
E3101: A study guide and review, Short Form Version
1.3

Marc Spiegelman

December 8, 2007

1 The Short-form
Okay, here is the entire study guide in compact form

Solving Ax = b for A ∈ Rn×n

• Equation: Ax = b
• Algorithm: Gaussian Elimination [A b]→ [U c] and backsubstitute

• Factorization: PA = LU (or PA = LDU or PA = LDLT if AT = A. Also A =
CCT (Cholesky factorization for SPD matrices).

The Matrix Inverse A−1

• Definition: AA−1 = A−1A = I , solves x = A−1b.

• Existence: A−1 exists iff Gaussian Elimination produces n pivots (i.e. n linearly inde-
pendent columns).

• Uniqueness: if A is invertible, A−1 is unique and x = A−1b is unique

• Algorithm: Gauss-Jordan Elimination [A I]→ [U Ed]→ [D EuEd]→ [I D−1EuEd] =
[I A−1]

Product Rules

• For Matrices

– General AB: inner products must agree. In general AB 6= BA.
– Inverse: (AB)−1 = B−1A−1 (if A,B both square and invertible)
– Transpose: (AB)T = BTAT (all A and B such that AB exists.
– Determinant: |AB| = |A||B|
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• For vectors

– xTy: inner product, dot product, maps Rn → R
– xTy = yTx
– xTx = ||x||2, where ||x|| is length of x
– xyT : outer product. Is a rank 1 matrix. if x ∈ Rm and y ∈ Rn then xyT ∈ Rm×n

– xyT 6= yxT

General Solutions of Ax = b for A ∈ Rm×n

• Algorithm: Gauss-Jordan Elimination [A b]→ [R d] whereR is reduced row echelon
form

• Identify rank of A (number of pivot columns) and label pivot and free columns.

• Check existence of solution (d ∈ C(R) implies b ∈ C(A)).

• Solve Rxp = d for the particular solution xp (i.e. combination of pivot columns and no
free columns that add to d).

• Find special solutions as basis of N(R) = N(A).

• General solution is x = xp +Nc if b ∈ C(A)

• Note: xp not usually entirely in C(AT ) (i.e. xp 6= x+). x+ = A+b = A+Axp

The four fundamental subspaces of A ∈ Rm×n

• Definition of Basis: a minimum set of linearly independent vectors that span a vector
space or subspace.

• Definition of Dimension: the number of basis vectors for any subspace.

• The four subspaces of a matrix A which is m× n with rank r

Name Symbol Dimension Basis
Row Space C(AT ) ⊂ Rn r linearly independent rows of R
Null Space N(A) ⊂ Rn n− r special solutions of Ax = 0
Column Space C(A) ⊂ Rm r linearly independent columns of A
Left Null Space N(AT ) ⊂ Rm m− r special solutions of ATx = 0

• Orthogonality of the four subspaces:
C(AT ) ⊥ N(A) in Rn and C(A) ⊥ N(AT ) in Rm.

Projections, Q matrices, Least Squares

• Fundamental Equation: ATAx̂ = ATb.

• Principal Algorithm: Gram-Schmidt Orthoganalization A→ Q
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• Factorization: A = QR

Projections

• Project b onto the column space of A:

1. solveATAx̂ = ATb for the least-squares solution x̂. (symbolically x̂ = (ATA)−1ATb
if A is full column rank. . . but you should use Gaussian Elimination to solve for
x̂).

2. The projection is p = Ax̂.
3. The projection Matrix is P = A(ATA)−1AT s.t. p = Pb

• Projection onto a line is just the special case that A = a
• Projection matrices are usually singular (unless A is square invertible where P = I .

Least-squares solutions and curve fitting

• Find the best solution (shortest error) to Ax = b when A is full column rank and
b /∈ C(A). Just solve ATAx̂ = ATb for x̂ as above.

• The error e = Ax̂− b will be minimum such that e ∈ N(AT ) (i.e. AT e = 0).

• General function fitting through points:

1. fit straight lines y(x) = c0 + c1x through n points
2. fit general polynomials y(x) = c0 + c1x+ c2x

2 + . . .+ cpx
p through n ≥ p points.

3. fit general linear combination of functions y(x) =
∑n

i=0 cifi(x)

4. In general, the problem set up is A(x)c = y where A(x) is a generalized vander-
monde matrix with columns fi(x), c is the vector of unknown coefficients and y is
a vector of data values.

Orthonormal Bases, Q matrices and Gram-Schmidt

• Q matrices (general m× n) have n orthonormal columns such that QTQ = I .

• Gram-Schmidt takes A→ Q by
q1 =

a1

||a1||

b2 = a2 − q1(qT1 a2) q2 =
b2

||b2||

b3 = a3 − q1(qT1 a3)− q2(qT2 a3) q3 =
b3

||b3||
such that C(Q) = C(A).

• R = QTA is upper triangular.

• Least squares becomes Rx̂ = QTb, p = QQTb, P = QQT .
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Properties of Projection matrices • All projection matrices can be written as P = QQT

where Q ∈ Rm×n contains an orthonormal basis for an n dimensional subspace of
Rm S. p = Pb is the orthogonal projection of any vector b onto that subspace.
P⊥ = (I −QQT ) is the projection matrix onto the orthogonal complement S⊥.

• P = QQT implies that

– All projection matrices are square, symmetric and at least positive semi-definite.
– P 2 = P 3 = P q = P

– Most projection matrices are singular (if n < m)
– If n = m (Q is square), P = I .
– therefore the determinant |P | = 0 or 1.
– Columns of Q are eigenvectors of P with eigenvalue λ = 1

– vectors in N(QT ) are eigenvectors with eigenvalue λ = 0

– The singular values of P are all 1.
– The (economy sized) SVD of P is QInQT where In is the n× n identity matrix.

