Is there a role for sequence stratigraphy in chronostratigraphy?

Nicholas Christie-Blick¹, Stephen F. Pekar¹,² Andrew S. Madof ¹

¹Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA
²School of Earth and Environmental Sciences, Queens College, City University of New York, Flushing, New York 11367, USA, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA

email: ncb@ldeo.columbia.edu; spekar@qc1.qc.edu; amadof@ldeo.columbia.edu

ABSTRACT: Sequence stratigraphy revolutionized the field of stratigraphy in the late 1970s and 1980s by providing an interpretive depositional framework for integrating diverse stratigraphic data at the scale of sedimentary basins. However, a lack of consensus on criteria for recognizing, mapping and hence dating sequence boundaries, interpretations of uneven quality, and doubts about the universal eustatic origin and global synchrony of unconformity-related sequences limit the usefulness of sequence stratigraphy in chronostratigraphy.

INTRODUCTION

The idea that unconformities and other stratigraphic discontinuities have time-stratigraphic significance, at least as a first approximation, has been a central assumption of sequence stratigraphy for more than 50 years (Sloss et al. 1949; Sloss 1963, 1988; Wheeler 1958; Vail et al. 1977; Vail et al. 1984; Vail 1987; Cross and Lessenger 1988; Van Wagoner et al. 1990; Christie-Blick and Driscoll 1995; Emery and Myers 1996; Posamentier and Allen 1999; Coe 2003; Catuneanu 2006). Unconformities are by definition associated with breaks in sedimentation and, as far as this can be determined from available age control, in most cases overlain by strata that are everywhere younger than underlying strata. That the hiatus associated with a particular unconformity varies in duration as a result of either non-deposition or erosion is not important. The concept of time-stratigraphic significance does not require synchrony of superposed strata, either above or below a surface, only that sedimentation ceased and then resumed (cf. Posamentier and Allen 1999, p. 46).

Recognizing that some unconformities trace laterally into relatively conformable successions, Vail et al. (1977) developed the idea of a correlative conformity as a physical extension of an unconformity, where any hiatus is both small and below the resolution of available stratigraphic tools to detect. The conformity concept proved useful because it allowed the age of an unconformity to be specified at a particular moment in geological time. In the event that no correlative conformity exists within an area of interest, or (in subsurface examples) when no well or borehole is appropriately located, the age of an unconformity can still be bracketed, in some cases quite closely, with respect to the youngest strata below and oldest strata above. It is not necessary, for this purpose, for the ages of bounding strata to be determined at a single location, so long as the unconformity can be traced with confidence from one place to another.

It was Vail’s view, and the view of many in what became the Exxon school of seismic and sequence stratigraphy, that most unconformities have time-stratigraphic significance also at a global scale (Vail et al. 1977; Vail et al. 1984; Haq et al. 1987; Posamentier et al. 1988; Sarg 1988; Mitchum and Van Wagoner 1991; Vail et al. 1991; Vail 1992; de Graciansky et al. 1998; Posamentier and Allen 1999). This idea, which has dominated thinking in stratigraphy for 30 years, was based on two lines of reasoning. First, prominent unconformities appear to be of about the same age in widely separated basins, at least at the resolution of stratigraphic constraints and dating techniques. Second, it was argued that basinward shifts in onlap observed at many unconformities require changes in the level of the sea relative to sites of sediment accumulation that are sufficiently large and rapid to imply glacio-eustasy (e.g., Christie-Blick 1982). According to this paradigm, sea-level change provides a strong, global control on sedimentation that it can be used to gauge time. Armed with a global chart of unconformity timing and at least some independent age control, it is now standard practice to refine local schemes by regarding all manner of stratigraphic features as manifestations of this global signal.

This is essentially the position that has been adopted by the International Commission on Stratigraphy (ICS) in its plan to integrate the geologic time scale with the Mesozoic and Cenozoic bio-chrono-sequence stratigraphic charts of Hardenbol et al. (1998) for European basins (International Commission on Stratigraphy 2007). As Jan Hardenbol writes in his abstract (op. cit. 1998), “A well-calibrated regional biochronostratigraphic framework is seen as an essential step towards an eventual demonstration (our italics) of synchronity of sequences in basins with different tectonic histories.” In other words, a fundamental assumption of the 1998 compilation, and inevitably the outcome of a new global synthesis, is that there is such a synchronous pattern to be discovered, and not only for the Mesozoic and Cenozoic, but also for the Paleozoic, for which the ICS envisages the production of “comparable charts.”

The issue that we address briefly in this essay is whether the paradigm is consistent with what is currently known of the stratigraphic record, and specifically whether a global unconformity chart has a place in chronostratigraphy – meaning the
establishment of a global reference frame for geological time. We conclude that sequence stratigraphy provides a useful context for basin-scale stratigraphic interpretation, and for the quantification of sea-level change over at least the past 34 m.y. when large continental ice sheets are known to have existed (Miller et al. 1998; Pekar et al. 2002; Miller et al. 2005a; Pekar and Christie-Blick in press), but that the global temporal significance of unconformities has been generally oversold.

