Lecture 12: Applications of Projections: Linear Least Squares problems Outline: 1) Quick Review: A) projections and least-squares problems

- B) properties of projection matrices

- 2) Applications: Putting it to work
 A) fitting a straight line to noisy data
 B) fitting polynomials to data
 C) Using Matlab for least-squares problems
 - D) General linear least Squares $f(\underline{x}) = \sum c_i \Phi_i(\underline{x})$

3) Caveats and Cautions

Properties of projection matrices
$P=A(A^{T}A)^{-1}A^{T}$
1) Projection matrices are always symmetric
2) Projection matrices are usually singular (if $N(A^T) \neq Z$)
3) if A is invertible P= Why?
4) if <u>p</u> =P <u>b</u> , then P <u>p</u> =? therefore

Matlab Time:

Problem: fit a n-degree polynomial through m points

given $y=[y_1 y_2 y_3 \dots y_m]'$ at points $x = [x_1 x_2 x_3 \dots x_m]'$ find best fit coefficients to $f(x)=c_1x^n+c_2x^{n-1}+c_3x^{n-2}\dots c_{n+1}f$

Method 2): use polyfit and polyval

(example y=[-1 0 1 1 1]', x=[-2 -1 0 1 2]' n=2) A) find the best fit coefficients using polyfit (see help polyfit)

B) evaluate f(x) using polyval

C) plot and enjoy

General linear-least squares (linear regression)

Problem: find best-fit coefficients for

 $f(\underline{x}) = f(\underline{x}) = \sum c_i \Phi_i(\underline{x}) = c_1 \Phi_1(\underline{x}) + c_2 \Phi_2(\underline{x}) + \dots + c_n \Phi_n(\underline{x})$

through m points

Examples:

- 1) best fit truncated cos series - $f(x) = c_1 \cos(\pi x) + c_2 \cos(2\pi x) + c_3 \sin(3\pi x)$
- 2) best fit parabolic surface

 $f(x,y) = c_1 x^2 + c_2 x y + c_3 y^2$

General linear-least squares (linear regression)

Problem: find best-fit coefficients for

 $f(\underline{x}) = f(\underline{x}) = \sum_{i} c_{i} \Phi_{i}(\underline{x}) = c_{1} \Phi_{1}(\underline{x}) + c_{2} \Phi_{2}(\underline{x}) + \dots c_{n} \Phi_{n}(\underline{x})$

through m points

Method:

1) form generalized Vandermonde matrix

2) solve for coeffients

3) plot to see if it makes any sense

1) The best-fit model isn't necessarily the best mode
A) Choosing good models to fit is Science
B) not all models are linear
 C) beware over-fitting (too many parameters for t data)
2) Uncertainty in the data propagates to uncertainty the parameters:
You're not really done until you understand the quality and uncertainty in the fit: That's statistic: