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CHAPTER FOUR

Global and African Regional Climate 
during the Cenozoic

SARAH J. FEAKINS AND PETER B. DEMENOCAL

The last 65 Ma of Earth’s history, the Cenozoic, has been a 
time characterized by significant climate change. Major 
global changes included massive tectonic reorganization, a 
reduction in atmospheric pCO2 (Pagani et al., 1999; Pearson 
and Palmer, 2000), and a dramatic cooling of global climate, 
plunging the world from generally warm conditions into the 
repeated glacial-interglacial cycles of the ice age (Zachos 
et al., 2001). Deep-sea oxygen isotope records record global 
cooling of up to 8°C in the early Cenozoic, heralding the 
development of major ice sheets on Antarctica from 35 Ma, 
which further intensified the global cooling trend and cul-
minated in cyclical Northern Hemisphere glaciation during 
the past 3 Ma (figure 4.1). Many events in global tectonics 
and high latitude climate had significant effects on Ceno-
zoic climate evolution. These are well described elsewhere 
(e.g., Kennett, 1995; Denton, 1999; Zachos et al., 2001) and 
are summarized in figure 4.1. 

In this chapter, we focus on three revolutions in climate 
research that have dramatically altered our perception of 
global and African climate. First, the discovery that large 
magnitude climate events occurred abruptly, sometimes in 
as little as decades, has prompted high-resolution paleocli-
mate reconstructions and new conceptions of climate 
dynamics, revealing significant climate variability at times 
that were previously thought to be quiescent (e.g., the 
 Holocene). On longer timescales, high-resolution oxygen iso-
tope stratigraphies have also revealed transient events in the 
early  Cenozoic (Zachos et al., 2001). These discoveries have 
revolutionized theories of climate change and demonstrated 
the need for high- resolution reconstruction of climate vari-
ability on 100- to 105-year timescales.

Second, recent climate studies have revealed significant 
tropical climate variability. Modern observational climate 
data have indicated that the largest mode of global interan-
nual climate variability is the El Niño Southern Oscillation 
(ENSO) in the tropical Pacific (Ropelewski and Halpert, 1987; 
Trenberth et al., 1998). Large amplitude tropical environ-
mental variability has also been reconstructed in the paleo-
climate record. In particular, revised estimates of tropical sea 
surface temperatures (SSTs) during global cool and warm 
events have revealed significant tropical sensitivity to global 
climate change (e.g., Pearson et al., 2001; Lea et al., 2003). 

Revised tropical SST reconstructions have implications both 
for local climate interpretations and for global dynamical 
predictions, leading to new perspectives on the nature of 
Cenozoic climate change. 

Third, the role of the tropics in global climate change has 
been reconceptualized. Rather than being a passive responder 
to changes in the high-latitude cryosphere, tropical climate 
variability may be at least partially decoupled from high- 
latitude climate. For example, there is considerable evidence 
that precessional variations in insolation may directly influ-
ence the intensity of African precipitation, independent 
of high-latitude climate variability (Rossignol-Strick, 1983; 
Partridge et al., 1997; Denison et al., 2005). The tropics may 
even have driven global climate change. For example, ENSO 
generates global teleconnections that have been observed in 
the instrumental record (Cane and Zebiak, 1985; Cane and 
Clement, 1999), and evidence for tropical initiation of past 
global climate changes comes from both paleoclimate and 
modeling analyses (Linsley et al., 2000; Clement et al., 2001; 
Hoerling et al., 2001; Yin and Battisti, 2001). This chapter 
provides a synthesis of climate data from a tropical perspec-
tive that offers new insights into aspects of Cenozoic African 
environmental change.

