
doi: 10.1111/joes.12148

DETECTING VOLCANIC ERUPTIONS
IN TEMPERATURE RECONSTRUCTIONS BY

DESIGNED BREAK-INDICATOR SATURATION
Felix Pretis*

University of Oxford

Lea Schneider

Johannes Gutenberg University

Jason E. Smerdon

Lamont-Doherty Earth Observatory,
Columbia University

David F. Hendry

University of Oxford

Abstract. We present a methodology for detecting breaks at any point in time-series regression
models using an indicator saturation approach, applied here to modelling climate change. Building
on recent developments in econometric model selection for more variables than observations, we
saturate a regression model with a full set of designed break functions. By selecting over these
break functions using an extended general-to-specific algorithm, we obtain unbiased estimates
of the break date and magnitude. Monte Carlo simulations confirm the approximate properties
of the approach. We assess the methodology by detecting volcanic eruptions in a time series of
Northern Hemisphere mean temperature spanning roughly 1200 years, derived from a fully coupled
global climate model simulation. Our technique demonstrates that historic volcanic eruptions can be
statistically detected without prior knowledge of their occurrence or magnitude- and hence may prove
useful for estimating the past impact of volcanic events using proxy reconstructions of hemispheric or
global mean temperature, leading to an improved understanding of the effect of stratospheric aerosols
on temperatures. The break detection procedure can be applied to evaluate policy impacts as well as
act as a robust forecasting device.
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1. Introduction

Breaks in time series come in many shapes and may occur at any point in time – distorting inference in-
sample and leading to forecast failure out-of-sample if not appropriately modelled. Often an approximate
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shape of a break can be postulated a priori, either from previous observations or theory. For example,
smooth transitions are common in economic time series following recessions or policy interventions,
while sudden drops followed by smooth reversions to the mean are typical in climate time series such as
temperature records after a large volcanic eruption (e.g. Kelly and Sear, 1984). While the approximate
form of a break may be known, the timings and magnitudes of breaks are often unknown. Here, we
propose an econometric approach for detecting breaks of any specified shape in regression models using
an indicator saturation procedure. Our approach is based on recent developments in variable selection
within regression models that involve more variables than observations (Castle et al., 2011). By selecting
over a complete set of designed break indicators, our approach produces estimates of the break magnitude
and timing without imposing limits on the number of breaks that may occur, even at the start or end of a
sample.

A structural break is defined as a time-dependent change in a model parameter resulting from a change
in the underlying data generating process (DGP). For example, a volcanic eruption leading to a rapid
climatic cooling corresponds to a temporary shift in the mean of the surface temperature process. The
detection of structural breaks in time series has received significant attention in the recent literature –
with a growing interest in econometric models of climate change (e.g. Estrada et al., 2013; Pretis et al.,
2015a). The focus has primarily remained on breaks in the mean through the form of step functions (Step-
Indicator Saturation – SIS, Castle et al., 2015b; Pretis, 2015b), smooth transition functions (González
and Teräsvirta, 2008), breaks in regression coefficients (see, e.g. Bai and Perron, 1998, 2003; Perron and
Zhu, 2005; Perron and Yabu, 2009), or individual outliers or groups of outliers that can be indicative of
different forms of breaks (Impulse-Indicator Saturation – IIS, see Hendry et al., 2008).

Broadly grouped into ‘specific-to-general’ and ‘general-to-specific’, there exist a plethora of approaches
for the detection of structural breaks. Perron (2006) provides a broad overview of specific-to-general
methods, some of which are subject to an upper limit on the number of breaks, a minimum break length,
co-breaking restrictions, as well as ruling out breaks at the beginning or end of the sample, though
Strikholm (2006) proposes a specific-to-general algorithm that allows for breaks at the start or end of a
sample and relaxes the break length assumption.

Indicator saturation (IIS, SIS) provides an alternative approach using an extended general-to-specific
methodology based on model selection. By starting with a full set of step indicators in SIS and removing
all but significant ones, structural breaks can be detected without having to specify a minimum break
length, maximum break number or imposed co-breaking. Crucially this also allows model selection to
be conducted jointly with break detection as non-linearities, dynamics, theory-motivated variables and
break functions are selected over simultaneously.

Step functions and impulses are nevertheless only the simplest of many potential break specifications
and may not provide the closest approximation to the underlying break. Ericsson (2012) proposes a wide
range of extensions to impulse and step shifts. Here, we show that the principle of SIS can be generalized
to any form of deterministic break function. An advantage over existing methods is an expected higher
frequency of detection when a break function approximates the true break,1 high flexibility as multiple
types of break functions can be selected over and improvements in forecasting where designed functions
act as continuous intercept corrections. Moreover, by being a structured search, the retention of irrelevant
effects can be controlled.

The method is illustrated using an econometric model of climate variation – detecting volcanic eruptions
in a time series of Northern Hemisphere (NH) mean temperature spanning roughly 1200 years, derived
from a fully coupled global climate model simulation. Our technique demonstrates that eruptions can be
statistically detected without prior knowledge of their occurrence or magnitude– and hence may prove
useful for estimating the past impacts of volcanic events using proxy reconstructions of hemispheric
or global mean temperatures. Specifically, this can lead to an improved understanding of the effect of
stratospheric aerosols on temperatures (with relevance to geo-engineering and pollution control), and
more generally, the break detection procedure can be applied to evaluate policy interventions (e.g. the
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Montreal Protocol: see Estrada et al., 2013; and Pretis and Allen, 2013), correct for measurement changes
by detecting and subsequently removing shifts, and function as a robust forecasting device.

Section 2 introduces the methodology and investigates the properties of break detection in the presence
of breaks and under the null of no breaks. Section 3 applies the method to detect volcanic eruptions in
simulated climate data, and considers designed indicator functions as a robust forecasting device. The
conclusions of our work are discussed in Section 4.

2. Break Detection Using Designed Indicator Functions

Breaks are intrinsically stochastic without prior knowledge of their timings and magnitudes. Using a
full set of break functions allows us to model the responses deterministically. The detection of structural
breaks in regression models can be formulated as a model selection problem where we select over a full
set of break functions, a subset of which accurately describes the underlying ‘true’ break. Consider a
simple model as

y = Zβ + ε (1)

where y and ε are (T × 1) vectors, β is a (k × 1) vector and Z is a (T × k) matrix Z = (z1, . . . , zk) of
rank k. We investigate the presence of structural breaks in any of the β where z may be a constant, trend
or random variable. For each break type at any point in time for each variable whose coefficient is allowed
to break, we augment the above model by a (T × T ) break function matrix D:2

y = Zβ + Dγ + ε (2)

where γ is a (T × 1) vector. The specification of D is such that the first column d1 (T × 1) is set to
denote some specified break function d(t) of length L , where d1,t = d(t) for t ≤ L and 0 otherwise,
d1,t = 0 for t > L . All further columns d j (for j = 2, . . . , T ) in D are set such that d j,t = d j−1,t−1 for
t ≥ j and 0 otherwise. The break matrix D is then defined as D = (d1,d2, . . . ,dT ), where d j denotes a
vector with break at time t = j :

D = (d1,d2, . . . ,dT )

d1 = (d1, d2, . . . , dL−1, dL , 0, . . . , 0)′

d2 = (0, d1, d2, . . . , dL−1, dL , 0, . . . , 0)′

d3 = (0, 0, d1, d2, . . . , dL−1, dL , 0, . . . , 0)′

... (3)

This specification provides a general framework within which multiple break types can be analysed –
Table 1 provides a non-exhaustive overview.3

The form of the break function d(t) has to be designed a priori, but this is implicitly done in most
structural break detection methods. For example, outlier detection through finding impulses (IIS, in
Hendry et al., 2008) sets the break vector in d1 such that d(t) = 1 and L = 1, while a search for step
shifts (SIS) sets d(t) = 1 and the length to T − t + 1, that is, the break function continues until the end
of the sample. Breaks in linear trends (see, e.g. Perron and Zhu, 2005; Perron and Yabu, 2009; Estrada
et al., 2013) can be constructed by setting d(t) = t and the length to T − t + 1. Pretis et al. (2015a) apply
indicator saturation using broken trends and step shifts to evaluate climate models. Breaks in coefficients
on random variables zt (see, e.g. Bai and Perron, 2003; Ericsson, 2012; Kitov and Tabor, 2015) can
be constructed by interacting zt with a full set of step shifts. Sudden declines followed by a smooth
recovery to the mean in hemispheric temperature responses are introduced here as volcanic functions and
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Table 1. Break Function Specifications

Break Value: d(t) Length:

Deterministic Breaks
General Case d(t) L
Impulses (IIS) 1 1
Step Shifts (SIS) 1 T − t + 1

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 0 . . . . . . . . . 0

d2 d1 0 . . . . . .
...

