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ABSTRACT 

Recent geochemical studies of MORB genesis suggest that at least some degree of chemical disequilibrium occurs during 
the transport of magma to the surface. If disequilibrium transport does occur in the mantle, it would seem to preclude melt 
being distributed in a porous network on grain boundaries that could rapidly re-equilibrate with the solid. The questions 
remain however, as to how big a melt "channel" is required to produce disequilibrium and whether flow in such channels 
would violate assumptions inherent in the equations of magma migration. Using a series of simple physical scaling 
arguments, we quantify the requirements for chemical disequilibrium and lay out the conditions for which the melt 
migration equations are valid. These arguments show that a vein network with veins ~ 10 cm apart is sufficient to cause 
significant disequilibrium. More precisely, these arguments show that to maintain equilibrium, the solid-state diffusion 
coefficient would need to increase by 2-4 orders of magnitude for every order of magnitude increase in channel spacing. 
Nevertheless, because the equations of magma migration are a macroscopic description of melt flow, they can readily 
describe even large scale networks of melt channels. By demonstrating the fundamental scalings governing the chemistry and 
motion of partial melts, these simple arguments show that, while the chemistry may be extremely sensitive to the microscopic 
distribution of melt, our physical understanding of magma migration is robust. 

1. Introduction 

The chemical  consequences  of the separa t ion  
of magma  from its solid res idue is one of the least 
unde r s tood  processes in the genera t ion  and  ex- 
t ract ion of part ial  melts.  In  part icular ,  one  of the 
more  surpr is ing results of recent  models  of 
M O R B  genesis [1,2] is that  these models  work 
quite  well wi thout  actually inc luding the physics 
of melt  t ransport .  Even  with the unreal is t ic  as- 
sumpt ion  that  the melt  and matrix do not  sepa- 
rate as mel t ing  proceeds,  these parameter iza t ions  
still can reproduce  the vo lume and chemistry of 
M O R B  to within m e a s u r e m e n t  error  by simply 
mixing melts  p roduced  at all depths.  Never the-  
less, it seems reasonable  that  melts  must  separa te  
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ra ther  efficiently to produce  the oceanic  crust. 
These  conflicting results suggest that  e i ther  the 
changes in composi t ion and  t empera tu re  due to 
melt  migra t ion do not  affect the thermodynamics  
of m e l t i n g - - o r  that  the melt  separates  in a man-  
ne r  such that it does not  in teract  with the solid 
mant le  it must  pass through.  This second sugges- 
tion, that  mel t  migra t ion occurs in a state of at 
least partial  chemical  disequi l ibr ium, is also sup- 
por ted  by trace e lement  studies [3-5]. 

If d isequi l ibr ium t ranspor t  does occur in the 
mant le ,  it would seem to preclude melt  be ing 
dis t r ibuted in a porous  ne twork  on grain bound-  
aries that  could rapidly re-equi l ibra te  with the 
solid. The quest ions remain,  however, a s  to how 
big a melt  " c h a n n e l "  is requi red  to produce  dis- 
equi l ibr ium and whether  flow in such channels  
would violate assumpt ions  inhe ren t  in the equa-  
t ions for flow in deformable  "po rous  med ia"  used 
by many  workers [6-11] to study magma  migra- 
tion. 

0012-821X/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved 
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The purpose of this paper is to develop a 
better understanding of the fundamental scaling 
relations that control the chemistry and flow of 
partial melts. Through a series of simple scaling 
arguments, we show that the presence of chemi- 
cal equilibrium is extremely sensitive to the mi- 
croscopic distribution of melt (a network of 1 mm 
wide veins spaced only ~ 10 cm apart is sufficient 
to produce strong disequilibrium transport over 
10-100 km). However, because the equations of 
magma migration are a macroscopic description 
of melt flow, they can readily describe even large 
scale networks of melt channels and remain valid 
over a wide range of parameters. 