Modern African Climate

Precipitation is the critical interannual variable in African 
climate. Seasonal variations in the position of the Intertropi-
cal Convergence Zone (ITCZ) exert a significant control on 
the seasonal pattern of precipitation maxima across much of 
Africa. Figure 4.2 shows the major atmospheric circulation 
regimes for average conditions in July/August and January 
that illustrate common climatic zones and provide a basis for 
understanding climatic variability (Nicholson, 2000). Dis-
tinct atmospheric circulation systems affect North Africa, 
West and Central Africa, East Africa, and southern Africa; 
they are separated in large part by the ITCZ. These regions 
experience characteristic patterns of interannual variability, 
teleconnections, and surface characteristics (Janowiak, 1988; 
Semazzi et al., 1988). 

The northern coast of Africa has a Mediterranean climate 
receiving winter precipitation supplied by the midlatitude 
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46    PHYSICAL AND TEMPORAL SETTING

 Variations in continental heating also influence the land-
sea temperature contrast and strength of the monsoon on 
 millennial timescales (deMenocal et al., 2000; Liu et al., 
2003). Central  African rainfall is also negatively correlated 
with equatorial Atlantic SSTs but positively correlated with 
subtropical  Atlantic SSTs (Nicholson and Entekhabi, 1987; 
Camberlin et al., 2001), with seasonal rainfall maxima 
associated with the passage of the ITCZ (figure 4.2). The 
hydrogen isotopic composition of plant leaf wax  biomarkers 
in the Congo Fan indicate that this relationship has per-
sisted for the past 20 ka (Schefuss et al., 2005).

Southern Africa has a strong precipitation gradient from 
�1,000 mm per year in the east to �20 mm per year in the 
west (Nicholson, 2000). Most precipitation falls in the austral 
summer as convective rainfall, particularly in the southeast. 
In the southwest, the precipitation pattern is more complex, 
with rainfall maxima associated with the seasonal peak in 

westerlies (Nicholson, 2000). Interannual to interdecadal 
variability is influenced by regional and global atmospheric 
teleconnections associated with the North Atlantic Oscilla-
tion (Hurrell, 1995) and to a variable extent by ENSO 
( Knippertz et al., 2003). Greenland ice core data indicate that 
these patterns of variability have persisted for several hun-
dred years (Dansgaard et al., 1993). 

West Africa is dominated by summer monsoonal precipi-
tation associated with the northward migration of the ITCZ 
(figure 4.2). Tropical Atlantic SSTs have been shown to exert 
primary control on the strength of West African monsoon 
and Sahelian precipitation at interannual to interdecadal 
timescales (Rowell et al., 1995; Giannini et al., 2003). Warm 
SST anomalies in the Gulf of Guinea reduce the land-sea 
temperature contrast and weaken the monsoon. Convec-
tion cells remain over the ocean, increasing rainfall to 
coastal regions and decreasing rainfall to the Sahel. 
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FIGURE 4.1 Global deep-sea oxygen isotope records for the last 65 Ma based on data compiled from more than 40 DSDP/ODP marine 
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FOUR: GLOBAL AND AFRICAN CLIMATE DURING THE CENOZOIC    47

SSTs in Benguela coastal regions. Summer heating creates low 
pressure over central Africa that pulls in  moisture from the 
western Indian Ocean. Significant interannual  variability in 
precipitation is dominated by western Indian Ocean SSTs, 
with variability that is strongly related to ENSO in the Pacific 
(Cane et al., 1994; Goddard and Graham, 1999; figure 4.3). 
El Niño years are anomalously dry in southern Africa between 
December and February. These interannual observations sug-
gest that past variations in Indian and Pacific SSTs are likely 
to have had a significant influence on southern African rain-
fall, particularly in the southeast, whereas variations in the 
strength of upwelling and the Benguela current may have 
been more important for southwest African  climate.

