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Introduction 
The supplementary information contains the full description of the data and the 
methodology and methodological validation, as well as a brief discussion of the 
methodology in the context of the results presented in the main manuscript.  
 

Text S1. 

 
A. Megadroughts and Available ENSO Reconstructions 

The right hand panels of Figure S1 show five published ENSO and eastern 
tropical Pacific SST reconstructions, which are not fully independent but are calculated 
using different reconstruction methods and proxy networks. There is only weak 
agreement between the overall time history of the five reconstructions and large 
differences in the magnitudes and variability structures (only three of the ten possible 
correlations between reconstructions are significant at the 99% level). To focus 
specifically on the dynamics that coincide with the five identified megadroughts, the 
left hand panel of Figure S1 indicates the percentage of megadrought years that have 
positive or negative values in each of the reconstructions. In aggregate, the 
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reconstructions suggest that ENSO tends to be negative during megadroughts. This is 
perhaps unsurprising given that the reconstructions, with the exception of Tierney et 
al. [2015], use the North American tree-ring chronologies in which megadroughts were 
identified. Nevertheless, of the 16 times that the five identified megadroughts overlap 
with the reconstructions only five are individually significant at the 95% level using a 
distribution and autocorrelation preserving bootstrapping significance test (Text S2 
Section G). The ambiguity of the relationship between reconstructed ENSO conditions 
and megadroughts provides a strong motivation for the research that we present 
herein. 

 
B. Independent Steps of the Climate Analogues Framework 
 The feasibility of using the drought atlases in the climate analogues framework 
requires multiple levels of independence, each of which are described herein. First, 
many large-scale field reconstructions would not be appropriate to use in the climate 
analogues framework because they calibrate on large-scale patterns of variability. 
These joint space/time reconstruction methods, such as canonical correlation analysis 
[Smerdon et al. ,2010] or regularized expectation maximization [e.g. Mann et al., 2009], 
differ from the point-by-point regression specifically used to produce the drought 
atlases. Point-by-point regression is a sequential principal components regression 
between tree-ring chronologies and PDSI at each grid point. Importantly, the method 
is based on the premise of “local control” [Cook et al., 2007], only utilizing chronologies 
within a fixed search radius centered on each grid point, and thus all large-scale 
patterns within the drought atlases are emergent. This characteristic is critical for our 
purposes because the climate analogues framework relies on pattern comparisons. 
The one caveat is that the fixed search radius used to define the zone of “local control” 
in point-by-point regression produces spatial smoothing, but the scale of the 
smoothing is small compared to the spatial scales of the drought atlas domains. 
Secondly, the instrumental SST and surface pressure data used to define the impact 
maps are independent from the drought atlases, thus any relationships between the 
two are likewise emergent. Finally, the drought atlases are each individually 
independent, with no shared chronologies or calibration data. This characteristic is 
also critical for our purposes because the climate analogues framework is used to 
determine the dynamics that coincide with megadroughts (Figure 1B) that are 
identified within the NADA. The independence of the drought atlases allows us to 
recompute the climate analogues framework over the individual drought atlas 
domains (and combinations) to provide confidence that any megadrought dynamics 
are robust and not solely dependent on teleconnections to the NADA (Figure 1C).  
 
C. Megadrought Composites 

The five identified megadroughts are consistently and significantly associated 
with tropical Pacific cold states (Figure 1). Despite the consistent relationship between 
megadroughts and the tropical Pacific Ocean, there are differences in the pattern of 
reconstructed hydroclimate when the drought atlases are composited for each 
megadrought (Figure 2, left panels). This is unsurprising given that modes of 
atmosphere, ocean and coupled variability outside of the tropical Pacific Ocean 
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(including the PDO, AMO and NAO analyzed herein) will also impact hydroclimate 
during megadroughts, even if they are not the primary dynamical driver of these 
features. The right hand panels of Figure 2 show composites of the highest CPCS 
impact maps for each year of the five identified megadroughts (the highest CPCS 
impact maps determine the state of the four modes of variability in Figure 1). There is 
considerable agreement between the composites in the left and right hand panels of 
Figure 2, suggesting that the megadrought dynamics implied by the climate 
analogues framework, namely a negative ENSO state and the various states of the 
other three modes of variability (there is little consistency of these three modes during 
megadroughts), can produce the composite hydroclimate patterns of megadroughts. 
Any disagreement in the composite patterns in Figure 2, however, can be explained by 
modes of atmosphere-ocean or stochastic atmospheric variability that were not 
analyzed herein or out-of-sample combinations of the four analyzed modes of 
variability (given the short instrumental record, see sufficient sampling restriction in 
Section 3 of the main manuscript). Importantly, the results in Figure 2 suggest that 
neither of these sources of error is large in magnitude. 

