Homework #7: Putting it all together

Two Questions with lots of options (and don’t forget page 2)

1. Consider the linear non-homogeneous 2-pt boundary value problem

\[u'' + u = \sin 3x \quad 0 \leq x \leq L \quad u(0) = u(L) = 0 \]

which is related to the modes of vibration of a forced string of length \(L \).

(a) Find an analytic solution to this problem for general \(L \) (hint: remember your basic ODE’s for constant-coefficient problems). Is this solution unique? Explain your answer.

(b) Now solve the problem numerically for a string of length \(L = 10 \) using any one of the four methods: Shooting, 2nd-order finite difference, Chebyshev Collocation, or Galerkin Finite Elements. You can modify any of the demonstration codes or write your own. **Produce a representative plot of your solution compared to the analytic solution.**

(c) If we define the relative error as

\[r = \frac{||u(x) - \tilde{u}(x)||_2}{||u(x)||_2} \]

where \(\tilde{u}(x) \) is your numerical solution evaluated at discrete points \(x \) and \(u(x) \) is the analytic solution evaluated at the same points, use your chosen method to find an approximate solution with \(r \leq 10^{-6} \) (if you can). Briefly discuss what you need to adjust to achieve this accuracy and why and **Present a plot showing \(r \) as a function of your adjustable parameter**

2. Non-linear fun: Now try to solve the related non-linear 2-point boundary value problem

\[u'' + \sin(u) = \sin(3x) \quad 0 \leq x \leq 10 \quad u(0) = u(10) = 0 \]

using finite-difference or collocation methods plus Newton’s method.

(a) Solve the problem for an initial guess \(u_0 = 0 \). Use your results from problem 1 to choose accuracy conditions (how might you check if the solution is accurate?). **Produce a plot of your solution**

(b) Is your solution unique? Try starting newton from different initial conditions (and welcome to the wonderful world of non-linear ODE’s). For any solution, show that it satisfies at least the discrete ODE (i.e. plot \(u'' + u \) vs \(\sin(3x) \)). How many solutions can you find this way?

(c) **Extra credit:** Use shooting to systematically find solutions as a function of take-off angle. How many solutions can you find this way?

(d) **More Extra credit:** Compare both Finite Difference and Collocation methods for this problem? Does improved accuracy change things?

(e) **Extra Extra credit:** Can you explain this behavior?
For your convenience I have supplied a matlab routine

\[
[x, \text{ residual, nIterations }] = \text{newton}(@\text{func}, x0, \text{tol})
\]

in available on the web-site. This function takes as an argument a function with the interface \([F, J]=\text{func}(x)\), where \(F\) is the vector \(F(x)\) and \(J\) is the Jacobian evaluated at point \(x\). You can test this function by finding solutions that satisfy \(F(x) = 0\) to machine precision where

\[
\begin{align*}
F_1(x) &= (x_1 + 3)(x_2^3 - 7) + 18 \\
F_2(x) &= \sin(x_2 \exp(x_1) - 1)
\end{align*}
\]

Starting at \(x_0 = \begin{bmatrix} -0.5 & 1.4 \end{bmatrix}\).