East Africa receives most of its precipitation in April to 
March and September to November, associated with the bian-
nual passage of the ITCZ and seasonally reversing winds 

 (figure 4.2). The primary moisture source is the central Indian 
Ocean via the southeasterly trade winds. Although the  relative 
humidity is moderately high, precipitation in East Africa is 
low because of regional atmospheric circulation (Rodwell and 
Hoskins, 1996). Subsidence associated with the Indian Mon-
soon system inhibits convection, and the Ethiopian highlands 
constrict the southeasterly flow, resulting in southwesterly 
moisture divergence feeding the Indian Monsoon. On inter-
annual timescales, Indian and Pacific ocean SSTs determine 
precipitation variability (figure 4.3; Goddard and Graham, 
1999). These anomalous features of East African circulation 
suggest that uplift of the Himalayas and Ethiopian Highlands 
would have driven a gradual aridification of equatorial East 
Africa during the Cenozoic with superimposed  climate 
 variability resulting from SST variability in the Indian and 
Pacific oceans.
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FIGURE 4.2 Schematic of the general patterns of winds, pressure, and convergence 
over Africa. Dotted lines indicate the ITCZ; dashed lines indicate other convergence 
zones. Reprinted with permission from Nicholson (2000). © 2000 Elsevier.

Werdelin_ch4.indd   47Werdelin_ch4.indd   47 1/13/10   10:39:48 PM1/13/10   10:39:48 PM



48    PHYSICAL AND TEMPORAL SETTING

provide new answers about the global signature of Cenozoic 
paleoclimate events, particularly in Africa. 

Cenozoic Climate Change

ABRUPT EVENTS IN THE PALEOCENE

One of the most dramatic events of the entire Cenozoic occurred 
in the late Paleocene (ca. 55 Ma). Antarctic and deep ocean tem-
peratures rose by more than 6°C in less than 10 ka, creating a 
dramatic warming event, the Paleocene-Eocene Thermal Maxi-
mum (PETM) that lasted for 50 ka (figure 4.1; Stott and Kennett, 
1990). This abrupt warming took place in an already warm era 
when global carbon dioxide levels were extremely high (�2,000 
ppm), the poles were ice free (Zachos et al., 2001), sea levels were 
high, and a large marine transgression covered most of north-
ern Africa (65–50 Ma; Le Houerou, 1997). This large-amplitude, 
abrupt event has been documented in a Tunisian record and 
would likely have had a significant impact on nearby continen-
tal climate (Bolle et al., 1999). These dramatic climate events 

ENSO SST variability in the tropical Pacific is the domi-
nant mode of global interannual (2–7 yr) climate variability, 
with well-documented regional and global climate effects. 
El Niño events most strongly influence East and South Africa 
with strengthened upper westerly winds that lead 
to decreased rainfall in South Africa (December–March) and 
increased rainfall in East Africa (October–December—see 
figure 4.3; Hastenrath et al., 1993). North and West Africa 
are partially influenced by ENSO variability. In the Sahel, 
El Niño events tend to correlate with dry conditions (July– 
September).  Sustained El Niño or La Niña–like conditions 
may also explain global climate patterns during paleocli-
mate events such as the warm, wet mid-Pliocene or be a pos-
sible trigger mechanism for abrupt climate events such as 
the Younger Dryas (Clement et al., 2001; Molnar and Cane, 
2002; Wara et al., 2005; Ravelo et al., 2006). Observational 
and modeled studies of modern seasonal to interdecadal 
variability have provided important insights into the 
regional and global climate parameters that influence 
 African climate variability. These fresh perspectives may 
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plants indicate the earliest C3 grasslands in Africa at Fort 
 Ternan, Kenya, ca. 14 Ma (Retallack, 1992). Isotopic studies 
confirm that mid-Miocene grasslands were C3 (Cerling et al., 
1997a; Feakins et al., 2005; see figure 4.4). Wet rain forest sur-
vived in many areas, including in northwestern Ethiopia 
(8 Ma; Yemane et al., 1987) and in the Tugen Hills, Kenya 
(8–6 Ma; Kingston et al., 2002) indicating mixed savannah 
and forest habitats across East Africa. 