SEQUENCE STRATIGRAPHY AS A FRAMEWORK FOR INTERPRETATION

The essence of sequence stratigraphy is to make use of all of the physical surfaces that at different scales separate one depositional element from another, in order to determine layer by layer how sedimentary successions are put together (Christie-Blick and Driscoll 1995). That includes surfaces related to flooding and deepening (drowning), and discontinuities associated with progradation and shoaling (e.g., offlap surfaces, sharp-based shorefaces and deltas, and downlap surfaces more generally), as well as more diffuse intervals of sediment starvation and condensation in relatively deep marine deposits (Vail 1987; Loutit et al. 1988; Plint 1988; Schlager 1989, 1991, 1999; Van Wagoner et al. 1990; Christie-Blick 1991; Posamentier et al. 1992; Embry 1995; Pattison 1995; Posamentier and Allen 1999; Hampson 2000; Plint and Nummedal 2000; Posamentier and Morris 2000). Many of these features are quite literally surfaces at more or less any resolution. However, downlap surfaces at seismic resolution are in some cases less well defined at the scale of an outcrop, core or downhole log. Also, while sediment starvation in offshore settings commonly correlates at least approximately with flooding at the shoreline, “maximum flooding” is neither demonstrated for most surfaces so interpreted by sedimentologists and stratigraphers, nor necessarily expressed as a surface.

Some of the most prominent and laterally persistent surfaces are those associated with subaerial degradation, and they are the features that Vail et al. (1984) designated as sequence boundaries. It is, however, the character of the surfaces that makes them sequence boundaries, not the dimensions of the area over which they can be mapped. At updip locations, where the evidence is typically most clear-cut, characteristics include the development of angular discordance between superposed sediments or rocks, or with respect to the intervening unconformity; local valley incision; evidence for the subaerial exposure of marine sediments (with karst in carbonate rocks), abrupt upward shoaling of depositional facies, and/or abrupt basinward shifts in the locus of sedimentation; and biostratigraphic, chemostratigraphic, geochronological, diagenetic, geotechnical or other evidence for a break in sedimentation (e.g., Vail 1987; Sarg 1988; Van Wagoner et al. 1988; Van Wagoner et al. 1990; Christie-Blick and Driscoll 1995; Posamentier and Allen 1999; Plint 2000; Christie-Blick 2001; Pekar et al. 2003; Catuneanu 2006).

An excellent example of sequence boundaries with several of these characteristics, but with very restricted expression, is provided by eight surfaces documented in fluvial-deltaic deposits at the base of the kilometer-deep Wonoka canyons in the Neoproterozoic of South Australia (Christie-Blick et al. 1995; Christie-Blick et al. 2001). The surfaces, which are marked by abrupt upward shoaling from marine carbonate and siltstone to fluvial conglomerate and by incised valleys < 15 m deep, are spaced on average < 30 m apart. They onlap the canyon walls (a lower order sequence boundary), and are for that reason mappable for only a few kilometers in available outcrop. Details are currently being prepared for publication elsewhere.

Unconformities associated with propagating faults, growing folds, basin inversion and diaps in a broad range of tectonic settings in some cases extend only a few kilometers to as little as a few hundred meters transverse to structures (e.g., Riba 1976; Anadón et al. 1986; Medwedeff 1989; Christie-Blick et al. 1990; Rosales et al. 1994; Driscoll et al. 1995; Ford et al. 1997; Suppe et al. 1997; Poblet et al. 1998; Sharp et al. 2000; Giles and Lawton 2002; Castelltort et al. 2003; Mortimer et al. 2005). Other unconformities in foreland basin, intra-orogenic, rift and passive margin settings pass laterally into flooding surfaces, with definitive sequence boundary character expressed primarily by localized erosion or offlap (e.g., Underhill 1991; Driscoll et al. 1995; Van Wagoner 1995; Miller et al. 1996; Kidwell 1997; Naish and Kamp 1997; Plint 2000; Jiang et al. 2002; Pekar et al. 2003). Such flooding surfaces are typically “concordant” with underlying and overlying strata. They are not in general conformities because the existence of strata of intermediate age in associated incised valleys demonstrates that a hiatus must be present.

Other stratigraphic discontinuities may also be useful in off-platform and terrigenous slope and rise sediments, independent of whether direct correlation is possible with subaerial unconformities, or reasonably inferred (e.g., Schlager and Camber 1986; Schlager 1989, 1999; Damuth et al. 1995; Hiscott et al. 1997), and in shallow marine deposits in which sequence boundaries are poorly expressed (e.g., Montañez and Osleger 1993; MacNaughton et al. 1997; Jiang et al. 2002). The interpretive philosophy is the same. That is to make use of a hierarchy of discontinuities, beginning with those of greatest lateral persistence and/or those against which higher order surfaces terminate. The mark of a quality interpretation is not the number of sequence boundaries that can be identified. It is the confidence with which an interpretation can be defended. Sequence boundaries are much more abundant in some successions than others (cf. Plint 2000 with Montañez and Osleger 1993) for reasons that have to do in part with the interplay of numerous factors governing sediment dispersal and accumulation, and in part with whether appropriate geometric or facies clues are available to interpret.

Advantages of Sequence Stratigraphy

Sequence stratigraphy based upon these principles offers several advantages compared with classical stratigraphy. 1) It’s process-oriented, interpretive, and falsifiable, not an exercise in classification (Christie-Blick 2001). Lithostratigraphy, in comparison, involves making choices about contact location and hierarchical nomenclature from any number of perfectly defensible rationales (North American Commission on Stratigraphic Nomenclature 2005). Such choices may or may not prove to be useful. However, because they are established by convention rather than through discovery, the criteria for mapping a lithostratigraphic contact cannot be shown to be incorrect. 2) Sequence stratigraphy provides a genetic depositional framework for integrating other stratigraphic data, independent of existing classification schemes, as well as for siting boreholes and developing a sampling strategy. Sequence boundaries and other stratigraphic discontinuities are proxies for time horizons, passing through laterally changing facies, and commonly from one lithostratigraphic unit to another (e.g., Kennard et al. 1992; Sonnenfeld and Cross 1993; Van Wagoner 1995; Tinker 1998; Eberli et al. 2002; Pekar et al., 2003). They are also the
breaks in bio-, magneto- and chemo-stratigraphic records that chronostatigraphy seeks to fill at both updip locations and some downdip or basinal locations, where only a fraction of geological time may be represented by sediments or sedimentary rocks owing to nondeposition/condensation or erosion (e.g., Aubry 1995; Aubry et al. 1999; Pekar et al. 2003). 3) At a basin scale, sequence stratigraphy in many cases allows sedimentary successions to be subdivided more finely than is possible with other approaches. Lower to mid-Cenomanian deltaic deposits of the Dunvegan Formation in the Alberta basin contain no fewer than 10 sequence boundaries in an interval that is only 90-270m thick (Plint 2000). These surfaces have been mapped in outcrop and well logs over an area of ~80,000 km². 4) The principles are applicable in every depositional and tectonic setting, in deposits of any age (from the Holocene to Archean); in seismic reflection, Compressed High Intensity Radar Pulse (CHIRP) sonar, ground-penetrating radar, downhole logs and cores, as well as outcrop; and at scales of meters to hundreds of kilometers (e.g., Grotzinger et al. 1989; Mitchum and Van Wagoner 1991; Underhill 1991; García-Mondéjar and Fernández-Mendiola 1993; Van Wagoner 1995; Tinker 1998; Plint 2000; Sharp et al. 2000; Tessen et al. 2000; Christie-Blick et al. 2002; Jiang et al. 2002; Moller and Anthony 2003; Pekar et al. 2003; Posamentier 2004; Rabineau et al. 2005; Nordfjord et al. 2006).

Limitations

Sequence stratigraphy is also subject to some important limitations. Confident interpretation typically requires a lot of data. Seismic data are expensive, and their interpretation is both time-consuming and susceptible to shortcuts. Errors related to autotracking on a workstation, for example, are easy to propagate across a dataset, in some cases hooking together portions of closely spaced but unrelated surfaces (e.g., Poullon et al. 1998). The stratigraphic interpretation of downhole logs depends on wells or boreholes being in sufficiently close proximity (and comparable in terms of vintage and acquisition parameters) that log character varies only subtly from one location to another. Studies of the caliber of Plint (2000) in the Alberta basin take years to complete, and are generally possible at regional scale only in “mature” sedimentary basins peppered with wells. Outcrop-based interpretations similarly require numerous measured sections, and the mapping of physical surfaces at a resolution that challenges the patience of most stratigraphers. Compare, for example, the level of stratigraphic documentation provided by Van Wagoner (1995) with that supporting conflicting interpretations of Yoshida et al. (1996), Yoshida et al. (1998), Willis (2000), Yoshida (2000), McLaurin and Steel (2000), McLaurin and Steel (2001) and Yoshida et al. (2001) in the Book Cliffs of Utah.