... d2 d1 0 . . .
...

dL

... d2 d1 0
...

... dL

... d2 d1 0
0 0 dL d3 d2 d1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Broken Trends t T − t + 1
Volcanic Functions see equation (31) 3

Random Variables
Coeff. on zt (MIS) zt · dt,SI S T − t + 1

considered in Sections 2.1 and 3. Linear combinations of multiple break functions can allow for varying
lengths of breaks without pre-specification.

Searching for breaks in k variables implies that the complete break matrix across all k variables D is of
dimension (T × kT ). The inclusion of kT additional variables leads to the total number of variables N
exceeding the number of observations, N > T , even for k = 1. Thus, a methodology allowing for more
variables than observations is required.

Selection of models with more variables than observations has primarily relied on either shrinkage-
based penalized likelihood methods (Tibshirani, 1996; Zou and Hastie, 2005; Tibshirani, 2011) or general-
to-specific methodology in the econometrics literature (see, e.g. Castle et al., 2011). Kock and Teräsvirta
(2015) compare the general-to-specific model selection algorithms Autometrics, to QuickNet – an artificial
neural-network method proposed by White (2006), and to a shrinkage-based bridge estimator from Huang
et al. (2008) in the context of forecasting.

Here we rely on general-to-specific model selection due to methods based on forward stepwise searches
not performing as well in break detection contexts (see Section 2.1.2 for a simple comparison, or Epprecht
et al. (2013), and Hendry and Doornik (2014) for comparisons on general variable selection). Cox and
Snell (1974) discuss some of the challenges of the general variable selection problem and Hoover
and Perez (1999) show the feasibility of general-to-specific model selection for N � T . When facing
more variables than observations, the general-to-specific approach is closely linked to robust statistics.
Saturating a model with a full set of 0/1 indicator functions from which selections are made is equivalent to
a robust one-step M-estimator using Huber’s skip function (see Johansen and Nielsen, 2009, 2013 for the
iterated case, and Johansen and Nielsen, 2016 for an overview). Here, we generalize this allowing for any
form of designed break function in place of impulses, and formulate break detection as a model selection
problem.

To estimate model (2) saturated with a full set of break functions D (so N > T ), we rely on a block-
partitioning estimation procedure (Doornik, 2010; Hendry and Johansen, 2015). For this, we partition
D into b blocks of ni variables such that ni � T and

∑b
i=1 ni = N . In the simplest case of testing for

a break in a single variable (e.g. the intercept), a split-half approach (see Figure 1 and Algorithm 1 in
the supplementary material) is feasible: initially, we include the first half of D1 = (d1, . . . ,dT/2) and
retain only significant break indicators. We repeat the step for the second half of break functions d j

(for j = T/2 + 1, . . . T ) and finally combine the retained sets and only keep significant indicators. This
split-half approach is considered here for analytical tractability in Section 2.1.2.

In practice, however, we rely on a multi-split and multi-path search to lower the variance of the
estimators, allow for any number of variables for a given set of observations and to avoid a breakdown
of the procedure if the breaks cannot be adequately modelled through split-half indicators.4 This can
be implemented through the general-to-specific model selection algorithm Autometrics (Algorithm 2 in
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Figure 1. Split-Half Approach for a Single Unknown Break of the Shape of a Volcanic Function at T = 75.

Note: Left column shows included indicators in each step, middle column shows the retained indicators and
right column graphs the selected model with actual and fitted data. Block 1 (top panel) includes the first half
of break functions and retains a single one as the mean is lowered in the second half due to the presence of a
break at t = 75. Block 2 (middle panel) then includes the second half retaining the correct break function.

Block 3 uses the union of retained indicators from blocks 1 and 2 in which now the first indicator is rendered
insignificant by the mean being correctly estimated due to the second indicator capturing the break. Using a
saturating set of break functions at 1% the break at T = 75 is detected without prior knowledge and is the

only break function retained.

the supplementary material), described in Doornik, 2009a, or the gets package in the statistical software
environment R (Pretis et al., 2016). The algorithm (referred to as multi-path throughout the paper) avoids
path dependence through a tree-structure and uses a parallel stepwise backwards search, while testing
for encompassing and congruence (Hendry, 1995). See Hendry and Pretis (2013) for an application of
the algorithm to econometric modelling of climate change. A simulation-based comparison to shrinkage
methods is provided in Section 2.1.2.

2.1 Properties of Designed Break Functions in the Presence of Breaks

To assess the theoretical power of the proposed methodology, we first investigate the properties in the
benchmark case of a single break matched by a correctly timed break indicator in Section 2.1.1. Section
2.1.2 then assesses the properties of break-indicator saturation when the break date and magnitude are
unknown. Section 2.1.3 investigates uncertainty around the break date and 2.2 describes the properties in
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the presence of no breaks. Theory results are derived for general designed functions, simulation examples
are based on a volcanic break as characterized by equation (31).

2.1.1 Power for Known Break Date

We investigate the theoretical power of detecting a break in a time series given a known break date.
Consider a DGP coinciding with the model for a single known break in an intercept:

yt = μ+ λdt + εt (4)

where εt ∼ IN(0, σ 2
ε ). The break shifts μ to μ+ λdt where dt is a break function of length L beginning at

time t = T1 where (T1 + L) ≤ T such that dt 	= 0 for T1 ≤ t < (T1 + L) and 0 otherwise. The estimators
μ̂ and γ̂ (where γ̂ is the estimator for λ) in a correctly specified model for a known break are given by

(
μ̂− μ

γ̂ − λ

)
=

⎛⎜⎝ T −1
d

(∑T1+L−1
t=T1

d2
t

∑T
t=1 εt −∑T1+L−1

t=T1
dt
∑T1+L−1

t=T1
dtεt

)
T −1

d

(∑T1+L−1
t=T 1 dtεt −∑T1+L−1

t=T 1 dt
∑T

t=1 εt

)
⎞⎟⎠ (5)

where Td = T [
∑T1+L−1

t=T1
d2

t − 1
T (
∑T1+L−1

t=T1
dt )2]. The estimators are unbiased for the break and intercept:

E[μ̂− μ] = 0 and E[γ̂ − λ] = 0. The variance of the estimators is given by

V

(
μ̂− μ

γ̂ − λ

)
= σ 2

ε T −1
d

(∑T1+L−1
t=T1

d2
t −∑T1+L−1

t=T1
dt

−∑T1+L−1
t=T1

dt T

)
(6)

The distribution of the break estimator is then:

(γ̂ − λ) ∼ N

⎛⎝0, σ 2
ε

[
T1+L−1∑

t=T1

d2
t −

T1+L−1∑
t=T1

dt d̄

]−1
⎞⎠ (7)

where d̄ = 1/T
∑T

t=1 dt . For the special case when step-indicators are chosen as the functional form
of dt and the single break lasts from t = 0 to t = T1 < T , equation (5) simplifies to μ̂− μ = ε̄2 and
γ̂ − λ = ε̄1 − ε̄2, where ε̄1 = 1/T1

∑T1
t=1 εt and ε̄2 = 1/(T − T1)

∑T
t=T1+1 εt .5

2.1.2 Potency for an Unknown Break Date

When the break date is unknown, we propose to saturate the regression model using a full set of specified
break indicators and select significant breaks through an extended general-to-specific algorithm (Castle
et al., 2011). We assess the methodology in the selection context using two main concepts: the null
retention frequency of indicators is called the gauge, comparable to the size of a test denoting its (false)
null rejection frequency, but taking into account that indicators that are insignificant on a pre-assigned
criterion may nevertheless be retained to offset what would otherwise be a significant misspecification test
(see Johansen and Nielsen, 2016, for distributional results on the gauge). The non-null retention frequency
when selecting indicators is called its potency, comparable to a similar test’s power for rejecting a false
null hypothesis.