C4 grasses appear in East Africa in the mid-late Miocene 
(Cerling et al., 1997b). C4 grasses replace C3 plants as the most 
significant dietary component of northeast African grazing 
mammals between 8 and 6 Ma (Cerling et al., 1997b). Faunal 
assemblages at Lothagam, in the western Turkana Basin, also 
support a transition from C3 forest to a mixed C3 and C4 
savanna mosaic between 8 and 4 Ma (Leakey et al., 1996). How-
ever, soil carbonate and leaf wax biomarker isotopic data indi-
cate that C3 vegetation remained a significant component of 
regional vegetation during the Pliocene (Wynn, 2004; Feakins 
et al., 2005; figure 4.4). These vegetation reconstructions indi-
cate that C4 plants may only have expanded to become a dom-
inant component of the landscape in the late Pliocene and 
Pleistocene, much later than they appeared as a significant 
component of the diets of certain grazing mammals. 

have been linked to the Cretaceous-Paleogene extinction event 
and subsequent stabilization and rapid speciation, particularly 
within 10–100 ka after the PETM, when most of the modern 
orders of mammals appeared (Gingerich, 2004).

REVISED TROPICAL TEMPERATURES IN THE EOCENE

The Eocene is thought to be the warmest epoch of the Ceno-
zoic, although climate data for this period are sparse, espe-
cially in Africa. Warm deep ocean temperatures (>10°C) are 
recorded in benthic foraminiferal oxygen isotopes during 
the early Eocene climatic optimum (54–50 Ma; figure 4.1). 
Although temperatures had risen, pCO2 levels had dropped 
down to 700–900 ppm from their Paleocene high of �2,000 
ppm. Early estimates of tropical temperatures based on fora-
miniferal oxygen isotopes suggested unexpectedly cool tem-
peratures (15°–23°C), resulting in meridional temperature 
gradients that could not be reconciled with known dynami-
cal mechanisms (Zachos et al., 1994). Cool tropical tempera-
ture estimates may have been biased by diagenesis or winter 
foraminifera growth, and recently revised tropical SST esti-
mates (�28°C) are consistent with dynamic predictions based 
on high-latitude warming (Kobashi et al., 2001; Pearson 
et al., 2001). African continental environments appear to 
have been warm and wet during the Eocene. Bauxite, iron, 
and lateritic deposits at paleolatitude 5°–15°N indicate a 
humid Eocene climate (Guiraud, 1978). Paleobotanical 
remains from a middle Eocene crater lake in Tanzania (12°S) 
suggest high rainfall (640–780 mm per year) and woodland 
vegetation (Jacobs and Herendeen, 2004). A generally warm 
and wet African climate during the Eocene is consistent with 
a strong moisture source to the atmosphere provided by 
warm SSTs.

OLIGOCENE ANTARCTIC GLACIATION AND SOUTHERN 
AFRICAN CLIMATE

Significant southern African climate change at the Eocene- 
Oligocene boundary is indicated by seismic evidence from the 
Zaire (Congo) deep-sea fan. Marine sediments indicate a shift 
from pelagic sedimentation during Eocene greenhouse condi-
tions to dramatically increased continental erosion associated 
with uplift in southern Africa and Oligocene global cooling 
(Anka and Séranne, 2004). The growth of the first permanent 
Antarctic ice sheet (35–26 Ma; figure 4.1) led to the develop-
ment of the cold Benguela Current and associated increase in 
southern African aridity. Productivity proxies indicate that 
Benguela coastal upwelling intensified in the mid-Miocene 
with the second phase of Antarctic ice sheet growth (Diester-
Haass et al., 1990; Robert et al., 2005). Dust records indicate 
that southwest African aridity increased after 9.6 Ma, and 
between 8.9 and 6.9 Ma, with significant variability after 6.5 
Ma closely associated with the intensity of Benguela upwelling 
and ultimately the history of Antarctic glaciation (Robert et al., 
2005). These marine records indicate that southwest African 
aridity developed in the Oligocene and Miocene, closely related 
to the intensity of the Benguela upwelling, which strengthened 
at times of increased equator-to-pole temperature gradients.

