Basis and Dimension of the 4 subspaces of a matrix A

Example:

Given A in \(\mathbb{R}^{m \times n} \) there are four fundamental subspaces associated with the matrix A:

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Subspace</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Column Space</td>
<td>(C(A))</td>
<td>Controls (\mathbb{R}^m) of solutions to (Ax = b)</td>
<td>(\mathbb{R}^m)</td>
</tr>
<tr>
<td>2) Null Space</td>
<td>(N(A))</td>
<td>(\mathbb{R}^n)</td>
<td>(\mathbb{R}^n)</td>
</tr>
<tr>
<td>3) Row Space</td>
<td>(C(A^T))</td>
<td>Controls (\mathbb{R}^n) of solutions to (A^T x = 0)</td>
<td>(\mathbb{R}^n)</td>
</tr>
<tr>
<td>4) Left Null Space</td>
<td>(N(A^T))</td>
<td>Controls (\mathbb{R}^m) of solutions to (A^T y = 0)</td>
<td>(\mathbb{R}^m)</td>
</tr>
</tbody>
</table>

Comments: \(C(A) \subseteq C(R) \)
Basis and Dimension of the 4 subspaces of a matrix A

Example:

\[A = \begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 1 & 3 \\ 2 & 4 & 6 & -2 & -2 \\ 1 & 2 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

LR = \[\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -2 & 0 \end{bmatrix} \]

The Row Space \(C(A^T) \): Spanned by the rows of \(A \) (i.e. columns of \(A^T \))

Subspace of

Dimension:

Basis:

Comments: \(C(A^T) \subseteq C(R^T) \)

Basis and Dimension of the 4 subspaces of a matrix A

Example:

\[A = \begin{bmatrix} 1 & 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 1 & 3 \\ 2 & 4 & 6 & -2 & -2 \\ 1 & 2 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

LR = \[\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -2 & 1 \end{bmatrix} \]

The Left Null Space \(N(A^T) \): spanned by all solutions of \(A^T y = 0 \) - or - (Combinations of ______ of \(A \) that cancel to zero)

Subspace of

Dimension:

Basis:

Comments: \(N(A^T) \subseteq N(R^T) \)

Basis and Dimension of the 4 subspaces of a matrix A

Find the dimension and a basis for each of the 4 subspaces: a recipe

1) Reduce \(A \) to \(\text{R}=\text{ref}(A) \)

2) Column Space: Get \(C(A) \) from \(R \) and \(A \)
 \(\text{dim } C(A) = \), basis: _______________________

3) Null Space: Get \(N(A) \) from \(R \)
 \(\text{dim } N(A) = \), basis: _______________________

4) Row Space: Get \(C(A^T) \) from \(R \)
 \(\text{dim } C(A^T) = \), basis: _______________________

5) Left Null Space: Get \(N(A^T) \) the hard-way
 \(\text{dim } N(A^T) = \), basis: _______________________

Last Example: a rank-1 matrix

\[A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \]

What is the relationship between the 4 subspaces?
Orthogonality of the 4 subspaces

Point: For every matrix A there are 4 fundamental subspaces

Two in \mathbb{R}^n:

Two in \mathbb{R}^m:

Moreover: these subspaces are "orthogonal complements" such that

Orthogonal Subspaces: Orthogonal Complements

Definition:

Two subspaces S_1 and S_2 in \mathbb{R}^k are "orthogonal complements" if

1) all vectors in S_1 are orthogonal to those in S_2 (i.e. the two subspaces only share the 0 vector)

2) $\dim(S_1) + \dim(S_2) = k$

Comment: any basis from S_1 together with any basis from S_2 form a complete basis for \mathbb{R}^k, i.e. all vectors in \mathbb{R}^k can be decomposed uniquely into a part in S_1 and S_2

Example:

$A = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$

Orthogonality of the 4 subspaces: The Big (Strangian) Picture
The Big Picture of $Ax=b$

Full row Rank:

The Big Picture of $Ax=b$

Full Column Rank:

The Big Picture of $Ax=b$

Full row and column Rank: Invertible Matrices