Here we investigate the feasibility of the proposed method by deriving the analytical properties of
the split-half approach for an unknown break. Figure 1 illustrates the split-half method for a single
unknown break. In practice, we rely on a multi-path, multi-block search algorithm (such as Autometrics,
see Algorithm 2 in the supplementary material) to reduce the variance of the estimators.
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Consider a single break falling into the first half of the sample beginning at time T1 for L periods such
that 0 < T1 < T1 + L < T/2. In matrix form, the DGP is given as

y = λdT1 + ε (8)

where ε ∼ N(0, σ 2I) for simplicity and the (T × 1) vector dT1 denotes a break at t = T1 for L periods.
Using a split-half approach, we assess the properties of detecting the single break when the break date is
unknown. The split-half model for the first half of break functions is

y = D1γ (1) + v (9)

where γ (1) = (γ1, γ2, · · · γT/2)′ and D1 = (d1, . . . ,dT/2). The estimator γ̂ (1) equals:6

γ̂ (1) = (
D′

1D1
)−1

D′
1y = λ

(
D′

1D1
)−1

D′
1dT1 + (D′

1D1
)−1

D′
1ε (10)

= λr + (D′
1D1
)−1

D′
1ε

where the (T/2 × 1) vector r is equal to one at t = T1 and zero otherwise, rt = 1{t=T1}. It follows that
E[γ̂ (1)] = λr and V [γ̂ (1)] = σ 2

ε (D′
1D1)−1. We find for the first half, for normal error terms:(
γ̂ (1) − λr

) ∼ N
(

0, σ 2
ε

(
D′

1D1
)−1
)

(11)

Therefore conventional t-tests can be used to assess the significance of individual indicators. The estimator
γ̂ (2) on the second half of indicators, D2 = (dT/2+1, . . . ,dT ), will miss the break in the DGP in the first
half described by dT1 and equals

γ̂ (2) = λ
(
D′

2D2
)−1

D′
2dT1 + (D′

2D2
)−1

D′
2ε (12)

For step shifts, Castle et al. (2015b) show that the indicator in D2 closest to the sample split will be
retained in the second set of indicators. For the general form of break functions, retention in D2, when
there is a break in the first half, will depend on the specific functional form. However, conditional on the
break indicator being correctly retained in the first set D1, retention of irrelevant indicators in D2 does
not affect the correct identification of the break overall: let D1∗ and D2∗ denote the set of retained break
functions in the first and second set, respectively, where retention is based on a retention rule such as d j is
retained if |tγ̂ j | ≥ cα . The final step in the split-half procedure is then to combine the retained indicators
using DU = [D1∗D2∗] and estimate the model:

y = DU γ (U ) + v (13)

This yields the estimator γ̂ (U ) unbiased for the true break:7

γ̂ (U ) = λr + (D′
U DU

)−1
D′

U ε (14)

The carried-forward break function in D1∗ correctly identifies the true break, and coefficients on all other
break functions will thus be zero in expectation. The proof is identical to that given for the first half
of indicators in the supplementary material. This shows that, conditional on retaining the correct break
indicator in D1, the retention of indicators in D2 does not affect the correct identification of the break,
when the first and second set are combined and reselected over. The distribution of the final split-half
estimator is then given by (

γ̂ (U ) − λr
) ∼ N

(
0, σ 2

ε

(
D′

U DU
)−1
)

(15)

Reselection then results in only the true break indicator being retained in expectation.8

This result generalizes the specific case of step indicators presented in Castle et al. (2015b). Even
though the break date and magnitude are unknown, the use of a fully saturated set of break indicators
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Table 2. Potency of Detecting an Unknown Break When Using Split-Half and Multi-Path Searches.

Split-Half Multi-Path

Potency Gauge D1 Potency Gauge

λ = 6, trough = 3.48 0.69 0.013 0.88 0.015
λ = 4, trough = 2.23 0.30 0.013 0.50 0.014
λ = 2, trough = 1.16 0.06 0.013 0.11 0.015

Notes: Statistics were generated from 1000 simulations and detection significance was set to α = 0.01, with a length
of L = 3. Break magnitude λ corresponds to the full response in standard deviations of the error term (σε = 1) over
the entire break, the trough is 0.58λ.

allows us to obtain an unbiased estimate of the break magnitude and timing. The estimator then follows a
normal distribution subject to correct specification of the break function. Thus the estimated coefficient at
the break time, γ̂T1 , is in expectation equal to the break magnitude, while all other estimated coefficients
are mean-zero in expectation. This result generalizes to multiple breaks falling in a single split. As in the
case of the known break timing, the variance of the estimator depends on the specified break function. Let
δk, j denote the (k, j) element of the matrix (D′

1D1)−1. The variance of the coefficient at the breakpoint in
the first half is therefore:

V [γ̂T1 ] = σ 2
ε δT1,T1 (16)

For iid error terms ε, and D specified as a full set of step functions, the split-half model (without selection)
yields δ j, j = 2, so the break coefficient has twice the error variance. For the proposed volcanic function
(derived and assessed in detail in Section 3) modelling a single drop followed by a reversion to the mean,
we find that δ j, j = 3.7, thus V [γ̂T1 ] = 3.7σ 2

ε . This can be compared to the known-break/single-indicator
case where the variance is given by equation (6) and for the volcanic function equals 2.3σ 2

ε (for T = 100).
Due to collinearity of break functions, the variance of the estimator is higher in a fully saturated model.
In the more general case, δT1,T1 depends on the specification of the break function but can be computed a
priori. The t-statistic is then given as

tγ̂T1
= γ̂T1

σ̂ε
√
δT1,T1

≈
(
γ̂T1 − λ

)
σε
√
δT1,T1

+ λ

σε
√
δT1,T1

∼ N

(
λ

σε
√
δT1,T1

, 1

)
(17)

In practice, we use sequential elimination of the break indicators or a multi-path search to eliminate
insignificant indicators reducing the variance of the estimators from a saturated model (16) closer to the
single break (6) and increasing the power of detection.

For dynamic time-series models, the above approach can be extended by including time-dependent
covariates. Valid conditioning (e.g. through the inclusion of auto-regressive terms in the case of non-iid
errors) can be ensured by always including the covariates in each block estimation step and only selecting
over the break functions. Johansen and Nielsen (2009) provide the asymptotics under the null of no break
for the special case of impulses for stationary and unit-root non-stationary autoregressive processes (see
Johansen and Nielsen, 2013, for the iterated version). The case for general break functions is discussed in
Section 2.2, and the supplementary material provides simulation results for an AR(1) model and DGP.9

Simulation Performance based on Volcanic Break Functions. Table 2 reports simulation results (T =
100) for a DGP with a single unknown volcanic break at t = T1 = 25 of magnitude λ followed by a smooth
reversion to the mean.10 Equation (31) provides the exact functional form. Simulations are assessed by
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Figure 2. (Left) Potency of Detecting a Volcanic Break of Magnitude λ for Level of Significance α Using
Split-Half and Multi-Path Selection and (Right) Proportion of Spuriously Retained Break Indicators (Gauge).

Note: Break magnitude λ corresponds to the full response in standard deviations of the error term (σε = 1)
over the entire break, the trough is 0.58λ, 6 standard deviations (SD) therefore refers to a trough of 3.48SD.

the retention/detection frequency (potency) for a single break and average retention of spurious breaks
(gauge).11

The trade-off between potency and level of significance of selection α is shown in Figure 2 for a
single volcanic break. A multi-path search generally increases the power of detection relative to the
split-half approach. Figure 3 shows the results for split-half (dashed) and multi-path (solid) selection
when using volcanic functions for a break of λ = 6. Consistent with derived theory (16), the estimator
has 3.7 times the variance of the error term when using split-half estimation for the given function. Using
a multi-path search reduces the variance drastically. Any selection bias of the multi-path search estimates
can be controlled through bias correction after selection (see Castle et al., 2011 and Pretis, 2015b). The
supplementary material provides simulation results for a simple autoregressive DGP and model.

