Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales

Yonaton Goldsmith⁠¹,¹, Wallace S. Broecker², Hai Xu³,⁴, Pratigya J. Polissar⁵, Peter B. deMenocal⁶, Naomi Porat⁷, Jianghu Lan⁸, Peng Cheng⁹, Weijian Zhou⁸, and Zhisheng An⁹

¹Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964; ²State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, Shaanxi, China; and ³Geological Survey of Israel, Jerusalem 95501, Israel

Edited by Jeffrey P. Severinghaus, Scripps Institution of Oceanography, La Jolla, CA, and approved December 28, 2016 (received for review October 7, 2016)

The magnitude, rate, and extent of past and future East Asian monsoon (EAM) rainfall fluctuations remain unresolved. Here, late Pleistocene–Holocene EAM rainfall intensity is reconstructed using a well-dated northeastern China closed-basin lake area record located at the modern northwestern fringe of the EAM. The EAM intensity and northern extent alternated rapidly between wet and dry periods on time scales of centuries. Lake levels were 60 m higher than present during the early and middle Holocene, requiring a twofold increase in annual rainfall, which, based on modern rainfall distribution, requires a ~400 km northward expansion/migration of the EAM. The lake record is highly correlated with both northern and southern Chinese cave deposit isotope records, supporting rainfall “intensity based” interpretations of these deposits as opposed to an alternative “water vapor sourcing” interpretation. These results indicate that EAM intensity and the northward extent covary on orbital and millennial timescales. The termination of wet conditions at 5.5 ka BP (~35 m lake drop) triggered a large cultural collapse of Early Neolithic cultures in north China, and possibly promoted the emergence of complex societies of the Late Neolithic.

East Asian monsoon | closed-basin lake | paleo-rainfall | Chinese cave record | northward expansion

The East Asian monsoon (EAM) is a major component of the global climate system (1), and its variability directly impacts the lives of over a billion people. Understanding EAM sensitivity to past climate changes and its future variability are essential for determining the EAM response to different climate forcings and for constraining future climate projections. Two competing interpretations of existing paleoclimate records frame our current understanding of the response of the EAM to orbital-scale and high-latitude millennial-scale forcing during the late Pleistocene–Holocene. The first interpretation suggests that oxygen isotopic records from Chinese cave deposits reflect real rainfall changes, indicating a direct response of EAM rains to external climate forcings (2–4). The competing view holds that these isotopic records reflect changes in moisture sourcing and depend on the Indian Monsoon intensity (5–10), suggesting that the cave deposit isotopic values are decoupled from actual rainfall amounts, and thus question the validity of oxygen isotope–based EAM intensity reconstructions. Missing from this debate has been an independent quantitative record of past rainfall variability in the EAM region. Here, we present a detailed, well-dated lake-level history for Lake Dali (43.15°N, 116.29°E), a closed-basin lake in Inner Mongolia (1,220 m above sea level, 220 km² lake area and maximum depth of 11 m), presently located near the northwestern limit of EAM domain (e.g., ref. 11; Fig. 1). The peripheral location of Lake Dali with respect to the monsoon region provides an excellent opportunity to examine the magnitude of spatial expansion of the EAM and whether the millennial- and orbital-scale changes observed in Chinese cave deposit records were accompanied by real changes in monsoonal rainfall.

Closed-basin lakes are, to first order, controlled by the amount of rainfall that falls in the catchment of a lake, and thus are powerful recorders of past changes in annual rainfall amounts (12). Lake Dali Level-record is unique because closed basin lakes are scarce in the EAM region (13), and thus this record is an independent proxy for the EAM precipitation amount and a benchmark for interpreting the seminal Chinese cave records.

Modern rainfall in Lake Dali occurs during the warm boreal summer (June to September), whereas over boreal winter temperatures drop and the lake freezes over. Local rainfall seasonality and long-term variability are representative of the EAM in northern China (SI Materials and Methods; Fig. S1). Therefore, the water budget of Lake Dali should be sensitive to regional precipitation shifts in northern China and thus reflect EAM fluctuations.

