is between 0.3 and 0.4.

4. APPLICATION TO SYNTHETIC CLIMATE
We consider last-millennium and historical simulations from five climate modeling centers as configured and implemented in the coupled
model intercomparison project Phase 5 and the paleoclimate modelling intercomparison project Phase 3 (CMIP5/PMIP3): the Beijing Cli-
mate Center CSM1.1 model (hereinafter BCC), the National Center for Atmospheric Research Community Climate System version 4 model
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(hereinafter CCSM), the Goddard Institute for Space Studies E2-R model (hereinafter GISS), the Institute Pierre-Simon Laplace CM5A-LR
model (hereinafter IPSL), and the Max Plank Institute ESM-LR model (hereinafter MPI). The last-millennium simulations span the period
850–1850 CE and are forced with reconstructed time-varying radiative forcings (Schmidt et al., 2011). We also use the first ensemble mem-
ber of the CMIP5 historical runs (1850–2005 CE) from each of the five GCMs that were used to perform the last millennium simulations
earlier. The annual means of the modeled surface temperature fields are all interpolated to even 5-degree latitude–longitude grids.

We first assess whether climate models generate statistically equivalent climates and then investigate the coherency between modeled
climate and observationally based data. All testing results are subject to the number of leading eigenfunctions, also called empirical orthog-
onal functions (EOFs) in climatology, or principal components (PCs) that are chosen prior to the test. The testing results therefore can be
interpreted as being associated with the percentage of total variation that are explained by the selected PCs. Because the percentage of total
variation is a more informative reflection of the data capacity than the number of leading PCs, we present the p-values of the tests along with
the percentage of total variation.

Following the tradition of functional data analysis, we smooth each of the datasets aforementioned before applying the test. The smoothing
procedure ensures that our method is applicable regardless of whether the two random fields are observed at the same set of locations.
Specifically, suppose our raw data are discrete observations fXt .sj /gnjD1 and fYt .s0j /g

m
jD1 for sj ; s0j 2 D. Using smoothing spline, we first

translate these discrete observations into smooth surfaces/images over the space D. We then perform our analysis on the smooth functional
objects. Therefore, our tests allow the two random fields in comparison to be observed at different locations, that is, fsj gnjD1 and fs0j g

m
jD1

can be different. The smoothness of our data is obtained through a set of 120 basis functions that are formed by 12 cubic b-splines in the
longitude and 10 cubic b-splines in the latitude direction.

4.1. Comparison between climate models

In order to focus on testing the similarity of internal variability between climate models, we only use the last-millennium simulations (850–
1850 CE) in the comparison. This is because on the one hand the greenhouse gas forcings impose dominating influence on the model
simulations after 1850, and on the other hand, we have reserved the assessment of trend for the posterior 1850 period in the next section.
There are

�5
2

�
D 10 different pairs of modeled climate fields. For each pair of models, we first remove their common annual temperature

average to attain the stationarity in time and then perform TS1, TS2, and TS3 at a sequential number of PCs, ranging from one to the
minimal number that reaches 85% of the cumulative variance ratio. The average number of required PCs to reach 85% across the 10 pairs is
about 38.

We use EOFs as the basis functions in our hypothesis test. As an example of EOF-PC decompositions and comparisons among models,
Figure 1 plots the first three EOFs for the GISS and IPSL models, their joint EOFs which are computed from the pooled sample covariance
matrix and the respective PCs for the model EOFs and their joint EOFs. The EOF patterns are characteristic of the leading patterns of
variability in global temperature fields, which are the result of different semi-oscillatory modes including the El Niño Southern Oscillation,
the Arctic Oscillation, the Pacific Decadal Oscillation, and large-scale mean variability. It is important to note that EOFs reflecting these
patterns of variability are ordered differently in each model, which reflects the differences in the simulated dynamics within each model. The
large-scale mean variability is expressed largely as a singular leading pattern in the GISS simulation, whereas the pattern is mixed across
the leading patterns in the IPSL simulation. This can be a characteristic of the model sensitivities to large-scale radiative forcings and the
magnitude of internal variability associated with different simulated atmosphere-ocean phenomena in the models. For our purposes herein, it

Figure 1. The first three eigenfunctions (or EOFs) and principal components of Goddard Institute for Space Studies (GISS), Institute Pierre–Simon Laplace
(IPSL), and their joint field
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is sufficient to note that each individual basis function in our test is the product of a certain combination of dynamics and forcing sensitivities
in each model. Our motivation herein, however, is to determine the degree to which model fields are the same. Comparing only equally
ranked EOFs and PCs is therefore appropriate for this evaluation.