Comparison to Shrinkage-based Methods. Shrinkage-based methods using penalized likelihood
estimation (Zou and Hastie, 2005; Tibshirani, 2011) provide an alternative to the general-to-specific
algorithm used here in selecting models with more variables than observations. Figure 4 shows the
simulation outcomes comparing multi-path indicator saturation (for α = 0.01), the Lasso (Tibshirani,
1996, estimated using LARS, see Efron et al., 2004) where cross-validation is used to determine the
penalty and the Lasso where the penalty is set such to approximate the false-positive rate of the IS
procedure under the null of no breaks (≈0.01). The simulation uses a total break magnitude of six
standard deviations (implying a trough of 3.48σε) for an increasing number of evenly spaced breaks from
0 up to 10 in a sample of T = 100. The general-to-specific multi-path algorithm exhibits stable power
exceeding that of the penalized likelihood methods across any number of breaks. The false-positive rate
remains stable and close to the theory level of 0.01. The shrinkage-based procedures, due to their similarity
to forward-selection, show decreasing potency as the number of breaks increases, and the false-positive
rate is difficult to control.
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2.1.3 Uncertainty on the Break Date

An estimated uncertainty on the break magnitude and coefficient path (the time-varying intercept in the
regression) can be computed given the distribution of the break estimator (see Pretis, 2015b). While of
considerable interest, it is non-trivial, however, to quantify the uncertainty around the timing of the break
(see Elliott and Müller, 2007). This is particularly true for the literature focusing on break detection using
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general-to-specific methodology. Here we investigate the uncertainty around the timing of estimated break
points when using break-indicator saturation by computing the analytical power of a single break indicator
when the break function is correctly specified but the break time is not. This is a simplification as it only
considers a single mistimed indicator, while the indicator saturation approach includes a saturating set.

Consider a DGP with just a single break in the mean:

yt = λdT1,t + εt (18)

The break shifts E[yt ] from 0 to λdT1 at t = T1 where dT1 is a break function of length L beginning at
time t = T1 such that T1 + L < T and dT1 = (0, . . . , d1, d2, . . . , dL , 0, . . . , 0). The corresponding model
is then

yt = γ d j,t + vt (19)

When the break date is correctly specified, d j,t = dT1,t , so the estimator for λ is given by

γ̂t=T1 − λ =
(

T1+L∑
t=T1

d2
T1,t

)−1 (T1+L∑
t=T1

dT1,tεt

)
(20)

Similarly for a test of the hypothesis: λ = 0, the t-statistic has a non-centrality of E[tγ̂ ,t=T1 ] = ψ =
λ

√
(
∑T1+L

t=T1
d2

T1 ,t
)

σε
and the normal distribution

tγ̂ ,t=T1 ≈
γ̂t=T1

√(∑T1+L
t=T1

d2
T1,t

)
σε

∼ N (ψ, 1) (21)

The non-centrality ψ increases in the break magnitude λ, varies with the break length L , and will depend
on the underlying break function given by dt .

Now consider the model being incorrectly specified for the break date, such that d j,t 	= dT1,t but is
shifted by K periods d j,t = dT1±K ,t . The estimator for λ is then

γ̂t=T1±K − λ = λ

⎡⎣(T1+L∑
t=T1

d2
j,t

)−1 (T1+L∑
t=T1

d j,t dT1,t

)
− 1

⎤⎦+
(

T1+L∑
t=T1

d2
j,t

)−1 (T1+L∑
t=T1

d j,tεt

)
(22)

For a fixed length L and a forced mistiming, it follows that γ̂t 	=T1 is not an unbiased estimator for λ. Note
that if d j is functionally specified correctly such that the only difference to the true break function is
through K lags, d j = dT1±K , then it holds that (

∑T1+L
t=T1

d2
j,t ) = (

∑T1+L
t=T1

d2
T1,t

). Equally (
∑T1+L

t=T1
d j,t dT1,t ) =

(
∑T1+L

t=T1
dT1±K ,t dT1,t ) for K ≤ L and 0 for K > L . Using this, we derive an expression for the approximate

t-statistic associated with the estimator given a break function time misspecified by K lags:

E
[
tγ̂ ,t=T1±K

] ≈ E
[
γ̂t=T1±K

]
σε

(∑T1+L
t=T1

d2
T1

)−1/2 =
λ
(∑T1+L

t=T1
dT1±K dT1

)
σε

(∑T1+L
t=T1

d2
T1

)1/2 (23)

This is equal to the non-centrality of the correct break date ψ scaled by a factor less than one, decreasing
with the distance K from the correct date

E
[
tγ̂ ,t=T1±K

] ≈ ψ

(∑T1+L
t=T1

dT1±K ,t dT1,t∑T1+L
t=T1

d2
T1,t

)
≤ ψ (24)

For a given break specification dt and break length L , the corresponding power function can be computed
to provide an approximate measure of power for detection of a break at t = T1 in the neighbourhood of

Journal of Economic Surveys (2016) Vol. 30, No. 3, pp. 403–429
C© 2016 John Wiley & Sons Ltd



414 PRETIS ET AL.

T1. Note that E[tγ̂ ,t=T1±K ] is zero outside a neighbourhood of L . The associated t-statistic of a break
indicator further away from the true break date T1 than the break length L is zero in expectation, since
(
∑T1+L

t=T1
d j,t dT1,t ) = 0 for K > L . Intuitively, longer breaks increase the likelihood that a break indicator

that is not perfectly coincident with the break date will appear significant, and we can expect the retention
to be equal to the nominal significance level outside a t = T1 ± L interval.

As before we consider the special case of volcanic functions and also provide results from step shifts
for comparison. Figure 5 shows the analytical as well as simulated non-centrality and power around a true
break date at t = 26 of length L = 3 for α = 0.05. The Monte Carlo simulations match the theoretical
powers and non-centralities closely.

For no break, the analytical power is uniform and equal to the nominal significance level. When there
is a break outside of the interval T1 ± L , the expected retention of the break indicator equals the nominal
significance level. For a step shift of a forced length, given (24), the non-centrality decreases linearly as
the numerator falls by 1/L per shifted period relative to the correct break date. For longer breaks this
implies that the power around the true break date is close to uniform. In the case of volcanic functions, due
to the particular functional form, the power and retention probability drop more rapidly and peak clearly
around the true break date. The special case presented here only considers the properties of a single
time-misspecified indicator of a fixed length in the model. However, model selection in the indicator
saturation approach alleviates many of these concerns in practice. When selecting from a full set of break
functions (see Section 2.1.2) it is less likely that a break function at T1 + −K appears significant because
the correct T1 indicator is included in the same model, a mistimed indicator in a fully saturated model
would likely appear significant only if a chance draw of the error offsets the shift.

2.2 Properties under the Null of No Break

Under the null hypothesis when there are no breaks in the DGP, there are two primary concerns regarding
the inclusion of a full set of break functions in the statistical model. First, when including a full set of
break functions, break indicators may be retained spuriously, and secondly, there may be concerns about
the effect on the distributions of coefficients on variables that are known to be relevant – in other words,
does saturating a model with irrelevant variables affect relevant ones?

First, we consider the spurious retention of break indicators. Under the null of no breaks, λ = 0, the
DGP from (8) is given by

y = ε (25)

Based on the above results, when using a split-half approach with a full set of break indicators, the
expectation of the estimated coefficients in the first half is given by

E[γ̂(1)] = E
[(

D′
1D1
)−1

D′
1ε
]

= 0 (26)

The same result generalizes to the union of retained indicators DU . Thus, the t-statistics of the included
break functions will be centred around zero in expectation when there is no break. Using the selection
rule that retains the break function d j if |td j | > cα , then αT/2 indicators will be retained on average in
each half. Combining the retained indicators in the final set, αT indicators are retained in expectation.
The proportion of spurious indicators can thus be controlled through the nominal significance level of
selection. The properties under the null are confirmed below using Monte-Carlo simulations.