2. A simple scaling argument 

Rather  than solve the full set of non-linear 
equations for coupled flow and diffusion (for this 
see Kenyon [12]), it is often equally instructive to 
develop a simple approximate solution that 
demonstrates the fundamental scalings in the 
problem. In the problem of transport and equili- 
bration, the two competing processes are the 
transport of chemistry by the melt and the diffu- 
sion of chemical species in the solid. To maintain 
equilibrium, the time it takes for a species to 
diffuse through the solid between melt channels 
must be short compared with the time required 
for it to be carried out of the system by the melt. 
Figure 1 shows a layer of depth L of an idealized 
permeable medium of tubular melt channels each 
separated by a distance d. As with all diffusion 
problems, the characteristic time for a species to 
diffuse between channels is of the order: 

d 2 
tdiff  m D'--~ (1) 

where D s is the solid state diffusion coefficient. 
Similarly, the time it takes to advect across the 
entire layer is approximately: 

L 
t a d  v = - -  (2) 

w 0  

with w 0 being the melt velocity. The ratio of 
these two times is the Peclet number: 

Wo dz 
Pe = (3) 

DsL 
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Fig. 1. Schematic diagram of a layer of depth L of an ideal 
permeable medium consisting of a uniform network of tubes 
spaced d apart. The basic requirement for chemical equilib- 
rium is that the time it takes to diffuse through the solid 
between the melt channels is small compared with the time it 

takes to advect across the layer at melt velocity w 0. 

the dimensionless number that describes the rela- 
tive contributions of diffusion and advection. 

As long as the diffusion time is small com- 
pared with the advection time, equilibrium can 
be maintained. More complete analysis of advec- 
tive-diffusive problems (e.g. [12,13]) shows that if 
Pe << 10, diffusion dominates and the melt can 
rapidly equilibrate. If Pe >> 10, disequilibrium re- 
sults. If the Peclet number of the system of inter- 
est can be estimated, it becomes straightforward 
to determine whether equilibrium is likely. This 
sort of scaling argument is not particularly new; 
however, combining this result with the basic 
understanding of melt migration yields additional 
interesting results. 

The principal unknown quantity in eq. 3 is the 
appropriate value for the melt velocity. If the 
medium is permeable and the flow of melt can be 
described by Darcy's law, then a reasonable ap- 
proximation for the melt velocity is the percola- 
tion velocity: 

k,~ Apg 
w° = ~b/z (4) 

where k6 is the permeability, Ap = P s -  Pf is the 
density difference between solid and liquid, g is 
the acceleration due to gravity, ~b is the volume 
fraction of melt present or porosity, and tz is the 
melt viscosity. Moreover, for a permeable system 
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of interconnected melt channels, the permeability 
takes the general form: 

d2q~ n 

k6--~ b (5) 

This equation shows that the permeability de- 
pends on the spacing of the channels, the volume 
fraction of melt  to some power n and a constant 
b. Both n and b are affected by changing the 
geometry of the permeable  network. It should be 
noted that eq. 5 does not assume a priori that the 
channel spacing is equivalent to the grain diame- 
ter (i.e. that d - a ) .  Section 5 shows that the 
equations for "porous  flow" are quite general 
and make no assumptions about the microscopic 
geometry of melt  distribution. 

Substituting eqs. 4 and 5 into eq. 3 gives the 
Peclet number  appropriate  for flow in a perme-  
able medium: 

q~n- 1 Apgd 4 
Pe (6) 

bM-,Ds 

For a more intuitive understanding of this expres- 
sion, we can assume marginal equilibrium (Pe = 
10) and rearrange eq. 6 to show that the solid 
state diffusivity must scale as: 

D eq > A d  4 (7) 

for the melt  to remain in equilibrium with the 
matrix. Here:  

i f )n-  1 Apq 
A 

lOblz L 

Inspection of eq. 7 shows immediately the ex- 
t reme sensitivity of chemical equilibrium to the 
channel spacing. This equation states that to 
maintain marginal equilibrium, the solid state 
diffusivity must increase by four orders of magni- 
tude for every order of magnitude increase in the 
channel spacing. Assuming a layer depth of L = 
50 km (i.e. roughly the depth of the partially 
molten region at ridges) and using the parameters  
given in Table 1, eq. 7 suggests that even a m e l t  
network with 1 mm wide veins spaced 10 cm 
apart  requires Ds eq >> 10-12 m 2 S-1 tO maintain 
equilibrium. This value should be compared to 
estimates for the diffusion coefficient D s ~ 10-14 
- -  10--19 m 2 S-1 for cations such as Sr, Sm, and 
Ca in olivine and clinopyroxene [14-16]. Of  

TABLE 1 

Parameters used to calculate D~ q as a 
ing d 

function of vein spac- 

Variable Meaning Value Dimension 
used 

b constant in permeability 1000 none 
g acceleration due to gravity 9.81 m s -2 
L layer depth 5× 104 m 
n exponent in permeability 2 none 
/a. melt shear viscosity 10 Pa s 
pf density of melt 2800 kg m-3 
Ps density of solid 3300 kg m-3 
A p  = P s  - -  P f  5 0 0  kg m -3 

porosity 0.01 none 

course, the actual value of O eq will change with 
different assumed parameters .  Nevertheless, be- 
cause of the strongly non-linear scaling of D~ q (or 
Pe) with d, even order of magnitude changes in 
the value of A require only small changes in the 
channel spacing to compensate.  

3. A more refined calculation: constant  flux 

The strong d 4 scaling of the previous problem 
has been noted before [17] and arises from the d 2 

dependence of the diffusion time (as noted by 
[12]) and the d 2 dependence in the melt velocity. 
This calculation, however, assumes implicitly that 
the porosity remains constant as the channel 
spacing changes. If  this is the case, inspection of 
eqs. 4 and 5 shows that the melt  flux ~bw 0 will 
also increase at constant porosity. Appendix A, 
however, shows that for steady state melt  extrac- 
tion from the mantle, a more reasonable condi- 
tion is that the local melt flux should remain 
constant as the spacing changes. In steady state, 
the m e l t  flux at any point must Jequal the total 
amount of melt  produced up to that point, re- 
gardless of the permeability structure. Figure 2 
illustrates the difference between a simple per- 
meable network that conserves porosity and one 
that conserves flux. 

If the flux q = ~bw 0 is held constant, eqs. 4 and 
5 can be rearranged to show that the porosity 
must change with d as: 
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Fig. 2. Schematic diagram showing the difference between a 
porous network that conserves porosity and one that con- 
serves melt flux. (a) Initial porous network with channel 
spacing d. (b) Network with spacing 2d and the same porosity 
(volume fraction of melt) as (a). (c) Network with spacing 2d 
and the same flux as (a). For a series of parallel tubes, the 

melt flux is proportional to q~2. 

Subs t i tu t ing  into eq. 6 y ie lds  the  new equ i l ib r ium 
r equ i r emen t :  

2 ( n  + 1) 

D~ q > Bd " (9)  

with 

q(,- 1)In [ Apg ] tin 

B 10L [ bg, 

F o r  the  cons tan t  flux p rob l em,  the  scal ing re la-  
t ions of  D~ q with channe l  spac ing  now d e p e n d  on 
the  fo rm of  the  pe rmeab i l i ty ,  in pa r t i cu l a r  wi th  n, 
the  deg ree  of  non- l inea r i ty  be tween  poros i ty  and  
pe rmeab i l i ty .  

Es t ima te s  of  n range  f rom ~ 1 -5  with m o r e  
usual  e s t ima tes  b e t w e e n  n = 2 - 3  [18,19]. F o r  n = 
1 [20], the  p r o b l e m  reduces  to the  prev ious  case  
as the  mel t  veloci ty  becomes  i n d e p e n d e n t  of  
porosi ty .  However ,  a va lue  of  n = 1 also m e a n s  
tha t  the  veloci ty  of  a t race  e l e m e n t  is independent 
of  how much  mel t  is p resen t .  F o r  this, and  o ther ,  
reasons  n = 1 is a somewha t  cont rovers ia l  value.  
F o r  a s imple  system of  tubes ,  n = 2  [21] and  
Deqac d 3. A ser ies  of  p l a n a r  channe l s  or  veins  
gives n = 3 (Ds eq ~ d 2"7) and  as n ~ ~, Ds eq --~ d 2. 