Stratal geometry and the systematic arrangement of associated facies so elegantly portrayed in the sequence stratigraphic model or “slug diagram” are more complex and variable in practice, and at high resolution. Surfaces terminate against or merge with other surfaces, in some cases in such a bewildering array that sequence boundaries are interpreted with difficulty (e.g., within some contemporary shelf and slope deposits, and more generally in channelized fluvial deposits; Shanley and McCabe 1994; Trincardi and Correggiari 2000; Lu and Fulthorre 2004). The mapping of sequence boundaries is problematic also in uniform facies and where strata are generally concordant. As a practical matter, therefore, time resolution tends to scale inversely with the physical dimensions of available data.

A preoccupation in the literature with the division of successions into systems tracts (or facies tracts) is unfortunate, first because interpretations are commonly subjective or at least poorly documented, and second because more interesting questions about how discontinuities develop or even how they are traced are rarely asked. Sequences are typically incomplete at a local scale, in some cases or at some locations dominated by transgressive elements (e.g., Christie-Blick et al. 1995; Nummedal and Molenar 1995; Kidwell 1997), and in others by progradation (e.g., Van Wagoner 1995; Plint 2000; Pekar et al. 2003). The transition from transgression to regression is not necessarily easy to recognize at a sequence scale, even when both intervals are present, owing to complexities in higher order stratigraphic cyclicity or to the preservation of too few cycles (e.g., parasequences) for stacking patterns to be determined.

The lowstand concept is especially problematic both in deep-water settings (more on that below) and as widely applied to relatively thin, coarse-grained and/or nonmarine sediments resting on a sequence boundary (e.g., Baum and Vail 1988; Van Wagoner 1995; and subsequent papers by numerous authors). Such deposits commonly constitute a lithosome that is both inherently diachronous and, at a larger scale, associated with overall transgression (Christie-Blick and Droser 1995). Evidence for a decrease in paleowater depth across a sequence boundary, therefore does not by itself imply lowstand sedimentation. The lowstand systems tracts is defined observationally as a stratigraphic unit onlapping a sequence boundary, and characterized internally and at sequence scale by overall progradation and shoaling of facies (Van Wagoner et al. 1988).

In other outcrop examples, stratigraphic elements claimed as lowstands are indeed progradational, but contiguous with and unquestionably distinguishable from underlying highstand deposits (e.g., Posamentier and Chamberlain 1993; Ainsworth and Pattison 1994; Mellere and Steel 1995; Pattison 1995; Mellere and Steel 2000; Posamentier and Morris 2000). The difficulty in both cases is that interpretations appear to be driven primarily by expectations rather than by what is actually observed.

While the lowstand is the single if generally doubtful stratigraphic element that distinguishes sequences from transgressive-regressive (T-R) cycles of classical stratigraphy (Johnson et al. 1985; Embry 1988, 1995), and sequence boundaries in some cases coincide at least locally with prominent flooding surfaces, sequences are nonetheless not T-R cycles. This is because they are defined on the basis of geometry and facies, and not on the basis of facies alone. The literature, however, is replete with examples of minor or “type 2 sequence boundaries” (Van Wagoner et al. 1988), discontinuities that are in many cases marine flooding surfaces lacking incised valleys or other convincing evidence for subaerial degradation. In some examples, a sequence boundary is in fact present, though at a lower stratigraphic level (with incised valleys; e.g., Lindsay 1987). More commonly, evidence for the existence of a bona fide sequence boundary is conspicuously absent (e.g., Montañez and Osleger 1993; MacNaughton et al. 1997).

We make this point because it is clear that the bio-chrono-sequence stratigraphic charts of Hardenbol et al. (1998) are strongly influenced by the earlier global synthesis of Haq et al. (1987), in which nearly 60% of Mesozoic-Cenozoic sequence boundaries are said to be type 2 boundaries, and they incorporate nearly twice as many surfaces (Miall and Miall 2001). We suspect therefore that at least some of the less prominent “se-
quence boundaries” portrayed in those charts are instead flooding surfaces, particularly in deposits of Mesozoic age. Although such discontinuities are undoubtedly useful in local stratigraphic interpretation, the distinction is important because the eustatic paradigm depends in part on being able to make the case for allocyclicity (an origin external to the sedimentary basin). Shoreline position, and hence the development of T-R cycles, is highly sensitive to changes in sediment supply.

None of this is an argument against the sequence stratigraphic approach. Indeed, broadly conceived, sequence stratigraphy is arguably the best framework for stratigraphic interpretation. Our point is that results are inevitably uneven, and subject to practical limitations.

CHALLENGES FOR CHRONOSTRATIGRAPHY

If sequence stratigraphy is accepted as providing a useful context for stratigraphic interpretation, an important issue that needs to be addressed is what role if any it ought to play in chronostratigraphy and global correlation. We draw attention here to three challenges for the construction of global biochrono-sequence stratigraphic charts (Haq et al. 1987; International Commission on Stratigraphy 2007): 1) non-trivial disagreement about the criteria by which sequence boundaries are recognized and mapped, with implications for both the manner in which surfaces develop and their timing; 2) non-eustatic origins for at least some, and perhaps many sequence boundaries; and 3) diachrony of interpreted surfaces.