Table 3 and Figure 6 report the simulation results when there are no breaks in the DGP but a full set of
break functions (of the form of volcanic functions) is included. When using a split-half approach with a
one-cut variable selection decision based on the absolute t-statistic, the proportion of irrelevant retained
indicators is close to the nominal significance level. In practice, when using a multi-path, multi-split
procedure (here implemented through Autometrics) the gauge is close to the nominal significance level
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Notes: Simulated data with and without shifts (top), associated non-centrality and simulated t-statistics
(middle), analytical and simulated power (bottom) around break λ = −10 at T1 = 26 of length L = 3 and
interval T1 ± K for α = 0.05. Left shows no break, middle a step-break and right panel a volcanic function
break. Analytical non-centralities and powers are shown as dotted, simulated t-statistics and retention are
shown as solid. Dashed lines mark the break occurrence. Outside of an interval T1 = 26 ± L the retention

probability and analytical power are equal to the nominal significance level of α = 0.05.

for low levels of α. A conservative approach (low α ≤ 1%) is recommended in practice.12 When compared
to results in Castle et al. (2015b), there is little notable difference between different specifications of break
functions, consistent with the analytical properties of irrelevant indicators.

We now assess the second consideration, which is the effect of including a full set of break indicators
when theory variables X are included in the model but are not selected over (‘forced’). These could
include contemporaneous covariates or autoregressive dynamic variables. For the specific case when the
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Table 3. Retention of Spurious Volcanic Break Functions When There is No Break.

Significance Level Split-Half One-Cut Multi-Path Search

Gauge D1 Gauge D2 Gauge D
α = 0.05 0.056 0.054 0.30
α = 0.01 0.013 0.012 0.015
α = 0.005 0.007 0.007 0.005
α = 0.0025 0.004 0.004 0.002
α = 0.001 0.002 0.002 0.001
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Figure 6. Simulation Results under the Null of No Break.

Notes: (Left) Proportion of irrelevant retained break functions (gauge) using split-half and multi-path
selection for varying α when there is no break. (Middle and Right) Simulated distributions and densities of

coefficient β̂ (true β = 0.5) on forced parameter xt : with (orange/shaded light) – and without (purple/shaded
dark) – a full set of break functions.

elements of D are specified to be impulse indicators, Johansen and Nielsen (2009) derive the asymptotic
distribution of β in the full split-half approach in stationary and unit-root non-stationary regressions using
the equivalence of IIS and one step Huber-skip M-estimators. For an iterated procedure (e.g. resembling
the multi-block approach in Autometrics) the distributional results under the null for IIS are derived in
Johansen and Nielsen (2013). For the general form of designed indicator functions, we follow theory for
the substeps of split-half estimation where N � T in each step, and appeal to simulation results for the
overall algorithm. Consider a simple DGP:

y = Xβ + ε (27)

where ε ∼ iid(0, σ 2
ε I) and the elements of X (dynamic or static) are assumed to be relevant and not

selected over. The model relying on the split-half approach saturated with the first half of the break
functions is then

y = Xβ + D1γ (1) + v (28)

where the true γ (1) = 0. Following Hendry and Johansen (2015), given that there is no break in the DGP,
the inclusion of a full set of irrelevant additional variables D1 need not affect the distribution of the
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included relevant parameters β. Orthogonalizing X and D1 by regressing each column of D1 on X yields
the estimator β̂

∗
with asymptotic distribution:13

√
T

(
β̂∗ − β

γ̂ (1) − 0

)
D→ N

[(
0
0

)
, σ 2

ε

(
�−1

XX 0

0 �−1
D1D1|X

)]
(29)

The distribution of the parameters β̂∗ on the correct variables X is unaffected by the inclusion of
the orthogonalized break indicators D1 when there is no break. The equivalent result holds when the
second half of break indicators D2 is included and the resulting union of retained indicators from D1 and
D2 given that N < T . Orthogonalization relative to shifts, however, is not necessary for estimation in
practice. Figure 6 shows the simulated distribution of β̂ for a single xt when a full set of break functions
is included and selected at α = 0.005 (orange/shaded light) and when break functions are not included
(purple/shaded dark). The distribution of β̂ is unaffected by the saturation of a full set of break functions.
In practice, the main risk is the spurious retention of break indicators, but this can be controlled through
a conservative selection mechanism (low α).

3. Empirical Illustration for Climate Time Series: Detection of Volcanic Eruptions from
Simulated Model Surface Air Temperature Data

Large volcanic eruptions that inject significant amounts of sulphate aerosols into the stratosphere cause
short-lived (multi-year) radiative imbalances that induce surface cooling. Over the course of the last
several millennia there have been numerous eruptions that have had impacts on global mean temperatures.
Identifying their climatic fingerprint is an important scientific endeavour that relies critically on the robust
characterization of the timing and magnitude of past volcanism. An accurate understanding of the impact
of past eruptions can lead to more accurate estimates of the effect of stratospheric aerosols – to guide
policy from geo-engineering to pollution controls. Records of climatically relevant events primarily rely
on sulphur deposits in ice cores (see, e.g. Gao et al., 2008; Crowley and Unterman, 2012). However,
there remains uncertainty in the precise timing, magnitude and climatic impact of past volcanic activity
(Schmidt et al., 2011; Anchukaitis et al., 2012; Brohan et al., 2012; Mann et al., 2012; Baillie and
McAneney, 2015). Statistical methods such as the break detection methodology presented herein can
therefore augment previous volcanic reconstruction estimates by providing additional characterizations
of the timing and magnitude of temperature responses to volcanic eruptions when coupled with large-scale
proxy estimates of past temperature variability, for example, from tree-rings. As a synthetic evaluation of
the performance of the break-indicator saturation method, we search for volcanic eruptions in surface air
temperature output from model simulations. While there is some disagreement on the timing, magnitude
and climatic impact of real eruptions over the past several millennia, the present simulation is forced
with deterministic (known, imposed) eruptions. It therefore can function as a useful tool for assessing the
detection efficacy of the proposed statistical methodology in real-world scenarios when the timing and
exact DGP of volcanic eruptions are uncertain.

For our empirical illustration, we use the NH mean surface air temperature from the historical simulation
of the National Center for Atmospheric Research (NCAR) Community Climate System Model 4 (CCSM4)
and the Last Millennium (LM) simulation (Landrum et al., 2013). These simulations were made available
as part of the Coupled and Paleoclimate Model Intercomparison Projects Phases 5 and 3 (CMIP5/PMIP3),
respectively (Taylor et al., 2012). Collectively, the two simulations span the period 850–2005 C.E. To
imitate potential proxy reconstructions (e.g. tree-ring based), temperatures for extratropical land areas
(30◦ − 90◦ N) were extracted from the model and only summer months (June–August) were used to build
annual averages. This time period is expected to show the strongest cooling in response to an eruption (e.g.
Zanchettin et al., 2013 argue for a winter-warming effect) and is associated with the seasonal sampling
window of many proxies such as dendroclimatic records. Temperatures are reported as anomalies relative
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to the 1850–1999 mean. The model is forced with the volcanic reconstruction by Gao et al. (2008) that
reports volcanic activity as stratospheric sulphate loadings in teragrams (Tg). While the model is forced
with multiple radiative forcing conditions (e.g. solar irradiance, greenhouse gases, volcanoes, land cover
changes and anthropogenic aerosol changes), for the present experiments we treat these as unknown
and work with the univariate NH mean temperature series, although multivariate models with more
forcing variables could improve the detection algorithm. For a real-world scenario, however, estimates
of climate-forcing and -sensitivity are uncertain (IPCC, 2013) and may prove to be of limited use in
explaining non-volcanic temperature variation in proxy reconstructions, particularly in the presence of
changes in measurement (see, e.g. Pretis and Hendry, 2013).