The Determinant (square matrices)

• |A| = 0 if A is singular, |I| = 1, |P | = ±1 for permutation matrices (swapping a row
changes the sign of |A|). |Q| = ±1.

• |tA| = tn|A| for t a scalar (the determinant is linear by rows

• det

([
a b
c d

])
= ad− bc

• |A| = ±|U | (determinant is the sum of the pivots)

• |AB| = |A||B|, |A−1| = 1/|A|, |AT | = |A|
• Find |A| by cofactor expansion (and watch for signs)

• Find |A− λI| for eigenvalue problems.

Eigen problems (square matrices again)

• Equation: Ax = λx
• Algorithm:

1. Find n Eigenvalues, λ as roots of n-th order polynomial |A− λI|
2. Find n Eigenvectors as the Null Space of (A− λiI)

• Tests:

–
∑n

i=1 λi = Tr(A)

– Πn
i=1λi = |A|
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• Special cases:

– 2× 2 matrices: λ =
Tr±
√

Tr2−4|A|
2

– Singular matrices: any vector in N(A) is a eigenvector with eigenvalue zero. Al-
ways n− r zero eigenvalues.

– Triangular matrices (including diagonal), eigenvalues are diagonal terms.
– square Rank 1 matrix A = uvT , u, v ∈ Rn

∗ u is an eigenvector with eigenvalue uTv
∗ any vector in N(vT ) is an eigenvector with eigenvalue 0

– Projection matrices P = QQT (see section above)
– Markov Matrices (all columns sum to 1). The largest eigenvalue is 1 and all other

eigenvalues are < 1. Example, the Google matrix.

• Factorizations:

1. General: AS = SΛ

2. Diagonalizable A = SΛS−1, Λ = S−1AS.
3. non-Diagonalizable A = MJM−1 (not covered in class)
4. A is symmetric (AT = A): A = QΛQT .

• Diagonalization of matrices: A can be diagonalized if

– all eigenvalues are distinct (no repeated roots)
– Eigenvalues are repeated but Eigenvectors are Linearly independent
– A is symmetric

• Symmetric Matrices

– Have all real λ’s
– Have orthogonal eigenvectors (which can be chosen orthonormal)
– Can always be diagonalized.
– Positive Definite Symmetric matrices all have eigenvalues > 0

– Positive Semi-Definite Symmetric matrices have λi ≥ 0.
– ATA and AAT are both symmetric and at least positive semi-definite.
– Tests for Symmetric Positive Definite matrices
∗ All pivots are positive (sign of pivots = sign of eigenvalues for AT = A)
∗ quadratic form f(x) = xTAx > 0 for all x 6= 0

• Applications

1. Matrix Powers: if A = SΛS−1 then An = SΛnS−1

2. Iterative maps: un+1 = Aun implies un = Anu0 or un = SΛnS−1u0 or
un = c1λ

n
1 x1 + c2λ

n
2 x2 + . . . + cpλ

n
1 xp
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3. Dynamical Systems: du
dt

= Au. General solution u(t) = SeΛtS−1u0 or
u(t) = c1e

λ1tx1 + c2e
λ2tx3c+ . . .+ cne

λntxn
4. Matrix exponential eA. If A is diagonalizable eA = SeΛS−1. In general

eA = I + A+ A2/2 + . . . An/n! + . . .

The Singular value decomposition: SVD A = UΣV T

• All matrices (A ∈ Rm×n) can be written as UΣV T (or columwise as Avi = σiui where

1. U ∈ Rm×m, Σ ∈ Rm×n and V ∈ Rn×n

2. UTU = I , V TV = I

3. Σ is a “diagonal” matrix with σ1 ≥ σ2 ≥ . . . σr > 0 where r is the rank (which is
≤ min(m,n))

4. The columns of V are eigenvectors of ATA, the columns of U are eigenvectors of
AAT and the “singular values” σi =

√
λi where λi are the eigenvalues of ATA (or

AAT , they’re the same) sorted from largest to smallest.

• A recipe for finding the SVD

1. Find eigenvalues and eigenvectors of ATA.
2. Sort the eigenvalues largest to smallest and set σi =

√
λi

3. Make the corresponding eigenvectors orthonormal.
4. For all σi > 0 calculate ui = Avi/σi
5. For all σi = 0 the ui are found from an orthonormal basis for the left Null-space
N(AT ).

• Properties of the SVD

– The columns of U and V contain orthonormal bases for the 4 fundamental sub-
spaces.
1. The first r columns of U are a basis for the column space C(A)

2. The last m− r columns of U are a basis for the left-Null space N(AT )

3. The first r columns of V are a basis for the row space C(AT )

4. The last n− r columns of V are a basis for the Null Space N(A).
– if A is invertible, A−1 = V Σ−1UT .
– if A has a null-space the Pseudo-inverse A+ = V Σ+UT where Σ+ = Σ−1 for all
σi > 0 and equals 0 where σi = 0.

– x+ = A+b is the shortest least squares solution (i.e is entirely in the row space of
A).

– P = AA+ = QQT is the projection matrix onto C(A) (i.e. where Q contains the
first r columns of U .
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– P = A+A is the projection matrix onto C(AT )

• Applications of the SVD

– Least-squares by pseudo-inverse x+ = A+b
– Total-Least squares (best fit line/plane with orthogonal errors)
– EOF/Principal component analysis.