Mapping and Development of Sequence Boundaries

A host of geometrical, facies-based, biostratigraphic and other criteria allow sequence boundaries to be recognized and mapped with confidence at up-dip locations (see above). Difficulties arise in tracing those surfaces to more conformable marine successions where ages are generally established, and especially in intracratonic and other ramp settings, where sequence boundaries are more or less concordant with overlying and underlying strata for long distances. One of the fundamental insights of seismic and sequence stratigraphy, as the field emerged in the late 1970s and early 1980s, was the practical and conceptual value of defining boundaries primarily on the basis of stratigraphic controls and the geometry of the sand sheets (Hiscott et al. 1997). The latter do not represent “basin-floor fans” overlying a corresponding series of sequence boundaries, the conventional sequence stratigraphic interpretation of such sediments (e.g., Haq et al. 1987; Vail 1987; Mutti and Normark 1991; Posamentier et al. 1991), but channel avulsion at upfan sites (Hiscott et al. 1997). The Amazon fan’s youngest levee complex, deposited entirely during oxygen isotope stages 4 to 2 (Piper et al. 1997), consists of at least 10 laterally shingled channel-levee units and many more sand-rich sheets (Damuth et al. 1983; Manley and Flood 1988; Hiscott et al. 1997). While all of the sedimentation took place during a span of < 55 ky of generally lowered sea level (Thompson and Goldstein 2006), stratigraphic details bear little relation to the sea-level curve.

The Fuji basin, a salt-withdrawal minibasin located immediately seaward of the shelf-slope break, offshore Louisiana (Gulf of Mexico), includes at least 10 mass transport complexes in its late Pleistocene to Holocene fill (< ~470 ka, and ~45% by volume; A.S. Madof, unpublished data). Like the sand sheets of the Amazon fan, these too would conventionally be regarded as individual lowstand deposits. However, the abundance of such complexes compared with the dominant orbitally forced ~100 ky sea-level cycles (Miller et al. 2005a) and geometric evidence for radial flow into the depocenter (vs derivation primarily from the upper slope) suggest that mass failure was triggered by salt motion rather than by eustasy. Details of this study are currently being prepared for publication elsewhere.

Another variant of off-shelf stratigraphy is illustrated by middle Miocene through Holocene sedimentation in the Canterbury basin, eastern offshore South Island, New Zealand. The continental margin there is dominated by current-deposited sediment drifts that nucleated in water depths of 300-750 m, and migrated towards the shelf (Fullthorpe and Carter 1991; Lu et al. 2003; Carter et al. 2004a; Carter et al. 2004b; Lu and Fullthorpe 2004). While the sediment was ultimately derived from the adjacent microcontinent, and is punctuated by unconformities at a timescale of several million years to ~100 ky (Lu and Fullthorpe 2004), its physical stratigraphy was strongly influenced by variations in the strength and trajectory of contour-hugging ocean currents, and not simply by the rise and fall of sea level.

Whether or not sequence stratigraphic nomenclature is applicable in these and other deep-water settings (and we’re doubtful that it is in the absence of a clear connection with shelf stratigraphy), our key point is that stratigraphic discontinuities develop in off-shelf environments for a host of reasons, besides direct eustatic forcing. So their existence is of limited use in global correlation without broader context.
A second conceptual issue is whether sequences ought to be defined and mapped on the basis of geometric criteria, though in a conceptually consistent way (our view), or according to some perception of sea-level change (e.g., Posamentier and Allen 1999). While individual workers are at liberty to define stratigraphic units in any way they please (e.g., Embry 1988, 1995; Galloway 1989; Hunt and Tucker 1992; Kolla et al. 1995; Naish and Kamp 1997; Plint and Nummedal 2000), at stake is more than an inconsequential debate about terminology. Rather, it is our understanding of how sedimentation responds to various phenomena (including sea-level change), how discontinuities arise, and specifically how surfaces are traced and therefore dated in basinal settings.

It is still widely assumed that sequence boundaries develop more or less instantaneously as “relative sea level begins to fall,” when sea level is falling most rapidly or as sea level drops below the shelf edge (to pick just three popular but obviously different ideas; e.g., Posamentier et al. 1988; Van Wagoner et al. 1988; Vail et al. 1991; Posamentier and Allen 1999; Posamentier and Morris 2000; Coe 2003; Catuneanu 2006). The concept of relative sea-level change, which dates back to the early years of seismic stratigraphy (Vail et al. 1977), makes sense at a qualitative level. The space available for sediment to accumulate is influenced by vertical motions of both the crust and sea level. So, it is argued, all possible origins of sequence boundaries can be accommodated by considering changes in sea level relative to a subsiding sedimentary basin; and headward erosion from a subaerially exposed shelf edge accounts for both the origin and timing of incised valleys.

