
What was Earth’s climate 
like before we were 
measuring it?
To comprehend the full impact of climate change, now and in the future, we need a deeper 
understanding of past conditions on Earth. Jason E. Smerdon shows how palaeoclimatology 
– with the aid of statistical methods – can help us peer back in time 
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But how big is the climate perturbation that we are causing? 
How much has the climate actually warmed and cooled in 
the past? How closely have atmospheric CO2 concentrations 
and global surface temperatures varied together through 
time, and how have their changes impacted other aspects 
of the climate system? These questions are the provenance 
of palaeoclimatology and answered with data from 
climate proxies. 

Classic examples of climate proxies include the thickness 
and density of annual tree rings, ice cores taken from polar ice 
sheets, and the shells of micro-organisms embedded in ocean 
sediments. But climate proxies can take more exotic forms. 
Fossil remains from a giant boid snake that lived 58–60 million 
years ago have suggested warmer temperatures in the tropics 
during that time because the total body size of these reptiles 
was controlled in part by mean annual temperatures2 (given 
that the prehistoric snake was almost twice as large as a 
modern green anaconda, we can be thankful for the estimated 
tropical cooling since that time). Although this is an unusual 
example, it illustrates that as long as there is a discernible 
connection between ambient climate and a given system, 
and as long as components of that system are preserved as 
archives for scientists to measure, climate proxies can be 
derived from many things.
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The Earth is warming, and scientists overwhelmingly 
agree that human activities are to blame.1 Decades 
of research have established this consensus, yet 
there remain some who argue that we cannot know 

whether similar climatological changes occurred in the past, 
before the advent of industrialised societies. They may point 
to the fact that direct meteorological observations dating back 
more than 200 years are only available in a few locations, 
and global networks of observations are only available for 
100–150 years. This amount of time is insufficient to fully 
characterise how the climate varies over centuries or how 
large changes to the climate system were manifest in the 
past. Understanding the full impact that human activities are 
having on our climate today, and are likely to have in the future, 
therefore requires estimates of past climate conditions, long 
before humans began measuring and altering it. 

Palaeoclimatology, or the study of past climates, extends 
our understanding of climate back thousands to millions of 
years. Among other things, the science has characterised the 
ebb and flow of ice ages, the impacts of the long-term carbon 
cycle, and how large volcanic eruptions in the tropics affect 
climate. These insights are derived from natural archives called 
climate proxies – ice, mud, bone and wood – that preserve a 
signature of what the climate was like at the time in which they 
were formed. Interpreting these archives and understanding 
how they represent past climates is a complicated endeavour, 
however, and statistics is often at the centre of how such 
records are interpreted and how they are used to infer 
connections between the past and present. 

Observing the present, inferring the past 
Since the mid-twentieth century, concentrations of 
atmospheric carbon dioxide have increased nearly 
exponentially to over 400 parts per million today. Geological 
evidence suggests that a concentration that high has not 
occurred for 3–3.5 million years. Meteorological records 
from the mid-nineteenth century to the present reveal that 
the mean surface temperature of the planet also has rapidly 
increased (Figure 1): between 1880 and 2012, global mean 
annual surface temperatures have warmed by an estimated 
0.83–0.87°C1, 2015 was the warmest year on record, and 2016 
is expected to set a record once again. A host of additional 
observations of the atmosphere, ocean, biosphere and 
cryosphere also indicate that the Earth is warming, including 
melting sea ice and polar ice caps, rising sea levels, and 
increases in extreme weather events. As to the connection 
between these observations, state-of-the-art climate models 
demonstrate that the majority of warming since the mid-
twentieth century is caused by atmospheric CO2 increases due 
to human activities.1 
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FIGURE 1 Global mean temperature anomalies, as estimated by the NASA Goddard Institute for Space 
Studies using land and ocean observations. The year 2015 was the warmest year on record. The inset 
shows the monthly anomalies for 2015 and 2016, the latter of which is on track to be even warmer 
than the former and therefore set a new record. Data available at data.giss.nasa.gov/gistemp
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The way in which proxy archives are preserved determines 
how they can be used to study past climate and over which 
time periods. Tree cores taken from living trees are used for 
studying climate over the last several thousand years, but 
the life span of trees limits their use further back in time. In 
contrast, ice cores are limited by how long a given ice sheet or 
glacier has existed; the longest ice cores from Antarctica go 
back almost a million years. Ocean sediments extend back in 
time further still and can preserve archives of ocean conditions 
tens of millions of years into the past.