 
D. AMO During the MCA 

As is noted in the main manuscript, the predominately positive AMO during 
the MCA (Figure 1A) can potentially help explain the clustering and severity of 
megadroughts during this period. Nevertheless, it is difficult for the climate analogues 
framework to reproduce the state of the AMO because of poor sampling of such low-
frequency modes over the 135-year training interval (Figures S3, S4, S5, S6 and Text S2 
Sections A-C). There is, however, other evidence (some independent) for a positive 
AMO during the MCA. Firstly, the shift to a positive AMO in Figure 1A (~1100 C.E.) is 
coincident with a period of protracted drying in the Central Plains and Mississippi 
Valley regions of NA [Cook et al., 2010a], where hydroclimate variability is often 
coupled to Atlantic SSTs [Kushnir et al., 2010; McCabe et al., 2004]. Secondly, Feng et al. 
[2008] analyze multiple in situ proxies of North Atlantic SSTs and find warm conditions 
in the Atlantic during the MCA that are characteristic of a positive AMO. When taken 
together with the results presented herein, namely that the temporal clustering and 
character of tropical Pacific cold states during the MCA is not unique and that the 
Northern Hemisphere tree-ring record also suggests a positive AMO during the MCA, 
this provides compelling evidence for a role for the AMO in driving the severity and 
clustering of MCA megadroughts. Nevertheless, recent research has also suggested 
that the AMO is a response of the ocean to forcing by stochastic atmospheric 
variability [Clement et al., 2015], which might preclude the AMO having centennial 
scale persistence or being able to drive a precipitation response over land. Further 
evaluating the state of the AMO during the MCA and the relationships between the 
atmosphere and North Atlantic Ocean are important areas of future research.  

 
E. PDO During the MCA 

Figure 1A suggests that the PDO was positive during much of the MCA. In 
observations, however, a positive PDO actually produces wetting over the American 
West [McCabe et al., 2004]. A persistently positive PDO during the MCA is likewise 
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inconsistent with the results of Macdonald and Case [2005], in which western NA tree-
ring chronologies were used to reconstruct a negative PDO for the first half of the last 
millennium. Evidence here from the full Northern Hemisphere tree-ring record is 
therefore inconsistent with the MCA PDO signal within the western NA tree-ring 
chronologies employed by Macdonald and Case [2005]. Nevertheless, the 
pseudoproxy experiments used for methodological validation provide less confidence 
in this result and the PDO output of the climate analogues framework appears 
sensitive to the choice of observational dataset (Text S2 Section D). A recent 
reconstruction of bi-hemispheric interdecadal Pacific variability, however, also 
suggests that the PDO was positive during the MCA [Vance et al., 2015].  

 
F. NAO During the MCA 
 There is little consistency to the NAO during the MCA, or more generally, 
during megadroughts (Figure 1). This is interesting given prior evidence, based 
partially on tree-rings, that the NAO was in a positive state for the entirety of the MCA 
[Truoet et al., 2009]. Nevertheless, recent research into the state of the NAO during the 
MCA using multiple proxies, model simulations and pseudoproxy experiments 
appears much more consistent with the results presented herein [Ortega et al., 2015]. 
 
 

Text S2. 