W h i l e  changing  the  va lue  of  the  exponen t  n 
changes  the  scal ing re la t ions ,  the  effect  of  chang-  
ing the  channe l  spac ing  is still s t rongly non- l in-  
ear .  F o r  n ~ 2 - 3 ,  one  o r d e r  of  m a g n i t u d e  change  
in spac ing  still r equ i res  app rox ima te ly  3 o rde r s  o f  

m a g n i t u d e  change  in diffusivity to ma in ta in  equi-  
l ibr ium. 

To eva lua te  eq. 9 for the  man t l e  requ i res  a 
r e a sona b l e  e s t ima te  of  the  mel t  flux q. A p p e n d i x  
A gives a s imple  scal ing a r g u m e n t  for q based  on 
1-D s teady  s ta te  ad iaba t i c  mel t ing  and  ex t rac t ion  
at  r idges.  This  a r g u m e n t  shows tha t  a useful  
e s t ima te  of  the  ma x imum s teady  s ta te  mel t  flux 
b e n e a t h  a r idge  is: 

PsFmaxWo 
qmax ~ (10) 

Pf 

whe re  W 0 is the  upwel l ing  ra te  of  the  man t l e  
b e n e a t h  a r idge,  and  Fma x is the  ma x imum d e g r e e  
of  pa r t i a l  mel t ing  on the  r idge  axis. Fma x should  
not  be  confused  with the  max imum mel t  f rac t ion  
~bma x. These  are  the  same only if the  mel t  does  
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Fig. 3. Constant flux calculation of diffusion coefficient re- 
quired for marginal equilibrium (Pc = 10) as a function of 
channel spacing and permeability exponent n. For this plot, 
W 0 = 5 cm/yr, Fma X = 0.25. Other parameters are given in 
Table 1. For a given exponent and actual diffusion coefficient, 
Ds, the system will be in equilibrium if D s > Ds eq. If D s plots 
below the curve, disequilibrium is likely. The shaded area 
shows the estimated range of diffusion coefficients for various 
cations (Sr, Sm, Ca, AI) in olivine and clinopyroxene at 

temperatures near 1300 ° C. 
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not  separate  f rom the solid (i.e. ba tch  melting). 
Figure 3 shows the boundary  be tween equilib- 
r ium and disequilibrium t ranspor t  (Ds ~q) for a 
system upwelling at 5 c m / y r  with Fma x ~ 0.25 and 
n = l - 5 .  For  n = 2  and D s = 1 0  -15 m e s - l ,  
marginal  equilibrium is a t ta ined for a spacing of  
only ~ 3 cm, i.e. even a porous  system with 1 cm 
between veins (or a 1 cm grain size) may show 
some signs of  disequilibrium. 

While the Peclet  number  is clearly most  sensi- 
tive to the channel  spacing, this solution can also 
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Fig. 4. Calculation of diffusion coefficient required for 
marginal equilibrium (Pe = 10) as a function of n and the 
height above the base of the melting region, conserved flux 
solution. For this problem W 0 = 1 cm/yr, d = 2 cm, F m a  x - 

0.25 and n = 2-4. This problem uses the result of Appendix A 
that the melt flux, q(z) increases linearly with height. For a 
fixed value of n, larger values of the diffusion coefficient are 
required to maintain chemical equilibrium as the flux in- 
creases. Note also, that if melting is initially confined to 
tubular channels on grain boundaries, but evolves to larger 
spaced vein networks, then the actual profile of Ds~q(z) would 
evolve from n = 2, d ~ 1 mm-1 cm, to perhaps n = 3, d ~ 1-10 
cm. Thus, the increase in channel spacing would be offset by 
the change in channel geometry. To understand this quantita- 
tively, however, requires a proper physical mechanism to 

explain the growth of channels. 

be used to assess the effect of  changing o ther  
impor tant  parameters .  For  example, Fig. 4 dem- 
onstrates  how to est imate the potent ial  degree of  
equilibrium existing in various regions in the 
melt ing column. This figure uses the result of  
Appendix  A that  the melt flux increases roughly 
linearly with height above the base of  the melt ing 
zone and shows the value of  Ds~q(z) required to 
maintain equilibrium for a system with upwelling 
velocity W 0 = 1 c m / y r ,  d = 2 cm, and Fma x = 0.25. 
This figure shows that, depending  on the parame-  
ters, some regions of  the mant le  may record 
equilibrium while others  would show disequilib- 
rium. This result is consistent with results f rom 
uranium series disequilibrium [22]. It is also inter- 
esting to note  that, for a given channel  spacing, a 
permeable  system of  tubes (n = 2) is more  likely 
to be in disequilibrium than a system of veins 
(n = 3). This may have interesting consequences  
for chemical signals if the form of  the permeabil-  
ity changes  with height. Most  important ly this 
figure shows how simplistic scaling arguments  can 
be used to est imate the behaviour  of  geologically 
reasonable  problems over a wide range of  param- 
eters. 