To summarize the ensemble of temperature field comparisons across all models, Figure 2 reports the p-values of hypothesis tests, TS1 and
TS2, between all simulated temperature fields along a sequence of total variation percentages. The p-values of hypothesis test, TS3, are all
nearly zero, and thus, the plot for TS3 is omitted. All pairwise mean comparisons yield small p-values. This indicates that the mean surface of
climate model simulations are all different, even when projected onto any subspace defined by their joint eigenfunctions. However, in terms
of covariance comparison, five out of 10 pairs have similar covariance structure at the direction of their first joint eigenfunction, and among
the five pairs the BCC-IPSL and BCC-MPI continue to show similarity up to their first two joint eigenfunctions, which correspond to roughly
19% of total variation in the data. The IPSL-MPI pair also shows somewhat similar covariance structure at their first two eigenfunctions.
Unsurprisingly, the comprehensive test TS3 indicates that no single pair of modeled climate shares the common first and second moments.

4.2. Assessment of climate models using reanalysis data

An important question in climate model evaluation is to examine the performance of climate models relative to the observed climate. We
address this question by comparing the simulations of the five aforementioned CMIP5 models with the surface temperature field derived
from the 20th-century reanalysis product, which assimilates observations of synoptic pressure, sea surface temperatures, and sea ice from
1871 to 2012 (Compo et al., 2011). The reanalysis data are presented over an even two-degree latitude–longitude grid rather than the five-
degree grid of the model simulations. But because we only compare the smoothed data based on b-spline bases, the actual observations of
two random fields are unimportant. The most striking feature of the temperature field over the reanalysis interval is its upward mean trend
into the 21st century. We therefore perform a trend assessment during the overlapping period (1871–2005) between the reanalysis data and
the model simulations as an evaluation of whether the models respond to greenhouse gas forcings in similar fashions.

Figure 2. P-values from comparisons of modeled climate: (a) test for mean surface; (b) test for covariance function. The grey dashed line represents p-value
equals 0.05, and the horizontal axis is in logarithmic scale

Figure 3. P-values from comparisons of the trend between climate models and reanalysis data. The grey dashed line represents p-value equals 0.05, and the
horizontal axis is in logarithmic scale
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We conduct the hypothesis test described in Section 2.2 to compare the trend in each of the five climate models to that of the reanalysis
data. Figure 3 shows the p-values for the trend assessments. All five models seem to follow the trend of reanalysis data to some extent, but
when projected to a large subspace that contains 70% of total variation of the data, then there is evidence that the trend of each climate model
deviates from that of the reanalysis data. Despite some of its p-values being slightly below 0.05, the CCSM simulation appears to outperform
the other four climate models by retaining the trend of reanalysis data to the largest capacity, followed by BCC, IPSL, MPI, and GISS in a
descending order.

Note that all of the models and observational data are subject to the phasing of internal climate variability, or the timing of natural
oscillations like El Niño Southern Oscillation, the Pacific Decadal Oscillation, and the Atlantic-multidecadal oscillation. Because these
phenomena have variability on decadal and longer timescales that influence global temperatures, they can affect estimates of 20th-century
temperature trends. While we do not account for those influences in the tests that we have performed, a more robust assessment across all
of the ensemble members of a given CMIP5 model simulation would allow our test to more fully characterize the range of agreement for an
individual model and the associated impacts on cross-model assessments.

