Lecture 23: Applications of the SVD *Outline:*

1) Quick Review

2) Application 1: Total Least Squares A recipe Interpretation

 3) Application 2: Pattern Recognition and Empirical Orthogonal Functions (EOF's/PCA etc.)
Examples: Image reconstruction and compression Classification of 1-D Topography (EOF analysis)

Total Least squares problems using the SVD

A recipe (in matlab):

http://www.metmuseum.org/toah/hd/durr/hod_43.106.1.htm

We can write it as 359 x 371 matrix A with SVD $A=U\Sigma V^T$ where U is 359 x 359, Σ is 359 x 371 and V is 371 x 371

Mode reconstruction using Matlab	

Application #3: Pattern Extraction -- a real world research example of EOFs

A Global Analysis Of Midocean Ridge Axial Topography

Chris Small (LDEO)

GEOPHYSICAL JOURNAL INTERNATIONAL 116 (1): 64-84 JAN 1994

EOF analysis

Now the rows of \boldsymbol{V}^T form an orthonormal basis for the row space of \boldsymbol{A}

i.e. each profile (row of A) can be written as a linear combination of the rows of \boldsymbol{v}^T or

$$A = CV^T$$

Inspection of the SVD shows that C = U Σ .

Here, the rows of \boldsymbol{V}^T are known as Empirical Orthogonal Functions or EOFs.

If the spectrum of Singular values contains a few large values and a long tail of very small values, it may be possible to reconstruct the rows of A with only a small number of EOFs. The spectrum for this data looks like

EOF analysis