4. Evaluating the scaling arguments: disequilib- 
rium transport of trace elements 

These  simple scaling arguments  suggest that  
small changes  in the distribution of  melt  can have 
p rofound  effects on the ability of  the melt  to 
remain in equilibrium with the solid. These  argu- 
ments  are, of  course,  no substitute for more  com- 
plete solutions of  the equat ions governing dis- 
equilibrium transport .  Fortunately,  such a solu- 
tion has been  recently derived for the special case 
of  a series of  planar  melt channels  [12]. To  
demons t ra te  that the basic physics underlying the 
scaling a rguments  is sound, this section rewrites 
the results of  Kenyon  [12] into a more  compact  
form for direct compar ison with the scaling argu- 
ments.  This compar ison also illustrates how sim- 
plistic a rguments  can be useful for interpret ing 
the results of  more  complicated problems. 

The  disequilibrium t ranspor t  problem posed in 
Kenyon  [12], is similar to Fig. 1 but  with a planar  
set of  melt  channels  of  width ~ separa ted  by solid 
walls of  width d (in Kenyon  [12], h is used in 
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place of d). Because of the planar geometry, this 
solution describes a system with permeability ex- 
ponent n = 3. A time periodic supply of trace 
element is input at the base of the layer and trace 
element concentration is calculated analytically 
as a function of position and time in both the 
fluid and the solid. As with the simple scaling 
argument, the only two processes affecting trace 
element evolution are horizontal diffusion in the 
solid and vertical transport by the fluid with the 
condition that the melt and solid are in local 
equilibrium (c S= Kc f) at the boundary between 
the two phases. The limited interaction with the 
solid in this solution produces two important ef- 
fects. First there is a "chromatographic" effect 
where the velocity of the tracer slows with respect 
to the melt velocity. Second, there is a damping 
effect where non-equilibrium interaction with the 
solid causes the amplitude of the trace element 
signal to decay. 

As shown in Kenyon [12], the principal mea- 
sures of these two effects are the effective veloc- 
ity: 

Weft= + 2 A i D ,  p s K  jWO (11) 

which is the velocity of the signal with respect to 
the melt velocity w 0 and the damping length 
scale (or e-folding distance): 

6Wopf 
z e = 2 A r D s p s K  (12) 

which is the length scale over which the ampli- 
tude of the signal is reduced by a factor of 1/e  
(~0.37). Here to is the temporal frequency 
(radians s - l )  of the trace element signal. A i and 
A r are functions of to, Ds and d (see Kenyon 
[12]) with dimensions m -1. These functions re- 
flect the degree of solid/fluid interaction. K is 
the bulk distribution coefficient. 

For direct comparison to the scaling argu- 
ments we can rewrite eqs. 11 and 12 as: 

Wef t 1 

w---o - 1 + K'A'i(  Pe' ) (13) 

z e 1 
L K' to 'h ' r (Pe '  ) (14) 

if we define 

Ps(1 - q g ) K  
K '  

P f ~  

toL 
( j O t  

too 

Pe' = Peto' 

and 

A I ( P e '  ) 

= ~ [  s i n h ( P e v / ~ )  + s i n ( ~ )  

s i n h 2 ( ~ )  + cos2(pe~7-~) 

A'r( Pe'  ) 

= ~ s ~  ; ~ )  ] s i n h ( ~ )  - sin( Pex/-P-~- ) 

K '  is the effective distribution coefficient which, 
for low porosities, is principally the ratio of the 
bulk distribution coefficient to the porosity ~. to' 
is the signal frequency normalized by the time it 
takes the melt to cross the layer (i.e. tadv, eq. 2). 
For to' << 1, temporal variations occur more slowly 
than the advection time. w' >> 1 implies very rapid 
trace element fluctuations. The basic scaling ar- 
guments really consider only variations with to' ~ 
1. Pe'  is the effective Peclet number for a trace 
element variation with frequency to'. 