Lake beach ridges and sediment outcrops observed above the modern lake level represent past variations of lake-level elevation and extent. Satellite images and an advanced spaceborne thermal emission and reflection radiometer (ASTER) digital elevation model (DEM; 30-m resolution) were used to locate and map these shoreline markers. In the field, 41 sediment outcrops and beach ridges were mapped and stratigraphic relations were evaluated (Fig. S2). Thirty-six radiocarbon ages were obtained from aquatic shells and charcoal (reported as calibrated calendar ages before present [BP]) and nine optical stimulated luminescence (OSL) samples were measured. Radiocarbon measurements of modern lake and river water dissolved inorganic carbon and a submerged aquatic plant indicate that currently the lake water is at radiocarbon equilibrium with the atmosphere (SI Materials and Methods and Table S1), obviating the need for a reservoir correction. The local geology is composed of Jurassic granite, late Pleistocene basalt, and Quaternary sand dunes (14). The absence of limestone in the catchment of the lake also minimizes possible introduction of old radiocarbon into the lake.

Significance

The magnitude, rate, and extent of past and future East Asian monsoon (EAM) rainfall fluctuations remain unresolved. Here, we present a rainfall reconstruction based on the surface area of a closed-basin lake located at the modern northwestern boundary of the EAM. Our record shows that fluctuations of EAM intensity and spatial extent covaried over the past 125 ka. This record contributes to the resolution of a current controversy concerning the response of the EAM to external climatic forcings. We propose that a substantial decrease in rainfall at 5.5 ka was a major factor leading to a large cultural collapse of the Early Neolithic culture in north China.

This article is a PNAS Direct Submission.

1To whom correspondence may be addressed. Email: yonig@ldeo.columbia.edu or xuhai@iecas.cn.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1616708114/-/DCSupplemental.
The results show that the lake fluctuated on both orbital and millennial time scales. The lake reached highstands at 123 ± 13 ka (marine isotope stage 5e), 58 ± 5 ka (between marine isotope stages 3 and 4), and 11–5.5 ka (marine isotope stage 1) (Figs. 2 and 3). These three major highstands occurred during periods of high boreal summer insolation, indicating that the intensity/extent of the EAM is governed by summer insolation intensity. Erosion and burial result in scarce pre-Holocene shoreline evidence; therefore, additional highstands cannot be excluded.

During the Late Glacial (16–11.5 ka) the lake fluctuated on millennial time scales, with the Bolling–Allerød (B–A) and Younger Dryas periods having high and low lake levels, respectively (Fig. 2). These abrupt fluctuations occurred during times of relatively low insolation and are coeval with Greenland and circum-North Atlantic records, indicating that the EAM responded to climatic forcings that originated in the North Atlantic through teleconnections most likely related to shifts in the position of the thermal equator (15) and the associated shifts in the westerlies position (10).

Lake levels during the Early and Middle Holocene were overall high, corresponding to the Early Middle Holocene summer (June–August; JJA) insolation maxima. The onset (~60 m rise in 400 y) and termination (~35 m drop in 1 ka) of the Holocene humid period occurred rapidly. During four intervals in the Early and Middle Holocene (11.5–11, 10.5–9.5, 8.3–7.8, and 6.1–5.9 ka), lake levels were particularly high, with lake drops occurring between these intervals. These millennial fluctuations appear in...
both north China lake (16) and sea surface temperature records (17); their cause is not clear at this time.

Discussion

The main point of contention over the interpretation of the Chinese cave deposit isotope records is whether the isotopic composition of precipitation in China ($\delta^{18}P$) is correlated with the amount of local rainfall over China. To evaluate whether the Chinese cave deposits represent actual rainfall amounts, we compare the Lake Dali record to two cave deposit records from north (Lianhua Cave located ~ 600 km south of Lake Dali; ref. 18) and south China (Dongge Cave located $\sim 1,500$ km south of Lianhua Cave; ref. 19; Fig. 1).

The results show that Lake Dali lake-level history is negatively correlated with both cave records on both precessional and millennial time scales ($r^2 = 0.8$ and 0.7 for Lianhua and Dongge, respectively) (Fig. 3 and Fig. S3). High Lake Dali lake levels correspond with depleted Chinese cave deposits isotopic compositions and vice versa. These results indicate that to first order, the isotopic composition of precipitation is correlated with local rainfall amount over northern China and that both are regulated by EAM intensity.

The great advantage of closed-basin lakes is the quantitative constrains they can provide on paleo-rainfall amounts through a lake hydrological model. At equilibrium (stable lake level), the amount of water evaporating from the lake surface matches the inflow into the lake, which is calculated as the fraction of precipitation in the catchment that enters the lake as runoff multiplied by the catchment area of the lake and precipitation amount (20). To constrain the model, we first investigated the modern lake using satellite imagery, lake and stream chemistry, and long-term measurements of precipitation, air temperature, and evaporation (SI Materials and Methods). The results show that modern Lake Dali is a closed-basin lake at steady state, which allows us to use a closed-basin lake model and derive the essential modern hydrological parameters (e.g., lake evaporation and fraction of runoff).

