Lecture 07: Interpolation

Outline

1) Definitions, Motivation and Applications of Interpolation
2) Polynomial Interpolation!
 Definition and uniqueness of the interpolating polynomial \(P_N \)
 Finding \(P_N \)
 Monomial Basis: Vandermonde matrices and Polyfit
 Lagrange Basis:
 Newton Basis:
 Properties of the Lagrange Polynomials
 Examples
3) Error Estimates for Polynomial Interpolation
 Lagrange Remainder Formula
 Chebyshev points for reducing error (if you can)
4) There's more to life than polynomials...

Interpolation and Interpolants

Definition: Given a discrete set of values \(y_i \) at locations \(x_i \), an interpolant is a (piecewise) continuous function \(f(x) \) that passes exactly through the data (i.e. \(f(x_i) = y_i \)).

Comments:
Lots of methods of interpolation, lots of different functions, works in n-Dimensions.
Interpolation and Interpolants

Some Applications:
Data filling: Connect the dots
Function Approximation:
Fundamental Component of other algorithms
Rootfinding: Secant method and IQI
Optimization: successive parabolic interpolation
Numerical integration and differentiation
Finite Element Methods!

Polynomial Interpolation (1-D)
The Interpolating Polynomial:

Theorem: There is a unique polynomial of degree N, \(P_N(x) \) that passes exactly through \(N+1 \) values \(y_1...y_{N+1} \) at distinct positions \(x_1...x_{N+1} \) (i.e. \(P_N(x_i)=y_i \))

Example: 2 points

3 points:
Polynomial Interpolation (1-D)

The Interpolating Polynomial:

Theorem: There is a unique polynomial of degree N, $P_N(x)$ that passes exactly through $N+1$ values $y_1...y_{N+1}$ at distinct positions $x_1...x_{N+1}$ (i.e. $P_N(x_i)=y_i$)

Proof: Let $P_N(x)=p_1x^N + p_2x^{N-1} + ... + p_N x + p_{N+1}$
such that $P_N(x_i)=y_i$ for $i=1,...,N+1$ and $x_i \neq x_j \forall i,j$

Now assume that there is another degree N polynomial Q that passes through the same points i.e.

$Q_N(x)=q_1x^N + q_2x^{N-1} + ... + q_N x + q_{N+1}$ and $Q_N(x_i)=y_i$

Finding the interpolating Polynomial:

Monomial Basis

Let $P_N(x)=p_1x^N + p_2x^{N-1} + ... + p_N x + p_{N+1}$

which is a Linear combination of the monomials

$1, x, x^2, x^3, ..., x^N$ with weights $p_1,p_2,...,p_{N+1}$
Finding the interpolating Polynomial:
Matlab:

Easiest:

Next Easiest:

Break it down:

```matlab
function A = vander(v)
    n = length(v);
    v = v(:);
    A = ones(n);
    for j = n-1:-1:1
        A(:,j) = v.*A(:,j+1);
    end
```

Finding the interpolating Polynomial: A better way
Lagrange basis:

define the Lagrange Polynomials of order N as

Examples: for 2 points, N=1 (linear)

3 points: N=2 (quadratic)
See Demo Function
L = seeLagrange(xNodes);
Finding the interpolating Polynomial: A better way

Lagrange basis:

Fundamental properties of the Lagrange Polynomials

1) \(L_k(x_i) = \)

2) The interpolating polynomial can be written exactly as

\[P_N(x) = \]

Polynomial Interpolation using Lagrange:

Moler’s polyinterp

```matlab
function y = polyinterp(xNodes,yNodes,x)
%POLYINTERP  Polynomial interpolation.
%   y = POLYINTERP(xNodes,yNodes,x) computes y(j) = P(x(j)) where P is the
%   polynomial of degree d = length(xNodes)-1 with P(xNodes(i)) = yNodes(i).
% Use Lagrangian representation.
% Evaluate at all elements of u simultaneously.
% Modified from Moler: NCM routines

n = length(xNodes); % number of interpolating points
y = zeros(size(x));
for k = 1:n
    w = ones(size(x)); % start calculating Lagrange Weights
    for j = [1:k-1 k+1:n] % skip over node k
        w = (x-xNodes(j))./(xNodes(k)-xNodes(j)).*w;
    end
    y = y + w*yNodes(k);
end
```

Polynomial Interpolation using Lagrange:

Examples: Interpolate sin(pi*x) using 6 equally spaced points on the interval [-1 1]

\[x_{\text{Nodes}} = \text{linspace(_________)}; \]
\[y_{\text{Nodes}} = \]
\[x = \]
\[y = \text{polyinterp}(x_{\text{Nodes}}, y_{\text{Nodes}}, x); \]

Figure created using Demo Code

[y, error] = seeInterp(func, x, xNodes)

Polynomial Interpolation using Lagrange:

Examples: Interpolate sin(pi*x) using 6 equally spaced points on the interval [-1 1]
Polynomial Interpolation using Lagrange:

Examples: Interpolate \(\sin(\pi x) \) using 11 equally spaced points on the interval \([-1, 1]\).