3.1 Simulation Setup

We design a break function to capture the temperature response to a large-scale volcanic eruption using a
simple zero-dimensional energy balance model (EBM) that equates incoming to outgoing energy derived
from simple physics-based models of climate (see, e.g. section 1 in Rypdal, 2012, section 1 in Schwartz,
2012 or Pretis, 2015a for linking system EBMs to econometric system models)

C
dT ′

dt
= F − θT ′ (30)

where θ is the climate feedback, C is the heat capacity, T ′ the temperature deviation from steady state
(similar to the measured temperature anomaly as a departure from a long-term average) and F denotes
radiative forcing (the variable that in our system describes the volcanic shock). The feedback response
time of the model is given by τ = C

θ
. Assuming a volcanic forcing effect of an impulse injection of

stratospheric aerosols of F decaying exponentially at rate −1/γ yields the following functional form of
a volcanic function for the associated temperature response:14

T ′
t = dt =

⎧⎨⎩ 1
C e

−θ
C t F

(
θ
C − 1

γ

)−1
[

e
t
(
θ
C − 1

γ

)
− 1

]
t ≤ L

0 t < T1, t > L
(31)

Intuitively, equation (31) states that a volcanic eruption through F leads to a sudden drop in
temperatures, followed by a smooth reversion back to the original equilibrium. Different parameter
calibrations are explored in the simulation section below. The main results are reported for a normalized
temperature response where the feedback response time is set to 1, and the length of the volcanic impact
is set to L = 3 to approximate the theory. The decay of stratospheric aerosols is modelled as γ = 0.5
(function a) and γ = 3 (function b) to capture one-period and two-period cooling, respectively. On
visual inspection (see Figure 7) these calibrations closely match the average-model response based on a
superposed epoch analysis of all large-scale volcanic eruptions in the climate model (Mass and Portman,
1989). The average model response in temperature is a drop by approximately 1–1.5 ◦C, followed by
a smooth reversion to the previous mean over a 3–4 year period. While Gao et al. (2008) estimate the
retention time for sulphate aerosols to be 2–3 years, a climatic perturbation of 4 years is in line with
findings by Landrum et al. (2013). It is important to emphasize that the in-sample response to a volcanic
eruption is not used to design the break function – the method is not trained and evaluated on the same
set of observations.

In a more theoretical approach, which avoids particular shape parameters, a single peak (impulse)
could be followed by autoregressive reversion to the mean where we search over a full set of impulses
and full set of breaking autoregressive coefficients.

The DGP for the response variable NH temperature (Tt ) is

Tt = f (Xt , Vt ) + εt (32)
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Figure 7. Superposed Epoch Analysis of the Model Temperature Response to Simulated Volcanic Eruptions
and Sets of Volcanic Functions.

Notes: (Left) Superposed epoch analysis (Mass and Portman, 1989) of NH mean model temperature response
to volcanoes with sulphate emissions >20 Tg (42 events, dashed) with 1 sample standard deviation bands

(shaded) and distribution over volcanoes (box-plots). Approximate temperature response using a
zero-dimensional energy balance model (EBM) used as volcanic function (a) is given as solid and function (b)
in as dotted. (Right) Sets of EBM-based volcanic break functions for the two different specifications (a) (top)

and (b) (bottom) to approximate the temperature response in years T relative to an eruption at t = 0.

To simulate sampling uncertainty of a proxy-based reconstruction, we generate 100 replications of the
outcome by adding εt ∼ IN(0, σ 2

ε ) to the NH mean temperature. The main results here are presented for
simulations setting σε = 0.2 which is half the sample standard deviation of the NH time series of 0.4: the
effect of the magnitude of noise is explored in Figure 9. The function f (Xt , Vt ) mapping volcanic, Vt ,
and other forcing, Xt , on to temperature is unknown and the observed forcing variables Vt and Xt are
equally treated as unknown. As a proof of concept, we consider two models (intercept-only, and AR(1)
with intercept)15 to detect eruptions:

yt = μ+ γ ′dt + vt (33)

yt = ρyt−1 + μ+ γ ′dt + vt (34)

where dt is a full set of volcanic break functions (31) to be selected over.16 To reduce computational
requirements due to the varying simulation setup, the full-sample is split into 10 subsamples of T = 115
observations each.17 There is little difference between full-sample and subsampling performance aside
from computational speed (the supplementary material provides the results for a full-sample simulation).
Selection is conducted at α = 0.01 implying an expected gauge of 1% (approximately one break function
spuriously retained per subsample). Higher retention of break functions can be an indicator of model
misspecification. Simulations are evaluated based on the retention frequency of known individual volcanic
events (potency), the average potency over all volcanoes and the proportion of spurious eruptions detected
(gauge).
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Figure 8. Detected Model Volcanic Eruptions from 850 to 2005.

Notes: Detected (top) volcanic eruptions in the model temperature series from 850 to 2005 using function (a)
modelling a single-period drop followed by a reversion to the mean together with an intercept. Bar height

indicates detection frequency [0, 100%] across 100 simulations. Stacked sulphur deposition record (bottom)
used to force model temperatures are shown for Northern Hemisphere (blue/shaded dark) and global

measurements (orange/shaded light) in Tg. Simulated model mean temperature anomalies used to detect the
above volcanic eruptions are shown in grey. Mean NH surface temperature data are taken from the Last

Millenium and historical simulation of the NCAR CCSM4 model as part of the CMIP5/PMIP3 data archive.

3.2 Illustration Results

Figure 8 and Tables 4 and 5 show the results of detected volcanic events in 100 replications of the modelled
NH mean temperature18 using the model (a) volcanic function. The retained volcanic breaks coincide
predominantly with the simulated volcanic eruptions. Few spurious volcanoes are detected, and those
that are spurious exhibit retention frequencies drastically lower than those of volcanoes used to force the
model.

Most large-scale simulated volcanic eruptions are detected consistently: 74% of all larger (>20 Tg)
NH eruptions are detected on average within an interval of ±1 year (57% of all global eruptions, many of
which appear to have had little impact on NH temperatures). Consistent with the basic analytical results
presented in the previous section, the intervals of selection around the correct break dates are small. While
increasing the band from 0 to 1 generally yields an increase in potency, outside of ±1 year there is little
difference (see Table 4). An uncertainty in break dates of ±1 year can be the result of a monthly dated
volcanic forcing record coupled with an annually dated temperature record, for example, a December
eruption will mainly affect the following year. The season of sulphur injection – before or after summer
– can cause offsets in the timing of the temperature response. Equally there may be regional sampling
biases based on the construction of the NH mean surface air temperature.
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Table 4. Potency and Gauge for Volcanic Functions (a).

Function (a) T t = T ± 1 t = T ± 2 t = T ± 3

Potency NH Tg > 20 0.45 0.74 0.74 0.74
Potency NH Tg > 0 0.17 0.33 0.34 0.35
Potency Global Tg > 20 0.32 0.57 0.59 0.59
Potency Global Tg > 0 0.11 0.22 0.25 0.26
Gauge NH 0.02
Gauge Global 0.02

Function (a) + AR(1)
Potency NH Tg > 20 0.46 0.70 0.70 0.70
Potency NH Tg > 0 0.16 0.30 0.31 0.31
Potency Global Tg > 20 0.31 0.52 0.54 0.54
Potency Global Tg > 0 0.11 0.20 0.22 0.23
Gauge NH 0.02
Gauge Global 0.02

Augmenting the designed break functions (a) by an autoregressive model results in nearly similar
potency and gauge relative to the baseline model using just a constant (see Table 4 and Figure 9).

The retention frequency of volcanic functions increases with the magnitude of sulphate emissions of
the volcanic eruption (Figure 9). While the overall potency for all volcanoes in the NH within a 1-year
interval is 33%, this increases to 74% when larger volcanic eruptions over 20 Tg are considered. Given that
potency covers all of the volcanic forcing, much of which is small in magnitude, the result is unsurprising.
In particular, the lower potency for small eruptions is not driven by an inconsistency in selection of the
same volcano over multiple experiments, but rather in the variation in temperature response between
volcanoes. Eruptions in 1641 (Parker) and 1600 (Huaynaputina) are detected 100% of the time while the
eruption of 1783 (Laki) is not detected in any of the outcomes. In contrast to most of the other volcanoes,
Laki is a high-latitude volcano. Because the CCSM4 model uses spatially resolved sulphate estimates,
this eruption only affects the northernmost areas and causes only a minor hemispheric cooling of −0.15◦,
which is much lower in magnitude than that of any of the other major volcanic events (see Figure 7).19

Equally, the potency is affected by the chosen standard deviation of the noise process added to the
model mean. The main results here are reported for added noise with a standard deviation of half the
sample standard deviation. Figure 9 shows the potency for varying levels of noise.