To model the paleohydrology of the lake during the Holocene humid period and during the B–A, we used a digital elevation model to reconstruct the area of the lake based on the reconstructed lake level and a range of plausible lake evaporation rates using the Penman evaporation equation (21) and temperature reconstructions from the Chinese Sea (22) and climate models (23). To constrain the fraction of catchment runoff that enters the lake we used the Budyko relationship, which is an empirical model that relates the runoff fraction (rainfall/runoff) with precipitation amounts (24, 25). Our results show that annual precipitation during the early Holocene highstands must have been about double the present value for this lake basin (Fig. 4A). Because the lake likely overflowed during this time, this value...
should be regarded as a minimum estimate. Sustaining the B–A lake level would require 160–170% of modern precipitation values (Fig. 4A; SI Materials and Methods). Based on the modern spatial distribution of rainfall in China, a doubling of rainfall (from 400 to 800 mm/y) would require an ~400 km northwestern movement of the 800-mm isohyet (Fig. 4B). Higher lake levels during the B–A, Middle and Early Holocene are most likely the outcome of two processes, the overall intensification of the EAM (as represented by the Chinese cave records), and a northwestern expansion of the monsoon. Assessing the proportional contribution of both processes is not possible at this time due to the lack of quantitative rainfall reconstructions from the central region of the EAM.

We compared our reconstructions of precipitation amount and the inferred northward expansion of the EAM during the Holocene humid period to the 6-ka simulations from 12 paleoclimate modeling intercomparison project phase 3 (PMIP3) and National Center for Atmospheric Research (NCAR) general circulation models. Eleven of thirteen models accurately capture the northward EAM expansion. However, annual precipitation estimates from these simulations underestimate the magnitude of northern China hydrological change by 50% (Fig. 4) (see SI Materials and Methods, Fig. S4, Table S5, and ref. 26 for further detail).

Our results suggest the abrupt termination of the Holocene humid period at 5.5–5 ka had dramatic impacts on the social development of Chinese culture. At this time, a major cultural transition occurred in north and central China identified by the disappearance of Early Neolithic cultures (Hongshan culture in North China, which existed from 6.5 to 5 ka, and Yangshao culture in central China which existed from 7 to 5 ka) (27). In central China, Early Neolithic cultures were replaced by stratified and socially and politically complex Late Neolithic cultures (e.g., Longshan culture that existed from 5 to 3.9 ka) (27), and previously unoccupied areas on the eastern margin of the Tibetan plateau were populated (28). In contrast, northeast China experienced a sharp population decline represented by the Xiaoyehuan culture, which existed between 5 and 4.2 ka (27, 29). The sharp decline of north China rainfall amounts as recorded in Lake Dali, may have triggered contrasting reorganizations of north and central China cultures, causing a rapid population collapse in northern China and promoting structured complex societies in central China.

Materials and Methods

Lake beach ridges identified using satellite images and an ASTER digital elevation model were mapped in the field; stratigraphic relations were evaluated and samples were collected for dating.

Thirty-six shell and charcoal samples were dated using conventional radiocarbon methods. Analysis of modern lake water samples showed that there is no old radiocarbon in the lake. Nine sediment samples were dated using conventional OSL methods.

The hydrological model combines a closed-basin mass balance equation with the Budyko relationship, which is an empirical model that relates runoff fraction with precipitation amount and the Pennman equation to quantify land surface evaporation. The generation of initial and boundary conditions for a lake highstand, calculated using the hydrological model, was compared with the 6-ka simulations from 12 PMIP3 and NCAR general circulation models. SI Materials and Methods contains a detailed description of sampling, dating, hydrological modeling, and comparison of the lake level with the ice-volume corrected δ18O, from the Chinese cave records.

ACKNOWLEDGMENTS. We thank G. Shelach-Lavi for his advice regarding the archaeology of China. We thank E. Sheng and T. Liu for their great help in the field. We thank the editor and two anonymous reviewers whose comments improved the paper. This work was supported by a Gary Comer Science and Education Foundation grant to Y.G. and P.J.P.; Columbia’s Center for Climate and Life; the National Basic Research Program of China Grant 2013CB959800; the External Cooperation Program of the China National Center for International Cooperation, Chinese Academy of Sciences Grant 132861KYSB20130003; and Lamont-Doherty Earth Observatory Contribution no. 8084.