Warning! High Order does not guarantee high accuracy!
(only if your function or data is well approximated by a high-order polynomial)

Example #2: Interpolate Runge's Function \(f(x) = \frac{1}{1+25x^2} \) using 6 points on the interval \([-1, 1]\).
Polynomial Interpolation using Lagrange:

Warning! High Order does not guarantee high accuracy! (only if your function or data is well approximated by a high-order polynomial)

Example #2: Interpolate Runge’s Function $f(x) = \frac{1}{1+25x^2}$ using 11 points on the interval [-1 1];

![Graph of interpolant and true function]

Error Analysis for Polynomial Interpolation:

Simple Version #1: Avoid high-order polynomial interpolants unless you know what you’re doing...usually they can be highly oscillatory between nodes. N=1:3 (maybe ~5) good for government work.

Simple Version #2: Avoid Extrapolation with high-order polynomials altogether

![Graph of interpolant and true function]
Error Analysis for Polynomial Interpolation: Less Simple version:

Lagrange Remainder Theorem: similar to Taylor's Theorem

Theorem: let \(f(x) \in C^{N+1}[-1,1] \), then

\[
f(x) = P_N(x) + R_N(x)
\]

where \(P_N(x) \) is the interpolating polynomial and

\[
R_N(x) = Q(x) \frac{f^{(N+1)}(c)}{(N+1)!} \quad \text{with } c \in [a,b] \text{ and }
Q(x) = (x-x_1)(x-x_2)(x-x_3)...(x-x_{N+1})
\]

Comments:

- \(Q(x) \) is a \(N+1 \) order **monic** polynomial (leading coefficient = 1)
- for Taylor's Theorem \(Q(x) = \) __________ and the error vanishes identically at \(x= \)
- for Lagrange: \(Q(x) \) vanishes at?

To minimize \(R_N(x) \) requires minimizing \(|Q(x)| \) for \(x \in [-1,1] \). How?

Error Analysis for Polynomial Interpolation: Less Simple version:

The Magic of Chebyshev Polynomials

Definition: The Chebyshev polynomials are another basis for the space of polynomials with important properties

First 4 Chebyshev Polynomials:

\[
\begin{align*}
T_0(x) &= 1 \\
T_1(x) &= x \\
T_2(x) &= 2x^2 - 1 \\
T_3(x) &= 4x^3 - 3x \\
T_4(x) &= 8x^4 - 8x^2 + 1
\end{align*}
\]
Error Analysis for Polynomial Interpolation:
Less Simple version:

The Magic of Chebyshev Polynomials

Important Properties of the Chebyshev Polynomials

1) Recurrence relation \(T_k(x)=2xT_{k-1}(x)-T_{k-2}(x) \)
2) Leading Coefficient of \(x^N \) in \(T_N(x) \) is \(2^{N-1} \) for \(N \geq 1 \)
3) Extreme values: \(|T_N(x)| \leq 1 \) for \(-1 \leq x \leq 1 \)
4) Minimax principle: The polynomial \(T(x) = T_{N+1}(x)/2^N \) is a Monic Polynomial with the (amazing) property that
\[
\max|T(x)| \leq \max|Q(x)| \text{ for } x \in [-1,1] \text{ moreover }
\max|T(x)| = 1/2^N
\]

Therefore: To minimize the LaGrange remainder term, set
\(Q(x) = T(x) \)....but \(Q(x) \) is only defined by its roots

\[
\begin{align*}
x_1, x_2, x_3, \ldots, x_{N+1}
\end{align*}
\]

Sooo................

Need to choose nodes to be the zeros of \(T_{N+1} \)

More Magic: the zeros of \(T_N(x) \) in the interval \([-1,1]\) are
\[
x_k = \cos((2k+1)\pi/2N) \text{ for } k=0,1,\ldots,N-1
\]
Comparison of Interpolation with equally spaced points vs Chebyshev points

\[N = 11; \]
\[x = \text{linspace}(-1, 1); \]
\[x\text{Nodes} = \text{chebyshevZeros}(N-1); \]
\[f = @(x) \frac{1}{1+25 \times x^2} \]
\[[y, \text{error}] = \text{seeInterp}(f, x, x\text{Nodes}, '\text{showerror}'); \]
Polynomial Interpolation:
Some final comments:

0) Interpolation is a fundamental tool in the numerical quiver

1) The interpolating polynomial is only guaranteed to match the data at N points

2) High order polynomials can be wildly inaccurate between nodes

3) High order is not High Accuracy!

4) There are a lot more interpolants than full polynomials....
 Onwards to piecewise-polynomial interpolation