Rewriting eqs. 11 and 12 in this manner, makes 
the parameters that control disequilibrium trans- 
port more clear. For example, the effective trans- 
port velocity, eq. 13, depends only on K'  and 
Pe'. Figure 5 illustrates this relationship and 
shows that the transition between equilibrium 
and disequilibrium transport occurs at Pc' = 10, 
for all K' ,  as presumed in the scaling arguments. 
For Pe' << 10, the tracer velocity approaches the 
equilibrium transport velocity 1/(1 + K' )  in ac- 
cordance with previous results [6,17]. Note the 
velocity actually depends on K',  not just the 
distribution coefficient. As disequilibrium be- 
comes more important, the effective velocity ap- 
proaches the melt velocity w 0. However, unless 
Pc' is very large, some chromatographic effect is 
expected. 

The basic results of the scaling arguments are 
readily seen in Fig. 5. In general, Pc' is most 
sensitive to the channel spacing d. This solution, 
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Fig. 5. Effective velocity of a trace element as a function of 
the effective Peclet number and effective partition coefficient 
K' (rescaled from the solution of Kenyon [12]). This figure 
shows that for Pc' < 10, variations in trace element concentra- 
tion travel near the equilibrium effective velocity 1/(1 + K') 
relative to the melt velocity. For Pc' ~ 10, the effective veloc- 
ity approaches the melt velocity. For the simple constant 
porosity solution with fixed m' = 1, Pc' ccd 4 and therefore an 
order of magnitude increase in channel spacing produces a 4 

order of magnitude increase in Pc'. 

however, also suggests that the frequency of trace 
element variation will affect the ability to main- 
tain equilibrium. For the simplest constant poros- 
ity scaling argument we implicitly assumed that 
variations were comparable to the advection time 
(i.e. w ' ~  1). For constant porosity and constant 
w', K '  remains constant with channel spacing 
and Pc' ocd 4. This result should be contrasted 
with the solution presented in Kenyon [12] which 
assumes constant angular frequency ~o, rather 
than constant oJ'. In this case P e ' ~  d 2. For the 
constant flux argument, K '  will generally in- 
crease with increasing channel spacing (as ~b de- 
creases), and overall changes in the transport 
velocity will be less pronounced. Nevertheless, if 
for any circumstance K '  and Pc' can be deter- 
mined, the velocity and degree of equilibration 
are readily estimated. 

The behaviour of trace element damping is 
somewhat more complicated than that of the 
effective velocity. Equation 14 shows that the 
damping length scale depends on three parame- 
ters K ' ,  ~o' and Pc'. Figure 6 shows contours of 
K ' z e / L  as a function of frequency and Peclet 
number. In general, for a constant K ' ,  strong 
damping occurs when the damping length scale is 

comparable or smaller than the layer depth (i.e. 
z , , /L  < 1). For z , . /L  >> 1 damping is negligible. 
Thus for K ' =  100, the contour labeled 100 in 
Fig. 6 marks the boundary where damping be- 
comes severe. The effect of changing ~o' and Pe 
on the damping length scale is also apparent but 
is different in two separate regimes. In the equi- 
librium transport regime (Pc' << 10) an increase 
in either frequency or Pe causes increased damp- 
ing as the non-equilibrium interaction between 
solid and liquid becomes more pronounced. For 
Pc' >> 10, however, further increases in Pe cause 
a decrease in damping as the tracer in the liquid 
has a decreasing amount of interaction with the 
solid. Thus it is possible that very rapid variations 
in quite incompatible elements can be preserved 
throughout the transport process, while more 
compatible element variations can be damped 
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Fig. 6. Contours  of  the damping length scale (actually 
K ' z , , / L )  as a function of the Peclet number  and scaled 
frequency w'. Severe damping occurs for z , . / L  < 1. Thus  the 
dark shaded region is the region of significant damping for 
trace elements with effective distribution coefficient K ' =  1. 
For K ' =  100, the field expands to include the lighter grey 
region. The  line marked Pc'= 10 marks the boundary be- 
tween equilibrium and disequilibrium transport (see Fig. 5). 
For Pc' << 10 an increase in Pe or frequency produces more 
pronounced damping. For Pc' >> 10, however, the damping 
length is constant for increasing Pc' (more precisely for 
constant  Pe/w' ) ,  as the more rapid transport reduces the 

interaction between solid and liquid. 
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out. This damping behaviour is not apparent from 
the simple scaling arguments but may be a signifi- 
cant effect in the mantle. 