The proportion of spuriously detected volcanoes (gauge) at around 0.02 is close to the nominal
significance level (1/T ≈ 0.01). The fact that it is slightly higher is likely due to the misspecification of
the model, which is only run on a constant (including an autoregressive term in the alternate specification)
and set of break functions. Any variability in temperature other than volcanic eruptions may be spuriously
attributed to the shape of the volcanic functions. This could be controlled by augmenting the model
with additional dynamics (e.g. further autoregressive terms, long-term fluctuations through sine-cosine
processes) or known forcing series.

Results for volcanic functions (b) are reported in the supplementary material. Volcanic functions (b)
that capture the slower initial decline in temperature yield a slightly higher potency when measured at
the precise timing (see Figure 9). Potency for t = Ti for all i NH volcanoes using (b) is 0.32 versus
0.17 for (a) (0.23 vs. 0.11 for Global). This result stems from the single drop in function (a) often
being most significant in the second period after an eruption if the cooling lasts for two periods. Once
we consider the interval of Ti ± 1 years or volcanoes of larger scale the results are nearly identical
for functions (a) and (b). Differentiation between one or two-period cooling following an eruption, and
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Table 5. Potency of Detection of Volcanic Eruptions >20 Tg using Volcanic Functions (a) for Intervals
t = T ± 1, 2, 3

NH Volcano Tg Potency t = T t = T ± 1 t = T ± 2 t = T ± 3

939 31.83 0 0.02 0.02 0.03
1167 29.535 0 0 0 0
1176 45.761 0.06 1 1 1
1227 58.644 0.01 0.02 0.06 0.06
1258 145.8 1 1 1 1
1284 23.053 0.14 0.97 0.97 0.97
1452 44.6 0.3 1 1 1
1459 21.925 0.26 0.98 0.98 0.98
1584 24.228 0.11 0.77 0.8 0.8
1600 46.077 1 1 1 1
1641 33.805 1 1 1 1
1719 31.483 0.75 1 1 1
1783 92.964 0.02 0.02 0.03 0.05
1809 27.558 0.67 0.99 0.99 0.99
1815 58.694 0.91 1 1 1
1835 26.356 1 1 1 1

Global Volcano Tg Potency t = T t = T ± 1 t = T ± 2 t = T ± 3

854 21.387 0 0.02 0.03 0.03
870 22.276 0 0.25 0.25 0.25
901 21.283 0 0.34 0.5 0.54
939 33.128 0 0.02 0.02 0.03
1001 21.011 0 0.4 0.4 0.4
1167 52.114 0 0 0 0
1176 45.761 0.06 1 1 1
1227 67.522 0.01 0.02 0.06 0.06
1258 257.91 1 1 1 1
1275 63.723 0 0.06 0.08 0.08
1284 54.698 0.14 0.97 0.97 0.97
1341 31.136 0 0 0 0.01
1452 137.5 0.3 1 1 1
1459 21.925 0.26 0.98 0.98 0.98
1584 24.228 0.11 0.77 0.8 0.8
1600 56.591 1 1 1 1
1641 51.594 1 1 1 1
1693 27.098 0 0 0.03 0.07
1719 31.483 0.75 1 1 1
1783 92.964 0.02 0.02 0.03 0.05
1809 53.74 0.67 0.99 0.99 0.99
1815 109.72 0.91 1 1 1
1835 40.16 1 1 1 1
1883 21.864 0 0.98 0.98 0.98
1963 20.87 0 0.43 0.63 0.63
1991 30.094 0 0.48 0.48 0.48

Journal of Economic Surveys (2016) Vol. 30, No. 3, pp. 403–429
C© 2016 John Wiley & Sons Ltd



DESIGNED BREAK-INDICATOR SATURATION 423

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20
Minimum Sulphate Aerosols (Tg)

Po
te

nc
y

a
a + AR(1)

Function

T

T+-1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.5 1.0 1.5 2.0
SD of Model Noise (in SD of Model Mean)

Po
te

nc
y

Min Tg

>0tg

>20tg

Scope

Global

b

NH

Figure 9. (Left) Detection Potency of NH Eruptions for Given Minimum Sulphate Emissions and Timing for
Functions (a), (a) + AR(1) and (b) at the Precise Timing T (Dashed) and in the Interval of T ± 1 (Solid); and

(Right) Detection for Varying Levels of Noise Added in the Simulation for Function (a) for All Eruptions
(Dashed) and Large Eruptions over 20 Tg (Solid).

−2

−1

0

1

16351635 1640 1645
Year

Te
m

pe
ra

tu
re

 A
no

m
al

y,
 C

Temperature AR(1) Volcanic Indic. AR(1) AR(1) Robust

0

1

2

3

939 1167 1176 1227 1258 1284 1452 1459 1584 1600 1641 1719 1783 1809 1815 1835
Volcano

Fo
re

ca
st

 R
M

SE

Volcanic Indic AR(1) Ar(1) AR(1) Robust

Volcanic Indic. AR(1)

AR(1)

AR(1) Robust

Temperature

Volcanic Indic. AR(1)

AR(1)

AR(1) Robust

Figure 10. One-Step Forecasts through Volcanic Eruptions using Break Indicators.

Notes: (Left) Forecast performance across different methods: model mean temperature during the simulated
1641 eruption (dashed), one-step forecasts from 1641 onwards are shown for using an AR(1) model with

volcanic indicator (purple/shaded dark), an AR(1) model without a volcanic indicator (orange/shaded light)
and a robust AR(1) forecast (green/dot-dashed) (Clements and Hendry, 1999). Models are estimated from
1605 until 1641. (Right) one-step forecast root-mean-squared-error (RMSE) over all NH model volcanic

eruptions (>20 Tg) for an AR(1) model with volcanic indicator (purple/left), without (orange/middle) and
robust AR(1) forecast (green/right). Using volcanic indicators, on average, improves the forecast performance

during the break period. However, when no break occurs (little to no temperature response), using a break
indicator can result in higher RMSE as seen, for example, for the 1783 model Laki eruption.
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thereby further improvements in detection, could be implemented by searching over functions of type (a)
and (b) simultaneously controlling the gauge appropriately.

In summary, large-scale volcanic eruptions can consistently be detected within a ±1 year interval. Even
though the model is likely misspecified when using only a constant, few spurious volcanic eruptions are
retained. The signal-to-noise ratio remains, however, crucial in detection. When the method is applied to
real-world proxy reconstructions where lower temperature spikes and higher noise levels can be expected,
a well-specified baseline model for the temperature process will be required against which volcanic events
can be detected to ensure a high power of detection.

3.2.1 Forecasting during Breaks

While breaks (such as volcanic eruptions) are by their nature stochastic, using a deterministic approach
through a full set of break functions allows us to account for the underlying breaks and model the responses
deterministically. This can improve forecasts during breaks if the break function is well specified. Once
the break is observed (in this case a volcanic eruption), a forecasting model can be augmented with a break
indicator where the magnitude is determined through estimation in the first break period. This indicator
then acts as a continuous intercept correction, thereby improving the forecast performance during the
break. To illustrate this concept, Figure 10 shows a 1-step forecast for NH model mean temperatures
following the simulated 1641 eruption, together with the root-mean-squared (RMSE) forecast errors for
all NH (>20 Tg) model eruptions based on volcanic function (a). Using volcanic indicators to forecast
through the breaks yields on average a lower forecast RMSE (RMSE = 0.51) when compared to a simple
AR(1) model (RMSE = 0.71) or even a robust forecasting device (RMSE = 0.66) (Clements and Hendry,
1999).20 Crucially, this depends on the correct specification of the break function – for volcanic eruptions
further improvements could be achieved by switching to volcanic function (b) if the initial cooling lasts
for two periods. Detection of breaks based on theory-informed break functions can therefore act as a
robust forecasting device through a continuous intercept correction from climate to economic time series.