In general, the further back in time a proxy extends, the 
grainier its temporal resolution becomes. For example, tree 
rings can provide seasonal or annual resolution, while ocean 
sediments typically provide estimates of average conditions 
over centuries or millennia. For this reason, the Common 
Era (CE; the last two millennia) contains the most abundant 
collection of seasonally and annually resolved proxy records 
spread globally across land and sea.3 When combined with 
data from our modern measurements, the CE is the best-
documented period of climate variability in Earth’s history and 
therefore an important target of palaeoclimatic study.

Infilling the void
It is crucial to understand that proxy archives are not direct 
measures of climate. They provide measurements of climate-
influenced variables, but never direct measures of quantities 
such as average summer surface air temperatures or total 
annual rainfall. One consequence of this is that they are rarely 
sensitive to a single climatological quantity, and are often 
subject to site-specific causes of ‘noise’ that can be affected 
by local environmental conditions. Proxy records are also not 
evenly spread over time and geography, which makes them 
subject to sampling biases (Figure 2). The means by which 
measurements of proxy archives are interpreted as indicators 
of climatic conditions is therefore a fundamental challenge of 
palaeoclimatology, and one well suited to statistical methods. 

A particularly apt example of statistical applications in 
palaeoclimatology involves the use of large networks of 
multiple kinds of proxy archives to derive reconstructions of 
hemispheric and global fields of climate during the CE. These 
fields can take many forms, but are easiest to imagine as 
gridded maps of climate variables averaged over seasons or 
years. Think of a series of paper maps stacked in one pile: each 
page represents a slice in time and the maps on the page are 
seasonal or annual atlases of a climate variable of interest 
(such as temperature or rainfall). In aggregate, the stack of 
maps represents a series of spatial fields incremented evenly 
in time over all or part of the CE. 

Reconstructions of the stacked maps described above 
are called climate field reconstructions (CFRs), and Figure 3 
schematically represents the data matrix that is characteristic 
of the CFR problem. The big, empty block in the lower part 
of the matrix is the reconstruction period. The missing data 
for this period can be estimated by identifying relationships 
between the proxy records (in the upper block of the matrix) 
and the instrumental data (in the bottom right block of the 
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FIGURE 2 (top) Five-degree latitude–longitude grid cells that contain at least one proxy record 
used in a contemporary gridded temperature reconstruction6 spanning approximately the last 
1500 years. The network contains multiple proxies that include tree rings, corals, ice cores, lake 
sediments and cave deposits. (bottom) The temporal availability of proxies in the network at the 
beginning of each century illustrates the rapid reduction in the number of available high-resolution 
proxies back in time
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FIGURE 3 Schematic time–space data matrix representing the available proxy and instrumental 
data sets and their period of overlap. White areas of the matrix represent missing data in the proxy 
and instrumental grids, and the large white block containing the question mark is the region of 
the data matrix that must be estimated once a relationship is determined between the proxy and 
instrumental data during the calibration period
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matrix). This objective is not unlike the famous “Netflix 
problem” in which viewers’ ratings of a small number of 
movies are used to estimate their preferences for a much 
larger set of movies they have not seen, based on the ratings 
of other viewers with similar taste. In much the same way 
that Netflix might exploit the overlap in movie preferences 
between its users, the goal of CFRs is to estimate the values 
of a climate field in the reconstruction period using the 
relationship between the overlapping interval of the proxy and 
instrumental data during the so-called calibration period. 

A number of statistical frameworks have been used for 
the CFR problem, but the vast majority have applied forms of 
multivariate linear regression.4 This methodology is further 
discussed in the boxout (right), but the underlying challenge of 
the approach is the limited amount of information available for 
deriving the regression coefficients and thus the proxy-based 
estimate of climate fields during the reconstruction period. 
In other words, the effort is a classic ill-posed estimation 
problem and various means of constraining the solution or 
adding information are pursued through a technique known 
as regularisation. 