While the more general behaviour of trace 
elements is more complicated than suggested by 
the simplest scaling arguments, the basic physics 
of the scaling arguments is still valid. The two 
principal processes governing chemical transport 
are advection by the melt and diffusional ex- 
change with the solid. The Peclet number is still 
the most important parameter  for determining 
whether chemical equilibrium is achieved and the 
Peclet number is extremely sensitive to small 
changes in the distribution of melt. 

5. The requirements for Darcy flow 

The preceding arguments suggest that the abil- 
ity to maintain chemical equilibrium depends 
strongly on the spacing of the melt channels. The 
question remains however, whether the presence 
or absence of chemical equilibrium places any 
strong constraints on the physics of melt trans- 
port. This section clarifies the requirements for 
which the equations governing flow in deformable 
permeable media are valid, and shows that the 
assumption that Darcy's law is valid is justified 
for a large range of geologically reasonable pa- 
rameters. 

The key to understanding the relationship be- 
tween Darcy flow and chemical equilibrium is to 
understand that Darcy's law, and in fact the en- 
tire system of equations governing flow in de- 
formable permeable media, are macroscopic, 
continuum equations that describe the flow of 
melt averaged over many melt channels. Detailed 
analysis of the governing equations [23,24] shows 
that the principal assumptions inherent in these 
equations are that the two-phase medium is vis- 
cously deformable and permeable at some scale. 
Clearly, these two conditions are required for 
these equations to be consistent with mantle con- 
vection and to allow the melt to separate from 
the solid. These equations, however, make no 
a-priori assumptions about the microscopic distri- 
bution of melt channels and it is this feature that 
allows Darcy's law to be applicable to systems 
ranging from flow in granular materials to flow in 
large scale fracture networks. 

Considerable work has considered the condi- 
tions under which Darcy's law remains valid (e.g. 
[21,25]). For flow in porous media with an inter- 
connected series of melt channels, the principal 
requirements are that melt flow within the chan- 
nels is " laminar" and that variations in melt 
content occur on a scale much larger than the 
channel spacing, i.e. that there are a sufficient 
number of channels in the region of interest so 
that the averaging process is meaningful. 

Laminar flow in porous media requires that 
the flow of melt within the channels is sufficiently 
slow to be dominated by viscous forces. The 
Reynolds number appropriate for porous media: 

pfqd 
Re = (15) 

/z 

is a measure of the ratio of inertial forces to 
viscous forces. Bear [21] states that " In  practically 
all cases, Darcy's law is valid as long as the 
Reynolds number based on average grain diameter 
does not exceed some value between 1 and 10." For 
Re << 10, the flux increases linearly with pressure 
gradients. For larger Re there is a transition from 
Darcy flow to a non-linear regime where inertial 
forces become more important. Finally, for Re > 
100-1000 the flow in the channels actually be- 
comes turbulent. 

Using eq. 10 for an estimate of the maximum 
melt flux beneath ridges with Fma x = 0.3, W 0 = 10 
cm yr - I  and the values of the other parameters 
from Table 1 gives Re = 3 × 10-Td where d is in 
metres. Thus even with order of magnitude varia- 
tions in the channel spacing or melting rate, the 
melting rates beneath ridges are simply too slow 
to produce a melt flux large enough for inertial 
effects to become important. As laminar flow is 
expected, the only additional way for Darcy's law 
to break down is for the channel spacing to be 
comparable to the size of the region of melt 
extraction. However, from the previous sections, 
disequilibrium requires only a vein network with 
channel spacings on the order of 10 cm to 1 m to 
completely remove the melt from contact with the 
solid residue. Consequently, even strong chemical 
disequilibrium does not imply a violation of the 
requirements for Darcy flow. Put another way, 
the potential existence of chemical disequilibrium 
may rule out a grain scale permeability for at 
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least some regions of the mantle; however, the 
overall description of how melt moves in a per- 
meable medium remains the same. 