 
A. Pseudoproxy Experiments  

Four 500-year control simulations are used in a pseudoproxy context to test the 
climate analogues framework (CCSM4, GISS-E2-R, IPSL-CM5A-LR, MPI-ESM-P in Table 
S1). These simulations were distributed through the Climate Model Intercomparison 
Project phase 5 (CMIP5—Taylor et al. [2012]). The use of multiple models is important 
given research that suggests skill in pseudoproxy experiments is model dependent 
[Smerdon et al., 2016] and the four models were chosen to sample a range in the 
characteristics of simulated decadal-to-multidecadal atmosphere-ocean dynamics 
[Coats et al., 2015b].  

The climate analogues framework is computed using the same grid points as 
the NADA, MADA and OWDA, but with white noise added to the PDSI fields from each 
model to produce a signal-to-noise ratio of 0.5, which approximates the level of noise 
within the NADA [Cook et al., 2007]. To best mimic the characteristics of the actual 
climate analogues framework, the impact maps are calculated eight times, each 
corresponding to a different 135-year (length of the instrumental interval) training 
interval. Because the CGCM simulations are only 500 years in length, there are fewer 
than 4 fully independent 135-year intervals. There must, therefore, be some overlap 
between each of the eight 135-year training intervals. Nevertheless no two training 
intervals share more than 85 years and there is an average overlap between training 
intervals of just 29 years. 
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B. Pseudoproxy Timeseries  
Figures S3 and S4 provide a visual representation of the dynamical timeseries 

produced by the climate analogues framework within the pseudoproxy experiments. 
In both figures the model ground truth is plotted for comparison. Skill is measured 
herein as the fraction of years outside of the training interval in which the dynamical 
timeseries from the climate analogues framework is the correct sign relative to the 
model ground truth. This metric is motivated by the analysis in Panels B and C of 
Figure 1, which only assesses whether the ENSO, AMO, PDO and NAO are positive or 
negative during each megadrought. Nevertheless, a more complicated skill metric 
such as normalized root-mean squared error produces similar results and 
interpretation (Figure S6 and Text S2 Section C). For each model and mode, Figure S3 
plots the dynamical timeseries corresponding to the best (highest skill) and worst 
instrumental-length (135-year) training interval. For comparison, Figure S4 plots the 
dynamical timeseries corresponding to impact maps calculated over the full temporal 
extent of the model simulations.  

The visual representations in Figure S3 indicate that for all models and modes 
the best timeseries (highest skill—red lines) reproduce much of the time history of the 
model ground truth. Even for the worst ENSO and NAO timeseries (lowest skill—blue 
lines), the dominant features of the time history of the ground truth is still reproduced. 
This provides confidence that the climate analogues framework will provide useful 
information for defining the state of the ENSO and NAO during megadroughts. The 
worst timeseries of the PDO and AMO, however, struggle to reproduce the time 
history of these modes. Importantly, the climate analogues framework is able to 
reproduce the dominant timescales of variability for all four modes, with the AMO and 
PDO having more persistence (and thus larger magnitudes in Figure S3) relative to the 
ENSO and NAO. 

The dynamical timeseries associated with impact maps calculated over the full 
temporal extent of the model simulations are nearly perfect representations of the 
model ground truth (Figure S4). Any inability to reproduce these modes of variability, 
therefore, appears to be related to the short 135-year training intervals providing too 
few degrees of freedom to properly constrain their impact on hydroclimate over the 
Northern Hemisphere. This is particularly true of the PDO and AMO because of the 
longer timescales of variability inherent to these modes. Importantly, this will be a 
fundamental limitation of any method that trains on the instrumental record, 
including any indirect (i.e. not based on local proxies that directly sample the variable 
of interest, in this case SSTs) reconstructions of these modes and particularly those 
using land-based proxies. Nevertheless, model representation of the PDO and AMO, 
and their hydroclimate impacts, is poor [Coats et al., 2015b]. In particular, the 
teleconnections between these modes and Northern Hemisphere land areas appear 
weaker than those observed over the instrumental record. This presents a critical 
caveat for the pseudoproxy experiments performed herein and given this, the 
pseudoproxy-derived skill for these modes may be a pessimistic representation of 
potential skill. 
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C. Skill Scores 
To explicitly define the skill of the climate analogues framework, Figure S5 plots 