4. Conclusion

Saturating a regression model with a full set of designed break functions, and removing all but significant
ones through a general-to-specific algorithm yields unbiased estimates of the break magnitude and time. By
initializing the model with a full set of break functions many of the shortcomings associated with a forward
selection or specific-to-general approach in break detection can be avoided. Analytical properties and non-
centralities can be derived for any deterministic break function and can be extended to breaks in random
variables when interacted with the deterministic break specifications. The break detection procedure
exhibits desirable properties both in the presence of breaks (stable potency across multiple breaks) and
under the null hypothesis of no breaks where the spurious retention of break functions can be controlled
through a chosen significance level of selection. The multi-path algorithm (Autometrics) outperforms
shrinkage-based estimators, especially when facing multiple breaks. We provide some initial insight into
uncertainty on the break date by assessing the retention probability of mistimed break estimators. Break-
indicator saturation appears to be effective for detecting large-scale temperature responses to volcanic
eruptions. This was shown using surface air temperature output from a combined LM and historical climate
simulation. Statistically searching over a set of break functions consistently detects large eruptions from
the simulated surface air temperatures without prior knowledge of their occurrence. This holds promise
for future volcanic detection efforts using real-world proxy reconstructions of temperature variability over
the last several millennia. More broadly, break detection using designed functions and indicator saturation
provide a framework to analyse the detection of breaks of any designed shape at any point in time, with
applications ranging from the detection of previously unknown events (such as shifts in time series due
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to measurement changes or policy impacts), to acting as a robust forecasting device during breaks – from
economic recessions to volcanic eruptions.

Acknowledgments

We thank Vanessa Berenguer-Rico, Guillaume Chevillon, Niels Haldrup, Eric Hillebrand, Søren Johansen,
Katarina Juselius, Oleg Kitov, John Muellbauer, Bent Nielsen, Max Roser, Timo Teräsvirta, and anonymous
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Notes

1. For example, SIS exhibits higher power in detecting step shifts than using impulses alone – see Castle
et al. (2015b).

2. For k breaking variables, this implies augmenting the full-sample model by k (T × T ) matrices.
3. While the framework presented here provides an encompassing specification for many break types,

the construction of D is not limited to this particular case. Additional sets of specifications for step
shifts are considered in Castle et al. (2015b). The appeal of the specification here is that the definition
of D allows for a general framework under which properties can be analysed where many of the
previously proposed cases are a special case of D.

4. In a simple split-half analysis, there may be an identification problem if the sample-split coincides
perfectly with a structural break. This is overcome by varying the block partitioning as is done in the
software implementations of the algorithm.

5. See the supplementary material for proof.
6. Proof given in the supplementary material.
7. In practice, selection bias can be controlled using bias correction after orthogonalization of the

selected regressors – see Hendry and Krolzig (2005) for the orthogonal case, Pretis (2015b) for bias
correction of step functions and Castle et al. (2015a) for bias correction with correlated variables.

8. The split-half approach is not the only way of analysing the theory of indicator saturation: rather than
splitting the functions into a first and second half, alternatively one could consider including every
other break function in two sets such that D1 covers breaks at t = 1, 3, 5 . . . and D2 covers breaks at
t = 2, 4, 6 . . .. Retention frequencies in this setup can be derived using the results in Section 2.1.3.

9. While our analysis concentrates on small-sample properties, the asymptotic rates of convergence will
generally depend on the specification of the break function – varying scaling to obtain non-degenerate
limit distributions may therefore be required. In the case of step functions (dt = 1, L = T ) and the
simple no-intercept case, pre-multiplying the estimator by

√
T yields asymptotic normality for the

break estimator when T −1∑T1+L−1
t=T1

d2
t = T −1 L → τ as T → ∞. In other words, the ratio of break

length to the sample size remains constant as the sample size increases – this can be interpreted
as obtaining more information on the break period or sampling at higher frequencies as T → ∞.
A similar analysis can be applied to the volcanic functions considered here, where either the break
length scales with the sample size, or alternatively the magnitude increases similar to the asymptotic
analysis for a single impulse in Doornik et al. (1998).

10. For a volcanic break, λ denotes the entire temperature response over the specified length L , thus the
trough will be less than λ. For the present specification of L = 3, the initial trough of the function
equals 0.58λ.

11. All simulations and applications using the multi-path search Autometrics are coded using the Ox
programming language (Doornik, 2009b). Simulations using the Lasso are coded using the package
glmnet (Friedman et al., 2010) in R.
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12. Results of high gauge for high significance levels (e.g. α ≥ 0.05) are consistent with previous results
found by Bergamelli and Urga (2013) for step functions. Once a large number of spurious breaks
is retained, it becomes more likely to keep additional spurious breaks. The results for the gauge in
Table 3 are consistent with the distributional theory for the gauge in Johansen and Nielsen (2016).

13. Where T −1X′X
P→ 
X X for stochastic X, and D1 is scaled such that either the break length scales with

the sample size, or alternatively the break magnitude increases such that T −1D′
1D1 → 
D1 is constant,

and for stochastic X it holds that T −1(û′û)
P→ �D1D1|X where û = D1 − X�̂ from orthogonalization

regressions. See the supplementary material for a proof based on Hendry and Johansen (2015).
14. See the supplementary material for a derivation. For break detection, the function is normalized to

sum to 1 over L.
15. Unless otherwise stated, results refer to the intercept-only case. The intercept term and the

autoregressive terms are not selected over.
16. Given the specification of the volcanic break function and if σε was the only noise added to the

DGP, then the approximate expected non-centrality for a single unknown break using (17) is
λ(0.2

√
3.7))−1 ≈ 0.4−1λ where λ is the full temperature response following a volcanic eruption.

Since the specified volcanic function has an approximate trough of 0.58 λ, a temperature drop
of 1◦ after a volcanic eruption implies that overall λ ≈ 1.7. Thus in absence of additional noise
and for a single volcanic break with an immediate temperature response of 1◦, the expected t-
statistic is approximately ≈ 4.3. The analytical probability of detecting this eruption is roughly:
P(|t | > cα) ≈ 0.96 forα = 0.01. Large eruptions should be consistently detected if the break function
is correctly specified and if σε was the only source of noise.

17. The total sample size is T = 1155, resulting in nine subsamples of T = 115 observations and one
subsample of T = 120 observations. Significance levels are scaled accordingly. Using a 3 GHz
processor, the subsample approach requires ≈5 seconds to cover the entire sample for one replication
(across 10 subsamples), compared to ≈5 minutes for one replication using a full-sample approach.

18. Retained volcanic functions with positive coefficients are dropped since these likely constitute positive
outliers. The focus here lies on the detection of volcanic events which have a negative temperature
response.

19. There is considerable uncertainty on the impact of the Laki eruption, for example, Schmidt et al.
(2012) find the observed NH peak temperature response to Laki to be around −1◦, suggesting that
the LM simulation used here may not reflect the entire impact of the eruption, while D’Arrigo
et al. (2011) argue that Winter impacts were likely independent of the Laki eruption. Notably, the
eruption’s noxious fumes at the time were discussed in White’s (1789) treatment of phenology.

20. The robust forecasting device is based on first differences using the forecasting model for T + 1|T
given by: yT +1|T = yT + ρ̂�yT where ρ is estimated using an AR(1) model. No error bars are shown
on the robust forecast in Figure 10 (dot-dashed) due to the non-standard distribution of the forecast.
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Epprecht, C., Guegan, D. and Veiga, Á. (2013) Comparing variable selection techniques for linear regression:
Lasso and autometrics. Documents de travail du Centre d’Economie de la Sorbonne 2013.80.

Ericsson, N.R. (2012) Detecting crises, jumps, and changes in regime. Working Paper, Board of Governors of
the Federal Reserve System, Washington, DC.
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