Another R\&J problem: Do opposites attract?

Okay, here's another stunningly important question. . . do opposites attract? Consider the following dynamical system

$$
\begin{aligned}
& \frac{d R}{d t}=R+2 J \\
& \frac{d J}{d t}=-R-2 J
\end{aligned}
$$

where Juliet's response is always exactly opposite that of Romeo's.

1. Find the general solution to this dynamical system for arbitrary initial condition \mathbf{u}_{0}.
2. Do opposites attract? What happens as $t \rightarrow \infty$ if they start out equally in love $R=J=1$?
3. draw the "phase portrait" of this love affair. Describe the set of all "steady state" solutions (this thing is called an attractor).

Review/challenge question (not graded but fun)
Analyze the general form of this problem

$$
\begin{aligned}
& \frac{d R}{d t}=a R+b J \\
& \frac{d J}{d t}=-a R-b J
\end{aligned}
$$

for all real a and b.