Consider a facial recognition problem in which one photo 
is compared to many others in search of a match. It may be 
both computationally impossible and yield inaccurate results 
to compare photos at a pixel-to-pixel level, but there are 
basic facial patterns that can be identified and used for the 
comparison. A search on these patterns alone would significantly 
cull the number of possible facial matches and therefore reduce 
the amount of information to be compared. Similarly, one form of 
regularisation in the CFR problem is to identify a few large-scale 
patterns that represent broad circulations in the climate system 
and explain a large portion of the spatiotemporal variability 
in a climate field. Targeting just these leading patterns in the 
regression problem, instead of the complete field, therefore 
constrains the information that is to be reconstructed. 

The challenge with regularisation is optimising the shape 
and strength of the constraints to avoid overfitting (if the 
information is not constrained enough) or underfitting (if the 
information is constrained too much). The manner and amount 
of regularisation and the consequent impacts on derived CFRs 
therefore have been a subject of investigation for well over a 
decade. These efforts have in turn yielded reconstructions that 
describe important characteristics of CE climate.

Progress and challenges
Figure 4 (page 28) is a summary of state-of-the-art 
reconstructions of Northern Hemisphere mean temperatures, 
either derived from direct reconstructions of the mean 
temperature index or aggregated from temperature CFRs. The 
differing estimates are the result of specific methodological 
and proxy selection choices made by various research teams. 
While uncertainties remain, the results in aggregate have 
placed contemporary global warming in the context of a 
longer climatic history and indicated that the most recent past 
decades are likely to have been the warmest in the Northern 
Hemisphere in the last 800–1400 years. Similarly, the spatial 

Reconstructing climate fields with 
multivariate linear regression
The majority of CFR methods relate a matrix of climate proxies to a matrix of climate 
data during a common time interval, generally termed the calibration period (see 
Figure 3), using a linear model. If P is an m × n matrix of proxy values and T is an 
r × n matrix of instrumental climate records, where m is the number of proxies, r 
is the number of spatial locations in the instrumental field, and n is the time of 
overlap between the proxy and instrumental data, the linear relationship is written

T = BP + ε,

where B is an r × m matrix of regression coefficients, and ε is the residual error (the 
T and P matrices are assumed to be centred and normalised over the time interval 
of n). According to standard linear regression theory, if B is estimated as

B̂ = (TP')(PP')–1,

where the prime denotes the matrix transpose, the sum of the squared residuals, 
ε, is minimised for all r spatial locations of the estimated climate variable. The 
reconstructions can then be carried out using the regression matrix B̂ during 
periods in which proxy data are available but observed climate variables are not. 

The above formalism works best when the system is overdetermined, i.e. 
n >> m, such that the inversion in B̂ can be reliably performed. The challenge 
for CFR methods is that in most practical situations this condition is not met. 
In such cases, the estimate requires some form of regularisation to apply 
additional constraints. 

Two forms of regularisation are often adopted in the CFR context. The first 
involves covariance-based matrix factorisations (e.g. singular value decomposition 
or principal component analysis) of the climate and proxy matrices and subsequent 
rank reductions. The rank reductions are applied under the assumption that 
large-scale climatic circulation processes drive covariance patterns in climate 
fields that are expressed as leading spatiotemporal covariance patterns in both T 
and P. Reduced-rank representations of the two matrices therefore filter small-
scale variability and noise and comprise good approximations of the full-rank 
versions of T and P, which can in turn be used to estimate B̂. Common CFR methods 
adopting these strategies are principal component regression and canonical 
correlation analysis.

