Lecture 12: Numerical Differentiation

Outline

1) relationship to quadrature and differential equations
2) Basic Finite Difference approximations and errors (Taylor)
 A) First order differences
 B) 2nd order and 2nd derivatives
3) Interpolation and Finite Difference "Stencils"
 A) 2nd order stencils
 B) higher order and Chebyshev polynomials
4) Partial Differentials
5) Intro to PDE's (and the pitfalls of simple schemes)

Numerical Differentiation: Basic ideas

given a function f(x), find an approximation for its derivative(s) df/dx(x) as a weighted linear combination of function evaluations.

Relationship to Quadrature:

Caution: Numerical Quadrature is stable (maps \mathbb{R}^n to \mathbb{R}) and smoothing...(the only issues are accuracy and efficiency). Numerical Differentiation can amplify noise.

Utility: useful for solving differential equations such as
\[-f'' + p(x)f = g(x)\]
Finite Difference Approximations to $f'(x)$

Fundamental Definition of the derivative df/dx: given continuous function $f(x)$

Finite Difference approximation to df/dx (let h be finite)

Question: How bad an approximation is it?

Taylor series derivation of First derivative df/dx and Errors

Forward Difference:

Backwards Difference:

Centered Difference:
Finite Difference approximation to the second derivative $\frac{d^2f}{dx^2}$

Finite Difference Stencils
Using Interpolation to derive finite difference stencils

Finite Difference Operators as sparse matrices
Finite Difference Operators as sparse matrices

Example: \(f(x) = \exp\left(-\frac{(x-x_0)^2}{\sigma^2}\right) \) on \([-1, 1]\)

\([D1, D2, x] = \text{centerDifference}(65, [-1 1]), \quad dfdx = D1*f(x), \quad d2fdx2 = D2*f(x)\);

Max relative error \(\approx 2\% \)
Higher Accuracy: h-refinement vs p-refinement

Two ways to improve accuracy:
- h-refinement: add more points
- p-refinement: use higher order interpolating polynomial

Danger Will Robinson! Higher order isn't necessarily higher accuracy...

Issues with high-order polynomials:

The usual fix:

Higher Accuracy: h-refinement vs p-refinement

Same Problem, but using Chebyshev basis (and collocation points)
[D,x] = cheb(64), dfdx = D*f(x), d2fdx2 = D*(D*f(x));
Higher Accuracy: h-refinement vs p-refinement

Same Problem, but using Chebyshev basis (and collocation points)

Numerical Differentiation for Partial Derivatives
(Sneak-Peek for PDE's)
Numerical Differentiation for Partial Derivatives

Example: FTCS finite difference approximation to the simplest 1-D linear wave equation (not actually a good idea)