The main problem with these firmly entrenched ideas has been appreciated for more than 20 years: they’re circular and not consistent with available data (Christie-Blick and Mountain 1989; Christie-Blick 1991; Christie-Blick and Driscoll 1995; Pekar et al. 2001; Pekar et al. 2003). Relative sea-level change cannot be rigorously defined or independently measured in subsiding sedimentary basins in the now generally accepted manner suggested by Posamentier et al. (1988), and it must vary spatially as well as temporally owing to differential subsidence and associated lateral variations in sediment accumulation, compaction and loading. For these reasons, and because sediment bypassing characterizes some marine settings as well as many nonmarine ones (Christie-Blick et al. 2002; Pekar et al. 2003), the relative sea level concept in fact provides no explanation for the onset of bypassing and/or erosion at any location or for the timing of sequence boundaries. And though headward erosion is a fine concept for understanding knickpoint migration and landscape evolution at short timescales, evidence in hand indicates that in subsiding sedimentary basins, sequence boundaries and their associated incised valleys develop over a finite interval of geological time during highstand progradation (Christie-Blick 1991; Christie-Blick and Driscoll 1995; Morton and Suter 1996; Plint and Nummedal 2000; Pekar et al. 2003).

Quantitative analysis of the New Jersey Oligocene, one of the few studies in which precise constraints are available for timing, facies and (most important) eustatic variations, demonstrates that highstand progradation (the stratigraphic element) in each sequence continued to the low stand (two words) of sea level (Kominz and Pekar 2001; Pekar and Kominz 2001; Pekar et al. 2001; Pekar et al., 2003). The systematic delay in the anticipated timing of sequence boundaries (by almost half a cycle; cf. Christie-Blick et al. 1992), and the corresponding absence of lowstand systems tracts at a location for which the rate of eustatic change was as much as an order of magnitude greater than the local rate of tectonic subsidence, is inconsistent with the relative sea level concept. The documented timing is thought to relate instead to a wave climate on the shallow shelf that was sufficiently active during sea-level falls that the advancing shoreline was generally unable to catch up with the prograding shallow shelf edge. Point sources and hence lowstand units failed to develop. So renewed onlap at the adjacent shelf slope (and the conventional age of each sequence boundary) in this case corresponds not with a relative sea-level fall, but with the onset of eustatic rise.

In light of such results, a fallback position is to claim that the timing of a relative sea-level fall can be recognized stratigraphically, even if the concept itself defies rigorous definition, on the basis of evidence for sediment bypassing (so-called forced regression) and the development of offlap (Posamentier et al. 1992; Posamentier and Allen 1999). However, the concept of a sequence boundary then needs to be changed radically in order to preserve the supposed relationship between sequence boundaries and the onset of relative sea-level falls. According to Posamentier and Allen (1999), a sequence boundary corresponds not with a geometrically well-defined offlap surface but with the onset of bypassing at a hypothetical clinoform that traces basinward beneath all offlapping strata. Apart from the impracticality of partitioning bypassing from subsequent erosion, and hence identifying the appropriate clinoform, this interpretation is at odds with the most basic principle of sequence stratigraphy: the supremacy of stratal geometry and associated discontinuities in interpreting the stratigraphic record. It is also apparently based upon a fundamental misunderstanding of the time-stratigraphic significance of unconformities (Posamentier and Allen 1999, p. 46): “Inherent in these contrasting definitions is the question of whether the sequence boundary represents a surface that forms at a specific point in time, and therefore represents a chronostratigraphically significant surface. We will discuss below that placing the sequence boundary at the top of sediments deposited during relative sea-level fall implies that the sequence boundary is, in fact, the unconformity surface itself (a surface that can form over long periods of time), thereby eliminating any chronostratigraphic significance of the sequence boundary.” (The italics are ours.)

In case these considerations seem a little far-fetched, we should recall that the ICS’s Working Group on Sequence Stratigraphy expended seven years (1995-2002) on not reaching a consensus definition of the word sequence (Berggren et al. 2001; Christie-Blick 2001; Posamentier 2001; Salvador 2001). That discussion, which involved some of the most influential individuals in this field, hung up in large measure over the issue of whether sequences are interpretive in the limited sense advocated in this essay or purely descriptive entities, with the latter involving no conceptual rationale for either the recognition or the tracing of boundaries. Our colleague, Jan Hardenbol was among the most outspoken advocates for a non-interpretive definition akin to that of Mitchum (1977), a minority view in the working group that was nonetheless endorsed by most present and former representatives of the Exxon school (Salvador 2001). The obvious inconsistency between this view and numerous publications by the same authors was never adequately addressed (compare, for example, Posamentier and Allen 1999 and Posamentier 2001). If the sequence concept is extended to submarine erosion surfaces without a direct or even conceptual connection with subaerial degradation (e.g., Schlager 1991; Posamentier 2001), and if the criteria for mapping sequence boundaries are arbitrary...
Non-Eustatic Origins