MID-MIOCENE CLIMATE CHANGE IN EAST AFRICA

The significant climate events that affected East Africa in the 
mid-Miocene are relatively well documented compared to 
earlier ones. Forested conditions in the early Miocene gave 
way to mixed grassland and forest in the mid-Miocene. Fossil 
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 glacial age (0.06 Ma) indicated by the interpolated age model.

Werdelin_ch4.indd   49Werdelin_ch4.indd   49 1/13/10   10:39:49 PM1/13/10   10:39:49 PM



50    PHYSICAL AND TEMPORAL SETTING

1995), and PRISM models predict that North Africa was 
warmer (by 5°C) and wetter (by 400–1,000 mm per year) rela-
tive to today (Haywood et al., 2000).

In the equatorial Pacific, the east to west SST gradient resem-
bled a permanent El Niño, in contrast to the mean La Niña state 
in the modern ocean (Cannariato and Ravelo, 1997; Chaisson 
and Ravelo, 2000; Wara et al., 2005; Ravelo et al., 2006). 
Although the atmospheric teleconnection mechanisms associ-
ated with a modern El Niño event cannot simply be extrapo-
lated to longer timescales, in many regions Pliocene climate 
appears to be roughly analogous to that observed in a modern 
El Niño (Molnar and Cane, 2002). In Africa, modern El Niño 
conditions are associated with anomalously wet conditions in 
East Africa and dry conditions in southeast Africa. We do find 
evidence for wet conditions in East Africa during the Pliocene, 
although it is hard to separate out the effects of warmer SSTs 
around Africa and teleconnections from the Pacific. Flora char-
acteristic of the modern West African rain forest are found in 
East Africa around 3.4 Ma (Bonnefille and Letouzey, 1976; 
 Bonnefille, 1987); soil carbonate records of vegetation in East 
and Central Africa indicate C3 vegetation and humid condi-
tions (Cerling et al., 1977); lakes freshened in the Afar region of 
northeast Africa (Gasse, 1990), and Lake Tanganyika in south-
east Africa expanded at about 3.6 Ma (Cohen et al., 1997). In 
southern Africa, there are fewer records, although vegetation 
appears to be relatively close to modern (Scott, 1995).

Most terrestrial records are at too low resolution to iden-
tify variability in the Pliocene. Marine records indicate that 
 Pliocene African climate variability was dominated by pre-
cessional frequency (19–21 ka) variations in the strength of 
monsoonal precipitation. Precessional cycles in dust concen-
tration (varying by a factor of 2–5) are seen in marine sedi-
ments off West and East Africa between 5 Ma and 2.8 Ma 
(figure 4.5), indicating dramatic variability in dust availabil-
ity in the source region or transport efficiency (Tiedemann 
et al., 1994; deMenocal, 1995; deMenocal and Bloemendal, 
1995). Evidence for precessionally driven precipitation 
changes in the Nile catchment in northeast Africa are seen 
in the organic-rich sapropel layers of the eastern Mediterra-
nean throughout the Pliocene (Rossignol-Strick, 1983; 
 Hilgen, 1991). Pollen from a terrestrial site at Hadar, Ethio-
pia, indicates an abrupt change in forest cover ca. 3.3 Ma 
(Bonnefille et al., 2004) that is consistent with environmen-
tal change during part of a precessional cycle identified in 
sapropel and dust records. Precessional variations in C3/C4 
vegetation type are also seen in leaf wax biomarker records 
from marine sediments off northeast Africa ca. 3.8–3.7 Ma 
(figure 4.4; Feakins et al., 2005) and off southwest Africa ca. 
2.56–2.51 Ma (Denison et al., 2005). These marine records 
clearly indicate that precession dominated the pacing of pre-
cipitation variations across Africa during the Pliocene. 