5. SUMMARY AND DISCUSSION
The comparison methods that we have developed and applied herein account for the specific properties of observed and modeled climate,
thus making them ideal tools for the problems of interest. Alternative tests are of course additionally applicable, such as comparisons based
on the squared differences of the mean or covariance functions from the two random fields (Benko et al., 2009). These alternative approaches
can be viewed as a simultaneous test that integrates the differences in all different directions with equal weights. For our data sets, it might
be expected that the null hypothesis will be rejected in all cases using this test, based on the behavior of p-values at large percentages of total
variation in our results. Such a global test therefore fails to provide details of the comparison between two random fields, such as the source
or direction of the differences. Another disadvantage of a test based on squared differences is that the limiting distribution is non-pivotal as
it depends on the second or fourth-order structures of the functional time series and therefore it has to resort to the bootstrap or subsampling
calibration (Benko et al., 2009). Finally, the tests based on mean squared differences require the choice of tuning parameters, making our
tests more informative and convenient to use. The advances in the current paper are also more rigorous than those developed by Li and
Smerdon (2012), although both have focused on the first and second-moment structures of the investigated fields. Compared with Li and
Smerdon (2012), the methods developed herein have relaxed several unrealistic assumptions, such as the spatial stationarity and temporal
independence. Moreover, our methods are nonparametric and thus avoid the risk of model misspecification.

We have provided an example assessment for five climate model simulations spanning the 850–2005 CE interval. The assessment includes
the characterization of differences between climate model simulations, and the skill evaluation of model simulations in reproducing the main
features of observationally based reanalysis data. Because the modeled climates are high-dimensional data (p > n), it is necessary to reduce
the dimension in order to focus on the primary characteristics of the climate field. Our evaluations and comparisons were thus conducted
in low-dimensional spaces using the functional data analysis approach. The projections of the data onto those low dimensions retain the
majority of the variability in the original data, and more importantly, the directions of those projections can correspond to certain scientific
interpretations. Among the simulated temperature fields considered herein, none of them are fully equivalent in terms of their underlying first
and second moment structures. Some show equivalences, however, of the covariance in reduced dimensional space. In terms of capturing the
upward trend of the 20th century, the CCSM mostly matches with the reanalysis data. Our conclusions are based on evaluating the differences
between the mean surfaces, the covariance structures, and the trend surfaces rather than evaluating only the global mean differences of
the surfaces, the latter of which is often seen in the climate literature. Our findings are indicative of the fact that different climate models
in general have different climate sensitivities and internal dynamics, thus generating climates of different characteristics; but some can be
similar in terms of the major components of their dynamics and climate sensitivity.
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APPENDIX

Definition 6.1 Assume that fUi g 2 L
p
H with p > 0 admits the following representation:

Ui D f ."i ; "i�1; : : : /; i D 1; 2; : : : ; (A1)

where the "i ’s are iid elements taking values in a measurable space S and f is a measurable function f W S1 ! H: For each i 2 N, let
f"
.i/
j gj2Z be an independent copy of f"j gj2Z. The sequence fUi g is said to be Lp-m-approximable if

1X
mD1

.EjjUm � U
.m/
m jjp/1=p <1 (A2)

where U .m/i D f ."i ; "i�1; : : : ; "i�mC1; "
.i/
i�m; "

.i/
i�m�1; : : : /:

Assumption 6.1 Assume N1=N ! �1 and N2=N ! �2 as min.N1; N2/!C1, where �1; �2 2 .0; 1/.

Assumption 6.2 Assume fXt .s/gC1tD1 � L
2
H and fYt .s/gC1tD1 � L

2
H are both L4-m-approximable, and they are mutually independent.

Assumption 6.3 Assume f.Xt .s/; Yt .s//gC1tD1 � L
4
H�H is an L4-m-approximable sequence.

Assumption 6.4 Let f�j
X
g and f�j

Y
g be the eigenvalues associated with CX and CY , respectively. Assume �1

X
> �2

X
> : : : > �KC1

X
and

�1
Y
> �2

Y
> � � � > �KC1

Y
; for some positive integer K > 2:

Denoted by f Q�i
XY
g, the eigenfunctions of �1CX C �2CY . Let VX;t D .< Xt � �X ; Q�

1
XY

>; : : : ; < Xt � �X ; Q�
K
XY

>/T and RX;t D

.< f.Xt � �X /˝ .Xt � �X / � CX g Q�
i
XY

; Q�
j
XY

>/16i;j6K . Define WX;t D .V T
X;t
; vech.RX;t /

T/T and the analogous quantity WY;t for
the second sample, where vech is the operator that stacks the elements on and below the main diagonal of a symmetric K � K matrix as a
vector with K.K C 1/=2 components.