6. Discussion 

The purpose of the simple scaling arguments 
given here is to clarify the fundamental scalings 
inherent in the processes governing the chemistry 
and motion of melts. These arguments show that 
the presence or absence of chemical equilibrium 
is extremely sensitive to the microscopic distribu- 
tion of melt and solid. If disequilibrium transport 
is responsible for the gross chemical signature of 
mantle melts, it does not require unusually large 
melt "channels" or dikes or extremely short ex- 
traction times (i.e. weeks to years). Rather, these 
arguments suggest that even a coarse vein net- 
work with melts percolating at metres per year 
can produce severe disequilibrium. Given the ex- 
treme slowness of solid state diffusion, these re- 
sults should not be that surprising. The second 
point to stress is that these arguments are self- 
consistent with the physics of flow in deformable 
permeable media. Because the governing equa- 
tions are macroscopic, continuum equations, they 
are equally valid for vein networks as for a grain 
scale permeability. If melt flow is dominated by 
some form of vein network, then the constitutive 
relationships between permeability and porosity 
will change as may the matrix rheology. Neverthe- 
less, as long as these constitutive relationships 
can be formulated, they are readily accommo- 
dated by the general form of the governing equa- 
tions which only require that the two-phase sys- 
tem is permeable and deformable. 

Of course, if melt flow is controlled by veins 
rather than grains, then some mechanism is still 
required to develop and maintain such channels 
in the face of the homogenizing processes of 
mantle convection and textural equilibration. 
There must also be some mechanism for melt 
migration from the four phase boundaries where 
melt is produced to the channels. To date, there 
has been only one mechanism proposed for de- 
veloping a channeling instability. Using the equa- 
tions for flow in deformable porous media, 
Stevenson [26] suggests that if the mantle is de- 
forming and the crystalline matrix is porosity soft- 
ening, then high porosity channels can develop 

oriented parallel to the principal stress axis. How- 
ever, this rather intriguing solution has only been 
demonstrated for initial infinitesimal perturba- 
tions within a fairly restricted geometry and it 
still needs to be shown for the fully deforming, 
non-linear case. 

Finally, while disequilibrium transport is rea- 
sonable for the earth, we still have little under- 
standing of the simplest equilibrium transport in 
physically consistent mantle flows. While most 
geochemical models assume some degree of equi- 
libration these models do not yet include the 
physics of melt transport. It is possible, therefore, 
that at least some of the observed geochemical 
variations that have been attributed to disequilib- 
rium may actually be explained using proper mass 
conservative transport solutions. Fortunately, 
given our better physical understanding of magma 
migration, including the behaviour of trace ele- 
ments in equilibrium or complete disequilibrium 
is straightforward. While there is much work to 
be done, the tools are now available. Using a 
robust macroscopic description of the physics of 
magma migration, coupled with a theory govern- 
ing both equilibrium and disequilibrium chem- 
istry, we now have the opportunity to develop a 
more quantitative and testable theory of chemical 
transport in the mantle. 
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Appendix A: Estimating steady flux beneath ridges 

Steady state conservation of mass for the melt 
flux is governed by: 

V - p f 6 v  = r (16) 

where F is the melting rate and q = ~bv is the 
volume flux of melt. If melting at ridges is ap- 
proximately adiabatic then the melting rate is 
roughly proportional to the upwelling rate of the 
solid mantle. Thus a good approximation to the 
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melting rate is: 

DsFrnaxWo 
F L (17) 

where W 0 is the upwelling rate, Fma x is the maxi- 
mum degree of melting on axis and L is the 
depth of the melting zone. Substituting eq. 17 
into eq. 16, assuming a roughly 1-D regime di- 
rectly beneath the ridge axis and integrating 
yields: 

OsFm.xWoz 
q(z) = (18) 

pfL 

i.e. the melt flux increases linearly with height 
and is independent of the permeability k4,. 
Clearly, the maximum flux is qmax = q(L). 
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