PLIO-PLEISTOCENE ENVIRONMENTAL CHANGE

Major global climate events at the end of the Pliocene warm 
phase were not synchronous and instead occurred in a series 
of regional events (Ravelo et al., 2004). Tectonic processes 
caused significant reorganization of tropical ocean circula-
tion during the late Pliocene. The restriction of the Panama-
nian seaway (4.5–4 Ma) caused changes in Atlantic circula-
tion and an increase in meridional overturning (Haug and 
Tiedemann, 1998; Haug et al., 2001). The northward migra-
tion of New Guinea led to restriction of the Indonesian 
 Seaway (4–3 Ma); models predict that this would likely have 

It has been suggested that the mid-Miocene appearance of 
the C4 photosynthetic pathway may be linked to declining 
pCO2 levels (Cerling et al., 1997b). However, alkenone-based 
pCO2 reconstructions do not support this explanation and 
instead indicate that pCO2 levels rose from a low of 180 ppm 
at 15 Ma, to 260–300 ppm between 8 and 6 Ma (Pagani et al., 
1999). Alternatively, uplift of the Himalayas and resultant 
intensification of the Indian Monsoon (9–6 Ma; Molnar et al., 
1993) may have altered the seasonality of precipitation in the 
region with increased aridity driving a shift to almost exclu-
sively C4 vegetation in the summer precipitation regime in 
Pakistan (Quade and Cerling, 1995), and a mixed C3 and C4 
vegetation in East Africa (Cerling et al., 1997b; Feakins et al., 
2005; figure 4.4). Elsewhere, at Langebaanweg, South Africa, 
C3 vegetation remained dominant in the diet of grazing 
mammals at 5 Ma (Franz-Odendaal et al., 2002). Changing 
precipitation regimes (linked to regional circulation patterns; 
figure 4.2) would explain why C4 vegetation did not uni-
formly expand across Africa between 8 and 6 Ma and may 
also explain the late Pliocene and Pleistocene increase in C4 
vegetation in East Africa (figure 4.4). 

African environments also experienced cyclical precipita-
tion variability during the late Neogene. Organic rich sapro-
pel deposits in the Mediterranean indicate times of high 
runoff from the Nile catchment (Rossignol-Strick, 1985; 
Sachs and Repeta, 1999). These sapropel deposits occur at 
precessional minima indicating northeast African climate 
sensitivity to orbital variations in the seasonal distribution 
of insolation (Rossignol-Strick, 1985). Precessional fre-
quency sapropel deposits are reported from at least 10 Ma 
onward (Hilgen, 1991; Hilgen et al., 1995; Krijgsman et al., 
1995). Similarly, precessional cyclicity in terrigenous dust 
flux to marine sediments off West Africa is reported in the 
late Miocene indicating dramatic variability in dust avail-
ability in the source region or transport efficiency (Tiede-
mann et al., 1994; deMenocal, 1995; deMenocal and 
 Bloemendal, 1995). These records suggest that precession 
provided the fundamental pacing of African humid-arid 
cycles during the Miocene. 

A WARM AND WET MID-PLIOCENE

Global SST reconstructions indicate that the Pliocene 
included extended periods both warmer and cooler than 
today, with low-amplitude orbital frequency variability 
(Pliocene Research, Interpretation and Synoptic Mapping 
Project [PRISM]; Dowsett et al., 1996). Humid conditions 
leading up to the Pliocene are recorded in central and 
 eastern North Africa during the Zeit Wet Phase (7.5–5.5 Ma) 
with an expanded Lake Chad and increased Nile runoff 
(Griffin, 2002). Even during the Messinian salinity crisis 
(6.7–5.33 Ma), when sea levels in the Mediterranean were 
minimal or completely dry, conditions in North Africa were 
wet ( deMenocal and Bloemendal, 1995; Hilgen et al., 1995; 
Griffin, 1999). 