the fraction of years during the non-training interval in which the dynamical timeseries 
is the correct sign relative to the real ENSO, PDO, AMO and NAO from the model 
output. The boxplots demonstrate the range in skill for the eight instrumental-length 
training intervals and the asterisks indicate the skill value if the impact maps are 
calculated over the full temporal extent of the model simulations. We calculate a 
significant skill threshold by randomly generating the positive, negative or neutral 
state of each mode in each year 1,000 times and assessing the 95th percentile of skill 
for these randomly generated timeseries (skill below the thresholds are plotted as the 
grey shaded regions in Figure S5). Additionally, to test the benefit provided by using 
the collection of drought atlases, the pseudoproxy skill is calculated for a climate 
analogues framework using just the individual regions covered by the NADA, MADA 
and OWDA (and combinations—boxplot colors in Figure S5).   

As was suggested by the visual representations in Figures S3 and S4, given 
enough degrees of freedom, the climate analogues framework will be highly skillful 
(asterisks in Figure S5). For instrumental-length training intervals, however, the climate 
analogues framework is only significantly skillful for the ENSO and NAO and this 
behavior is not highly model dependent. Finally, using the NADA, MADA and OWDA 
regions together provides additional skill relative to a climate analogues framework 
calculated using only individual regions. Figure S6 shows the same information as 
Figure S5 but using normalized root mean-squared error (NRMSE) as the skill metric. 
As noted previously, the use of a more complicated skill metric like NRMSE provides 
similar results and interpretation to Figure S5. This further suggests that the skill 
metric in Figure S5, which was chosen to be easily interpretable with respect to the 
results in Figure 1, is a robust metric of the skill of the climate analogues framework.  

 
D. Sensitivity to Choice of Observational Dataset 
 To test the sensitivity of the methodology and results to the choice of 
observational dataset, the climate analogues framework was recalculated using 
Kaplan ESSTv2 [Kaplan et al., 1998] and COBE2 [Hirahara et al., 2014] SST datasets. 
While there are differences in the 154 impact maps calculated based on the three 
different SST datasets (Figure S7), there is good agreement in the output of the climate 
analogues frameworks based on these impact maps (both in terms of correlation and 
the fraction of years in which the dynamical timeseries from the climate analogues 
framework have the same sign—inset of Figure S7). Most importantly, there is little 
difference in the megadrought associations derived from the three different climate 
analogues frameworks with 96%, 91% and 91% of megadrought years having 
negative ENSO values for the NOAA ERSSTv3b, Kaplan EESTv2, and COBE2 datasets, 
respectively.  The only difference in megadrought associations is that there is a 
statistically significant negative association between megadroughts and a negative 
PDO for the Kaplan ESSTv2 dataset. 
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E.  Sensitivity to Tree-ring Site Distribution and Density 
The distribution and density of tree-ring sites changes through time in the 

NADA, MADA and OWDA. For instance, while the NADA contains nearly 2000 
chronologies, there are only 100 in 1000 C.E. (the beginning of the analysis period—
Figure S8). To test that the distribution and density of tree-ring sites at the beginning 
of the analysis period is sufficient to conduct the spatial analyses underlying the 
climate analogues framework we recalculate the framework using only grid points 
within a fixed distance (search radius) of available tree-ring sites. Table S2 shows the 
skill of these climate analogues frameworks (three different search radii and two 
different starting dates) over the observational training interval (1871-2005 C.E.—
calculated as the fraction of years in which the dynamical timeseries from the climate 
analogues framework have the same sign as the observations). Even with the most 
limited grid (1000 C.E. starting date and 150 km search radius) the climate analogues 
framework can largely reproduce the observed history of the four modes of variability. 
This analysis provides confidence that climate analogues framework can derive useful 
information on these modes of variability from the distribution and density of tree-
ring sites in 1000 C.E. 

