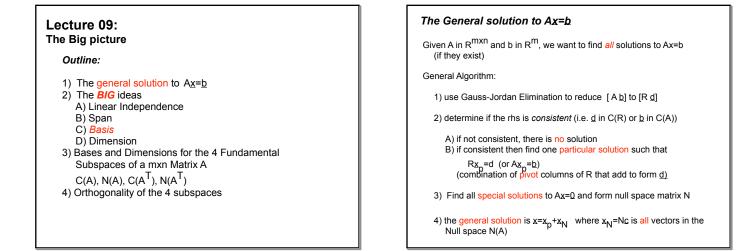
Lecture 09



The General solution to Ax=b

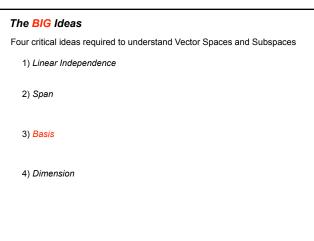
Example #1: A=[1 2 1 0 1 ; 2 4 1 0 0; 1 2 0 1 -4], <u>b</u>=[1 1 1]'

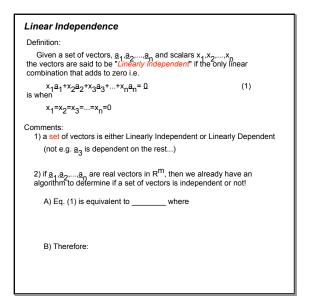
The General solution to A<u>x</u>=<u>b</u>

Example #2: A=[1 1 ; 1 -2 ; -2 1], \underline{b} =[$b_1 b_2 b_3$]'

Lecture 09

The General solution to A <u>x</u> = <u>b</u>	The Blo
Types of solutions	Four criti
Three important numbers for any matrix, m,n,r	1) <i>Lin</i>
Several types of problems	.,
1) Full Column Rank (r=n): all columns linearly independent	2) Spa
N(A)=Z	
Either one or none solution	3) <mark>Ba</mark>
2) Full Row Rank (r=m):	
no zero rows	
C(A) = R ^m N(A) always non-trivial if n>m	4) Din
At least one solution, usually infinite solutions	
3) Full Row and Column Rank (r=n=m): Invertible square	
matrices: exactly 1 unique solution.	





Linear Independence

Example: $\underline{a}_1 = [0 \ 1 \ 0]', \ \underline{a}_2 = [1 \ 0 \ 1]', \ \underline{a}_3 = [1 \ -2 \ 1]'$

Span

Definition:

Given a set of vectors, <u>a</u>₁,a₂,...,a_n span(a1,a2,...,an) is the vector subspace formed by all linear combinations of the vectors

Comments:

we also say a set of vectors $\underline{a}_1, \underline{a}_2, \dots, \underline{a}_n$ some subspace S

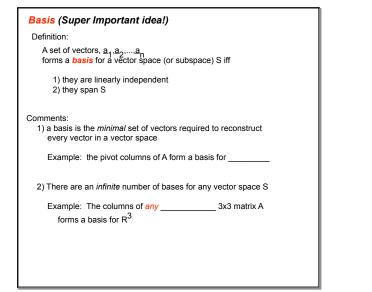
Examples: the columns of a matrix A span _____

the special solutions span

Span

Examples:

Lecture 09



Basis: Important properties

Theorem:

given a particular basis for a vector space S any other vector \underline{v} in S is described by a unique linear combination of the basis vectors.

Proof:

1) let $\underline{x}_1, \underline{x}_2, ... \underline{x}_n$ be a basis for a vector space S 2) let \underline{v} be any other vector in S

Dimension of a vector space

Definition:

The dimension of a vector space S is the number of vectors in any basis for S

Comment:

While there are an infinite number of bases for any vector space S, the number of basis vectors (i.e. the dimension of S) is constant.

Example: Give 3 different bases for R²

The dimension of R² is _____

Dimension of a vector space

Theorem:

Given a vector space S of dimension n, there are exactly n vectors in every basis for S.

Proof:

 $\begin{array}{l} \text{let } \underline{v}_1, \underline{v}_2, \ldots \underline{v}_m \text{ be one basis for a vector space S} \\ \text{let } \underline{w}_1, \underline{w}_2, \ldots \underline{w}_n \text{ be another basis S} \\ \text{show that } \underline{\qquad} \end{array}$

1) First assume n>m

Basis and Dimension of the 4 subspaces of a matrix A			
Given A in R ^{mxn} there are actually four fundamental subspaces associated with the matrix A			
Name	Symbol	Subspace	Spanned by
1) Column Space			
2) Null Space			
3) Row Space			
4) Left Null Space			

Basis and Dimension of the 4 subspaces of a matrix A Find the dimension and a basis for each of the 4 subspaces: a recipe 1) Reduce A to R=rref(A) 2) Get C(A) from R and A basis = pivot columns of ______ dim(C(A)) = ______ 3) Get N(A) from R basis = dim(N(A)) = 4) Get C(A^T) from R basis = dim(C(A^T)) = _______ 5) Get N(A^T) the hard-way (find Null space of pivot columns of A) dim(N(A^T))=

Basis and Dim Example:	ension of the 4 subspaces of a matrix A
A=	R=