Assumption 6.5 Assume the asymptotic covariance matrix of

1
p
N

0@ 1

�1

N1X
tD1

WX;t �
1

�2

N2X
tD1

WY;t

1A
is positive definite.

Assumption 6.6 Assume the asymptotic covariance matrix of

1
p
N

0@ N1X
tD1

M�X;t �

N2X
tD1

M�Y;t

1A
is positive definite.

Assumption 6.7 Assume that for 1 6 j 6 K, lim supN!C1N jj�
j
XY
� bC jb�jXY jj2 <1; where bC j D sign.< b�j

XY
; �
j
XY

>/.
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The basic idea in Definition 6.1 is to approximate a stationary sequence with random variables that exhibit finite dependence. The Lp-
m-approximable condition in Assumptions 6.2–6.3 is satisfied for many functional time series models such as functional autoregressive
models, functional bilinear models, and functional autoregressive conditional heteroskedasticity models, see more details in (Hormann and
Kokoszka, 2010). Assumption 6.4 assumes distinct eigenvalues, which are common in the literature, see for example, (Bosq, 2000) and
(Horvath and Kokoszka, 2012). Assumptions 6.5–6.6 assume the asymptotic covariance matrices to be positive definite, which is relatively
mild. Finally, we also require the estimated eigenfunctions to be

p
n-consistent in Assumption 6.7.

Proof of Theorem 2.2. Denote by N0 D N1 D N2: Let D D diag.N�1=20 1K ; N
�3=2
0 1K/ where 1K D .1; 1; : : : ; 1/

T
2 RK . Because

f�X;t g is a L4-m-approximable sequence, fM�X;t g is a L4-m-approximable sequence as well (Hörmann and Kokoszka, 2010). Using
summation and integration by parts, and the continuous mapping theorem, we have for k D bN0rc,0@ kX
tD1

DZtZT
t D

1A�1 ! �
rIK .r2=2/IK

.r2=2/IK .r3=3/IK

��1
D

�
.4=r/IK .�6=r2/IK
.�6=r2/IK .12=r3/IK

�

and

D
kX
tD1

Zt M�X;t )
d

�
ƒj
R r
0 dBK.t/

ƒj
R r
0 tdBK.t/

�

where BK.t/ denotes the K-dimensional vector of independent standard Brownian motions, ƒj is the matrix square root of the long run
variance matrix of M�X;t , and “)d ” denotes weak convergence in a functional space. Thus, we have

D�1. M�X;k � �X / D

0@ kX
tD1

DZtZT
t D

1A�1 D
kX
tD1

Zt M�X;t

)d

�
.4=r/IK .�6=r2/IK
.�6=r2/IK .12=r3/IK

��
ƒj
R r
0 dBK.t/

ƒj
R r
0 tdBK.t/

�
It implies that

N
3=2
0 . M̌X;k �

M̌
X /)

d 12ƒj

�
1

r3

Z r

0
tdBK.t/ �

1

2r2

Z r

0
dBK.t/

�
D 12ƒj QWK.r/

where

QWK.r/ D
1

r3

Z r

0
tdBK.t/ �

1

2r2

Z r

0
dBK.t/

The same argument applies to the second sample. Define Mm�k D M̌X;k � M̌Y;k for k D 2; : : : ; N0: Under H0 W ˇX D ˇY , we have

N
3=2
0
Mm�k ) 12 Qƒ QWK.r/

where Qƒ is the matrix square root of the long run variance matrix of M�X;t � M�Y;t . By the continuous mapping theorem, we obtain

MTN D Mm�
T
N0

8<: 1

N 50

N0X
kD2

k4. Mm�k � Mm�N0/.
Mm�k � Mm�N0/

T

9=;
�1

Mm�N0

!d QWK.1/
T

(Z 1

0
r4f QWK.r/ � QWK.1/gf QWK.r/ � QWK.1/g

Tdr

)�1
QWK.1/

(A3)

Under Assumption 6.7, we can show that the estimation effect by replacing �j
XY

withb�j
XY

is asymptotically negligible (see, for example,
the proof of Theorem A.2 of Hörmann and Kokoszka 2010). Thus, TN converges to the same limit in (A3).
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