Among important advances in sequence stratigraphy over the past decade have been improvements in the dating of sequence boundaries (in the sense advocated here), in the measurement of amplitudes of sea-level change based on backstripping approaches at continental margins, and in the calibration of the deep-sea oxygen isotopic record (Miller et al. 1998; Komizn and Pekar 2001; Pekar and Komizn 2001; Pekar et al. 2002; John et al. 2004; Miller et al. 2005a; Pekar and Christie-Blick 2006; Pekar and Christie-Blick in press). It is now generally agreed that eustasy was an important driver of sedimentary cyclicity at least since the development of large ice sheets in the early Oligocene, and during earlier ice ages (Miller et al. 1998; Crowell 1999). Eustasy arguably played a role also during times of limited glaciation such as the Jurassic, Cretaceous and early Paleogene (Frakes and Francis 1988; Frakes et al. 1992; Jacobs and Sahagian 1995; Stoll and Schrag 1996; Miller et al. 1998; Miller et al. 1999; Price 1999; Gale et al. 2002; Miller et al. 2003; Immenhauser 2005; Miller et al. 2005b; Pekar et al. 2005). Nonetheless, the paucity of evidence for glacial ice through much of the Mesozoic (Frakes et al. 1992; Markwick and Rowley 1998; Crowell 1999; Price 1999) and during spans such as the Cambrian for which a low–latitude location of East Antarctica precludes concealment of glacial deposits beneath the modern ice sheet (Scotese 2007), suggests that glacio-eustasy may not have influenced sedimentation in the geological past as strongly as it has during the past few tens of millions of years. Since sequence boundaries are now known not to develop instantaneously or to require large and rapid sea-level changes, an issue that arises is whether some and perhaps many unconformities relate to essentially non-eustatic phenomena (Christie-Blick and Driscoll 1995).

High-resolution stratigraphic studies in tectonically active basins demonstrate the development of stratigraphic growth at timescales well within the Milankovitch range (10^4-10^6 y; e.g., Rosales et al. 1994; Plint 2000; Saurborn et al. 2000; Sharp et al. 2000; Mortimer et al. 2005). If stratigraphic geometry in such basins is fundamentally tectonic at that resolution, we infer that the boundaries between units may be of tectonic origin also, rather than only “tectonically enhanced” (e.g., Vail et al. 1984; Vail et al. 1991), with length scales ranging from local (individual structures) to hundreds of kilometers (flexural deformation in foreland basins; Christie-Blick and Driscoll 1995; Catuneanu 2006). Our purpose here is not to embark on a discussion of tectonic phenomena, and there are many. It is to recognize that most basins are tectonically active (even some so-called passive continental margins), and that serious exploration of these phenomena has been mostly side-tracked by uncritical acceptance of the eustatic paradigm thinly veiled as relative sea-level change.

Diachrony

The bedrock assumption that stratigraphic discontinuities have time-stratigraphic significance is not universally correct. Surfaces related to the propagation of faults and the growth of associated folds are expected to be diachronous at the timescale of the deformation, as well as only locally developed (e.g., Weldon 1984; Medwedeff 1989; Christie-Blick et al. 1990; Quebral et al. 1996; Gawthorpe et al. 1997; Sharp et al. 2000).

Diachrony also characterizes discontinuities associated with the development of sediment drifts at continent margins (Christie-Blick et al. 1990; Lu et al. 2003; Lu and Fulthorpe 2004), and it is undoubtedly the case that surfaces of eustatic origin are more generally associated with leads and lags, independent of the criteria adopted for mapping (Christie-Blick 1991). Compare, for example, terrigenous sequences of the New Jersey Oligocene with a hypothetical carbonate platform at which widespread subaerial exposure would have been engendered by even a small lowering of sea level (a potential range in sequence boundary timing of nearly one half of a cycle). While the debate about how sequence boundaries ought to be traced is informed in part by similar considerations, with some preferring definitions that minimize implied diachrony (e.g., Hunt and Tucker 1992, 1995; Kolla et al. 1995; Posamentier and Allen 1999), we think that it is better to recognize that objective mapping based on stratal geometry makes some level of diachrony unavoidable. In that case, and at some scale, unconformities pass laterally not into correlative conformities, but into correlative intervals. Such considerations begin to be important as the resolution of the geological timescale improves at a global scale.