 
F. MCA Mean Shift 

In order to provide confidence in the interpretation of the atmosphere-ocean 
conditions during the MCA (Figures 1 and 3) relative to previous hypotheses [e.g. 
Herweijer et al., 2007; Seager et al., 2007; Graham et al., 2007], we must confirm that the 
climate analogues framework can capture a centuries long shift in the mean of central 
and eastern equatorial Pacific SSTs (tropical Pacific mean shift). To do so, we identified 
a 300-year period (the length of the MCA) with a tropical Pacific mean shift in the 
MIROC last millennium simulation from the CMIP5 (a forced transient simulation 
covering 850-1849 C.E.—Table S1). We then used the perfect sampling of the model to 
determine if the climate analogues framework can reproduce this tropical Pacific 
mean shift. Importantly, the MIROC last millenium simulation has a drift with a positive 
trend of 0.11 °C/century in global temperatures between 850-1849 C.E. Superimposed 
on the globally cooler conditions in years 850-1149 C.E., however, is an increase in the 
zonal gradient of SSTs across the tropical Pacific Ocean (Panel A of Figure S9). This 
tropical Pacific mean shift impacts hydroclimate over the Northern Hemisphere—
while the composite of PDSI between 850-1149 C.E. is wet across the Northern 
Hemisphere, with globally cooler temperatures decreasing atmospheric demand for 
moisture, there are zonal and meridional inhomogeneities in the pattern of PDSI. 
These inhomogeneties (and thus the overall pattern) are consistent (CPCS of 0.65) with 
the expected impact of a negative ENSO state as defined between 1871-2005 C.E. in 
the MIROC historical simulation also from the CMIP5 (Panel B of Figure S9). To test if 
the climate analogues framework can reproduce this 300-year tropical Pacific mean 
shift we define impact maps over the 1871-2005 C.E. period in the MIROC historical 
simulation. We then calculate the climate analogues framework for the MIROC last 
millennium simulation (850-1849 C.E.) following the same set up as the pseudoproxy 
experiments in Text S2 Section A. Panel C of Figure S9 indicates that the climate 
analogues framework is largely successful at reproducing the tropical Pacific mean 
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shift between 850-1149 C.E. Importantly, the shift in the mean of the Niño3.4 index in 
the MIROC simulation during this period is smaller than the mean of the Niño3 index 
implied by Mann et al. [2009] during the MCA (1000-1299 C.E.). This comparison clearly 
suggests that the success of the climate analogues framework in reproducing the 
tropical Pacific mean shift in the MIROC simulation does not arise because it is 
unreasonably large in magnitude. Together these results provide confidence that the 
climate analogues framework would reproduce a centuries long shift in the mean of 
central and eastern equatorial Pacific SSTs if it did exist. For reference, 57% of years 
have a negative ENSO state in the actual climate analogues framework (Figure 1A) 
during the MCA (1000-1299 C.E.). This is clearly inconsistent with the tropical Pacific 
mean shift between 850-1149 C.E. in the MIROC simulation where 70% of years have a 
negative ENSO state. As noted above, the tropical Pacific mean shift between 850-
1149 C.E. in the MIROC simulation is also smaller in magnitude and less consistent than 
the tropical Pacific mean shift implied by Mann et al. [2009—Figure S9].  

 
 