The second form of regularisation is a family of methods commonly referred to 
as penalised regressions or maximum likelihood methods such as ridge regression 
or lasso. These methods estimate modified versions of B̂ using a trade-off between 
the loss (error) and likelihood or fit. This latter penalty assumes that regression 
coefficient values that are closer to zero are most likely, and therefore prioritises 
estimates of B̂ that include coefficients meeting this criterion. The magnitude 
of this penalty is determined by the value of regularisation parameters, which 
determine the degree of the trade-off between loss and fit. Overall, selecting rank 
reductions of the climate and proxy matrices and the regularisation parameters 
associated with penalised regressions are steps of technical importance and have 
been an important part of the work to improve CFRs.4

Palaeoclimatology tells us 
about climate variability in 
the past, but can also help 
characterise risks that are 
yet to come
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information in CFRs has characterised important past patterns 
of variability. Figure 4 also includes a single-year example 
from a CFR of normalised soil moisture anomalies that have 
been used to characterise drier and wetter periods in Earth’s 
history. This information has been used to understand climate 
impacts on past societies such as the Ancestral Puebloan 
civilisations of the American Southwest and the civilisation of 
Angkor that existed between the ninth and fifteenth centuries 
in the area of modern-day Cambodia. 

Despite the many successes of CE reconstruction efforts, 
some methodological studies have nevertheless indicated that 
the fundamentally data-limited CFR problem is still subject 
to uncertainties. For instance, some experiments suggest 
that many CFR methods estimate global or hemispheric 
mean temperature indices rather accurately, but the spatial 
characteristics of the fields are subject to large uncertainties.5 
Reducing these uncertainties is therefore an important 
contemporary research focus.

CFR improvements rest, first and foremost, on the 
acquisition of more high-quality proxy information from 
undersampled regions (Figure 2, page 26). Methodological 
advances are, however, also important for moving forward. 
New CFR methods are including information about how 

proxies respond to multiple climatological influences, 
based on growing efforts to numerically model how proxies 
respond to climate. Simulations from climate models are 
also being used to provide independent physical estimates 
of how climate varies in space and time; this information 
can in turn be used with proxy data in CFR methods. Such 
developments are at the forefront of efforts to reconstruct 
CE climate and driving new and exciting insights into the 
climate of the past.

A vital perspective
Palaeoclimatology is vital for understanding how the 
climate naturally varies when instrumental observations 
are not sufficient for the task – a motivation with practical 
implications in areas such as infrastructure and policy 
planning. Consider, for instance, the water allocations 
drafted in the 1922 Colorado River Compact, which were 
based on absolute (not proportional) amounts of water. 
The agreement might have been very different if the 
stakeholders had realised that the early twentieth century 
was an anomalously wet period in the American Southwest 
and that decades-long droughts unlike anything they 
had seen firsthand were also a feature of the region. 
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FIGURE 4 Example reconstructions of (top) Northern Hemisphere mean temperatures. The figure is 
modified from Figure 5.7 in the Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change and collects the range of contemporary reconstructions based on different methods and 
proxy network selections. All series represent anomalies from the 1881–1980 mean (horizontal 
line) and have been smoothed with a filter that reduces variations on time scales less than about 
50 years. (bottom) A spatial map of a reconstructed soil moisture index in the year 1528 CE (data 
courtesy of E. Cook at the Lamont-Doherty Earth Observatory of Columbia University). The Palmer 
Drought Severity Index is a normalised soil moisture metric in which positive (negative) deviations 
represent wetter (drier) than normal conditions
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Palaeoclimatology can therefore inform us about the range 
of natural climate variability in the past, but it can also help 
us characterise risks that are yet to come. 

In addition to natural variability, the climate of the future will be 
impacted by human activities. Climate models are critical tools 
used to characterise risks associated with these activities and 
they are continuously being improved and updated as computing 
technology evolves and scientific understanding expands. 
Evaluating these evolving tools over palaeoclimatic intervals 
is one means of refining them, and robust palaeoclimatic 
reconstructions are the bedrock information by which these 
evaluations are possible. Advances in the application of statistical 
methods that are used in these reconstructions are therefore 
a central aspect of how the field is moving forward, and it is 
through the joint application of palaeoclimatic and statistical 
methods that the past can ultimately serve as an essential and 
quantitative guide for the future. n

Note
I am grateful to Alexey Kaplan and Stacy Morford at the 
Lamont-Doherty Earth Observatory of Columbia University 
and the Significance editorial board for their insightful 
comments on early drafts of this manuscript. 
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