Lecture21

Lecture 21:
Towards the SVD (singular Value Decomposition)

Outline:

1) Properties of Symmetric Positive Definite Matrices
(all eigenvalues >0)
A) Tests

B) Important PD matrices ATA and AAT

2) Overview of Eigenvalue factorizations
AS=SA (generally)
A=SAS™! (diagonalizable)
A=MIM™" (non-diagonalizable)
A=Q/\QT (symmetric)

3) The final Factorization, the incredible SVD
Definition: A=USV! (or AV=UY)
Mechanics:
The Big Picture:
The Applications:
Total Least squares, image compression, EOF analysis

Quick Review: Eigenvalues and
Eigenvectors of Real Symmetric matrices

If A is real, square and symmetric:

All Eigenvalues of A are

All Eigenvectors of A can be chosen

All symmetric matrices can be diagonalized

Factorization: forAT=A, A=

Positive Definite Matrices

Definitions:

A is a positive definite (PD) matrix if A T=A and all its
eigenvalues are > 0.

If A>= 0, A is said to be semi-positive definite.

Examples: A=[12;21],[12;24],[12;2 5]

Positive Definite Matrices
Quick Tests for PD:

1) All the pivots are positive A=[12;2d]

(Cholesky Factorization...)
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Positive Definite Matrices
Quick Tests for PD:

2) The quadratic form f()_()=)_(TA)_( >0 for all x#0

Positive Definite Matrices
Two Extremely important PD matrices (needed for SVD)

Show that ATA and AAT are both at least semi-PD

Summary of Eigenvalue/Eigenvector
Factorizations

General Square A:
diagonalizable A =
non-Diagonalizable A =
Symmetric Square A: Always Diagonalizable
Eigenvalues are
Eigenvectors can be chosen

Factorization: A=

Positive Definite Matrices:
Positive Semi-Definite Matrices:

Onward to the SVD

Definition: Every matrix A (even non-square mxn) can be
factored into its Singular Value Decomposition (SVD)

A=usvT

where U, and V are orthonormal matrices UTU=I, VTV=I

and Z is a diagonal matrix

where
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The incredible SVD: some comments The incredible SVD: some comments

1) We need to understand where these three matrices come 4) An alternative way to view the SVD
from, and how to compute them (and what they really mean);

2) However, to begin to see the utility of the SVD, assume A
is invertible,

then if A= Al

3) More amazing...if A isn't even square, we can still use the
SVD to define the pseudo-inverse A* such that

x=A +l_) is the shortest-least squares solution to Ax=b

Computing the SVD
Let A=UZ' VT (and nxn for the moment)
Computing the SVD thon AT <
Let A=UZX VT (and nxn for the moment)
Then ATA = And AAT =
And AAT= Symmetry implies:
But, these matrices have two important properties And PSD implies:
1) 2)
Therefore:
V contains
U contains
and X contains,
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Computing the SVD: a recipe Computing the SVD: a recipe

Example: A=[2 2 ; -1 1] (square invertible matrix)

Computing the SVD: a recipe

Example: A=[ 3 3; 4 4 ] (square singular matrix)