G. Significance Testing 
To test the statistical significance of the association between megadroughts 

and the four modes of variability we use a bootstrapping method [Schrieber and 
Schmitz, 2000] to produce 5000 surrogate timeseries that exactly preserve the 
distribution of the timeseries in Figure 1A, while largely preserving the spectral 
characteristics (there will be a slight whitening of the surrogate spectrum). 
Significance at the 95% level is achieved if the positive or negative state of the 
timeseries in Figure 1A is coincident with megadrought years at a percentage greater 
than 95% of the surrogate timeseries; this assessment is performed for each individual 
megadrought (to produce the range in the 95% significance levels in Panel B of Figure 
1) and for all five megadroughts together (Panel B and Panel C of Figure 1). This 
method of assessing statistical significance is equivalent to that used in Coats et al. 
[2015a]. 
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Figure S1. (right) Reconstructions of ENSO using different methods and proxy 
networks [Mann et al., 2009; Emile-Geay et al., 2013; Tierney et al., 2015; Li et al., 2013; 
Cook et al., 2009]. In each case the data has been ten-year lowpass filtered. For Emile-
Geay et al. [2013], Li et al. [2013], Cook et al. [2009] the reconstructed index is for the 
Niño3.4 region, while for Mann et al. [2009] it is the Niño3 region and for [Tierney et al., 
2015] it is the eastern Pacific (10°N-10°S, 175°E-85°W). The timing of the five identified 
megadroughts is denoted by the colored regions. (left) Associations between the 
identified megadroughts and ENSO for the period 1000-2005 C.E. using linearly 
detrended timeseries as some reconstructions are standardized against a warm 
instrumental interval [e.g., [Mann et al., 2009] and by consequence are always 
anomalously negative outside of that interval]. Similar conclusions are found if a mean 
offset is used (not shown). The colored squares are for the five identified 
megadroughts [less than five of these features, however, overlap with the 
reconstructed record in Emile-Geay et al., [2013], Tierney et al. [2015], and Cook et al. 
[2009]]. The shaded regions are the range in 95% significance level for the five 
identified megadroughts using a distribution and autocorrelation preserving 
bootstrapping method to test statistical significance (Text S2 part G).  
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Figure S2. Impact maps corresponding to the positive and negative state (one mode 
combinations) of each mode of variability. (blue is a wetting tendency, brown is a 
drying tendency). Tendency is defined as the percentage of years in the composite 
that were wet or dry at each grid point. As an example, a tendency of 90% dry for 
positive ENSO would indicate that 90% of years in the top third of ENSO values were 
dry at that grid point. 
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Figure S3. Example dynamical timeseries for each model and mode. In each case the 
actual time history of the mode is plotted in black with the time history corresponding 
to the the training interval that produced the worst (blue) and best (red) dynamical 
timeseries is also plotted. In each case the timeseries are are ten-year lowpass filtered. 
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Figure S4. Example dynamical timeseries for each model and mode. In each case the 
actual time history of the mode is plotted in black with the dynamical timeseries 
corresponding to the impact maps calculated over the full temporal extent of the 
model simulations is plotted in orange. In each case the timeseries are are ten-year 
lowpass filtered. 
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Figure S5. Skill calculated as the fraction of years in which the dynamical timeseries 
calculated using the climate analogues framework is the correct sign relative to the 
model ground truth. The asterisk is the skill when using the full temporal extent of the 
model simulation to compute the impact maps. The boxplots are the range in skill for 
impact maps calculated using 135-year (length of the instrumental interval) training 
intervals. For the latter, the skill is calculated only during the non-training interval. 
Each color corresponds to a climate analogues framework computed using a subset of 
the full Northern Hemisphere spatial range. Skill below the 95th percentile for 
randomly generated dynamical timeseries is denoted by the gray shaded region. All 
pseudoproxies have been calculated using a 0.5 signal-to-noise ratio.   
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Figure S6. Normalized root-mean squared error (NRMSE) between the dynamical 
timeseries calculated using the climate analogues framework and the model ground 
truth. The asterisk is the NRMSE when using the full temporal extent of the model 
simulation to compute the impact maps. The boxplots are the range in NRMSE for 
impact maps calculated using 135-year (length of the instrumental interval) training 
intervals. For the latter, the NRMSE is calculated only during the non-training interval. 
Each color corresponds to a climate analogues framework computed using a subset of 
the full Northern Hemisphere spatial range. NRMSE below the 95th percentile for 
randomly generated dynamical timeseries is denoted by the gray shaded region. All 
pseudoproxies have been calculated using a 0.5 signal-to-noise ratio.   
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Figure S7. CPCS [Santer et al., 1995] between the 154 impact maps based on modes of 
variability calculated from NOAA ERSTTv3b (used in all analyses—Smith et al. [2003]), 
Kaplan ESSTv2 [Kaplan et al., 1998] and COBE2 [Hirahara et al., 2014]. These are plotted 
for each combination of datasets (symbols) as a function of the number of years (# 
Years) during the instrumental training interval that were used to calculate the impact 
maps. Impact maps corresponding to the modes of variability in isolation are 
calculated over 45 years, thus this is the largest value on the horizontal axis. There is 
nothing plotted for number of years between 26-44 because there are no 
combinations of the states of the four modes of variability that occur over those 
numbers of years. The inset shows the correlation and fraction of years (parentheses) 
in which the dynamical timeseries from the three climate analogues frameworks have 
the same sign for each of the four modes of variability over the full analysis period 
(1000-2005 C.E.).   
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Figure S8. Maps show the distribution of tree-ring sites for each century during the 
period before the instrumental training interval (1000-1870 C.E.). The bottom panel 
shows the number of chronologies for the NADA, OWDA and MADA as a function of 
time, with the minimum number of chronologies during the analysis period listed as 
the colored number at the starting year of each drought atlas.  
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Figure S9. (Panel A) Composite of SST anomalies over the tropical Oceans (30°N to 
30°S) between 850-1149 C.E. in the MIROC last millennium simulation relative to 1871-
2005 C.E. in the MIROC historical simulation (both from the CMIP5—Taylor et al. 
[2012]). Over the NADA, MADA and OWDA domains is the composite PDSI between 
850-1149 C.E. in the MIROC last millennium simulation standardized against the 1931-
1990 C.E. period in the MIROC historical simulation (the same standardization interval 
as the NADA). (Panel B) Impact map for a negative ENSO state defined over the 1871-
2005 C.E. period in the MIROC historical simulation. (Panel C) A climate analogues 
framework was computed for the MIROC last millennium simulation (850-1149 C.E.) 
using impact maps defined over the 1871-2005 C.E. period in the MIROC historical 
simulation, all other choices follow the pseudoproxy experiments in Text S2 Section A. 
The mean of the ENSO output of this climate analogues framework between 850-1149 
C.E. as compared to the model ground truth. The hatched bars on the right hand side 
of Panel C show the mean of Niño3.4 index between 850-1149 C.E. in the MIROC last 
millennium simulation relative to 1871-2005 C.E. in the MIROC historical simulation as 
compared to the mean of the Niño3 index during the MCA (1000-1299 C.E.) implied by 
Mann et al. [2009].  
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Modeling Center Institute ID Model Name 
National Center for Atmospheric 
Research 

NCAR CCSM4* 

NASA Goddard Institute for Space 
Studies 

NASA GISS GISS-E2-R* 

Institute Pierre-Simon Laplace IPSL IPSL-CM5A-LR* 
Max-Planck-Intitut für Meteorologie  
(Max Planck Institute for Meteorology) 

MPI-M MPI-ESM-P* 

Japan Agency for Marine-Earth 
Science and Technology, Atmosphere 
and Ocean Research Institute (The 
University of Tokyo), and National 
Institute for Environmental Studies 

MIROC MIROC-ESM^ 

*Pre-industrial control simulation     ^Last millenium simulation 
Table S1. Model information for the analyzed CMIP5 simulations.  
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Date (search radius) ENSO PDO AMO NAO 
1000 C.E. (150 km) 0.64 0.79 0.75 0.68 
1000 C.E. (300 km) 0.60 0.84 0.84 0.67 
1000 C.E. (450 km) 0.76 0.73 0.79 0.74 
1250 C.E. (150 km) 0.59 0.82 0.76 0.70 
1250 C.E. (300 km) 0.71 0.84 0.78 0.84 
1250 C.E. (450 km) 0.71 0.79 0.80 0.77 
 
Table S2. The fraction of years in which the dynamical timeseries from the climate 
analogues framework have the same sign as observations of these modes of variability 
between 1871-2005 C.E. The climate analogues frameworks are calculated using only 
grid points within a fixed distance (search radius) of available tree-ring sites in the 
years 1000 C.E. (beginning of the analysis period) or 1250 C.E. (starting year of the 
MADA). 
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Averaging Period GRA/Vieira GRA/Shapiro CEA/Vieira CEA/Shapiro 
MCA megadroughts 1365.6  1365.1 1365.7 1365.2 
1000-2000 C.E. 1365.7 1365.3 1365.7 1365.3 
 
Table S3. Average solar and volcanic forcing (in W/m2—timeseries are plotted in the 
bottom panel of Figure 1A) for the MCA megadroughts and the 1000-2000 C.E. period.  
 
 