IMPLICATIONS

The present status of sequence stratigraphy in chronostratigraphy therefore appears to be as follows. A compelling case can be made for interpretive sequence stratigraphy. It is what most sequence stratigraphers do in practice even as some argue for non-genetic terminology. However, the quality of published interpretations is highly uneven, and we are some distance from a consensus about how sequence boundaries ought to be traced seaward and hence dated in basinal settings. While age control has improved markedly since the publication of Haq et al. (1987), through the integration of numerous outcrop studies, the release of proprietary data, and targeted drilling under the auspices of the Ocean Drilling Program (and now the Integrated Ocean Drilling Program), uncertainties persist primarily because sampling of well defined sequence boundaries is rarely possible at correlative conformities, and well dated successions are not necessarily closely connected to physical stratigraphy. Unconformities are not universally of eustatic origin, and those that are due to sea-level change are not likely to be synchronous at the level that has generally been assumed (e.g., Loutit 1992). Bio-chrono-sequence stratigraphic charts, as they now exist, are misleading because they imply a level of confidence in dating that cannot be sustained and because they assume global significance for most local data (e.g., Christie-Blick et al. 1988; Gradstein et al. 1988; Christie-Blick et al. 1990; Miall 1991, 1992, 1993, 1994; Miall and Miall 2001). Little incentive exists to challenge such schemes. So many sequences are included in syntheses that it is invariably possible to correlate local stratigraphy to a “global” chart (Miall 1992), and indeed to use the latter to sharpen the calibration of the former. Existing syntheses are incrementally and critically updated to incorporate new data (cf. Vail et al. 1977; Haq et al. 1987; Hardenbol et al. 1998); and the local absence of supposedly global features is invariably attributed to tectonic suppression, lack of expression in preserved facies, or inadequate resolution.

So what should we do? The most objective approach would be to regard all sequence stratigraphic interpretations as local or regional. The geometrical basis for interpretations ought to be appropriately documented, along with the rationale for relating that geometry to age control (with uncertainties). Schemes
based primarily on facies interpretation of isolated measured sections or well logs are at best doubtful, and fraught with the potential for circularity. The stratigraphic record includes plenty of proxies for global signals, based for example on evolutionary biology, changes in magnetopolarity, secular changes in marine isotores, and cyclicity of various kinds related to orbital forcing. There is some evidence that eustatically modulated sequences, and not just T-R cycles, may develop at orbital timescales (e.g., Naish and Kamp 1997; Carter et al. 1999; Saul et al. 1999; Gale et al. 2002; Rabineau et al. 2005; Gale et al. 2006), though more commonly they do not, and most of the cited examples can themselves be debated. We think that the prospects are nonetheless excellent for perfecting an astrochronological timescale, at least for the Mesozoic and Cenozoic, and perhaps into the Paleozoic (Berger et al. 1992; Bond et al. 1993; de Boer and Smith 1994; House and Gale 1995; Olsen and Kent 1999; Himnov 2000; Pâlîke et al. 2007; see Miall and Miall 2004 for a different view). We also endorse continued research in quantifying the timing and amplitudes of sea-level change (with specified uncertainties), particularly for the Cenozoic, and integrating passive-margin backstripping in a sequence stratigraphic context with the much higher resolution deep-sea oxygen isotopic record (e.g., Kominz and Pekar 2001; Pekar and Kominz 2001; Pekar et al. 2002; Miller et al. 2005a; Pekar and Christie-Blick in press). Global sequence stratigraphic/cycle charts, however, were always a fudge, and they aren’t going to help much in chronostratigraphy at the resolution that is now needed.

ACKNOWLEDGMENTS

We thank Kari Bassett and Ashton Embry for comments on the manuscript, and numerous colleagues for discussions over the years that have helped shape the authors’ views. Christie-Blick acknowledges protracted email correspondence with members of the Working Group on Sequence Stratigraphy (International Commission on Stratigraphy, 1995-2002), along with participants in the Hedberg Research Conference on Sequence Stratigraphic and Allostratigraphic Principles and Concepts (2001) and the Penrose Conference on Chronostratigraphy: Beyond the Global Standard Stratotype and Point (2006). Our recent sequence stratigraphic studies have been supported by National Science Foundation grant OCE 01-19019 (Christie-Blick and Pekar), and by Compagnie Générale de Géophysique, Paradigm and summer internships with Chevron (Madof). Christie-Blick thanks the Department of Geological Sciences at the University of Canterbury, New Zealand, for hospitality during his 2006-07 Sabbatical leave. Lamont-Doherty Earth Observatory Contribution Number 7028.

REFERENCES

223

———, in press. Resolving apparent conflicts between oceanographic and Antarctic climate records and evidence for a decrease in pCO2 during the Oligocene through early Miocene (34-16 Ma). *Palaeogeography, Palaeoclimatology, Palaeoecology*.

VAIL, P. R., MICHUM, R. M., JR., TODD, R. G., WIDMIER, J. M., THOMPSON, S., III, SANGREE, J. B., BUBB, J. N. and HAT-