The mid-Pliocene (4.5–3 Ma) was characterized by warmer 
conditions (+3°C) on average globally, higher sea levels (+10–
20 m), reduced Antarctic ice cover, and percentage higher 
pCO2 (Ravelo et al., 2004). The mid-Pliocene appears to have 
been broadly wetter throughout much of Africa consistent 
with PRISM model predictions in scenarios with increased 
meridional circulation and higher pCO2 (Haywood and 
Valdes, 2004). For example, pollen records indicate that North 
Africa was wetter in the mid-Pliocene (Dupont and Leroy, 
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deMenocal, 1995, 2004). Similarly, leaf wax biomarker records 
of southwest African vegetation document C3/C4 cycles in 
tune with obliquity paced Atlantic SST variations in the mid-
Pleistocene (Schefuss et al., 2003), suggesting that glacial- 
interglacial cycles influenced African climate in both the 
Southern and Northern hemispheres. 

Not all aspects of African climate were dominated by 
changes in the high latitudes, however. A second biomarker 
record from southwest Africa indicates that vegetation 
changes continued to be dominated by precessional timing 
shortly after the onset of Northern Hemisphere Glaciation 
(2.56–2.51 Ma; Denison et al., 2005). Precessional frequency 
precipitation variations are also recorded in the last 200 ka of 
the Pleistocene in Tswaing Impact Crater in South Africa 
(Partridge et al., 1997) and in various East African lakes 
(Trauth et al., 2001). Finally, sapropel stratigraphy indicates 
dominantly precessional timing of precipitation variations in 
northeast Africa throughout the Pliocene and Pleistocene 
(Rossignol-Strick, 1983; Tuenter et al., 2003). Therefore, 
despite evidence that Northern Hemisphere glacial cycles led 
African aridity, there are many counterindications of inde-
pendent precessional pacing of African climate, particularly 
in those proxies that directly relate to precipitation. 

The tropical Pacific was also partially decoupled from high-
latitude climate. Despite significant high-latitude changes ca. 
2.8 Ma, tropical Pacific SST gradients appeared to have 
remained largely stable with El Niño–like conditions until ca. 
2 Ma (Chaisson and Ravelo, 2000; Wara et al., 2005; Ravelo 
et al., 2006). The reorganization of the tropical Pacific ca. 2 Ma 
occurred at a time when high-latitude climate was relatively 
invariant (Wara et al., 2005). A cooling of eastern Pacific SSTs 

caused a cooling of Indian Ocean SSTs and a reduction of East 
African precipitation (Cane and Molnar, 2001). This predicted 
change in Indian Ocean SSTs is one possible explanation for 
the C4 vegetation expansion in East Africa after ca. 3.4 Ma 
seen in the leaf wax biomarker record (figure 4.4). 

Significant Northern Hemisphere Glaciation began and 
intensified between 3.2 and 2.6 Ma (figure 4.1; Shackleton, 
1995; Lisiecki and Raymo, 2005). Ocean temperatures cooled, 
and obliquity (41 ka) paced northern hemisphere glacial 
cycles commenced and intensified between 3.2 and 2.6 Ma 
(Shackleton, 1995; Lisiecki and Raymo, 2005). As the high 
latitudes cooled, most records indicate that Hadley circula-
tion strengthened, trade winds intensified, and subtropical 
regions became more arid and more variable. Aridity and 
wind strength increased in North Africa at 2.8 ± 0.2 Ma as 
indicated by pollen (Dupont and Leroy, 1995) and dust 
records of West and East Africa (figure 4.5; Tiedemann et al., 
1994; deMenocal, 1995; deMenocal and Bloemendal, 1995). 
In southern Africa, SSTs cooled with intensified upwelling, 
leading to greater aridity (Marlow et al., 2000). In contrast, 
lake levels in the Baringo-Bogoria Basin, Kenya, and Gadeb, 
Ethiopia, apparently record a wet interval from 2.7 to 2.5 
Ma (Trauth et al., 2005, and references therein) indicating 
that perhaps not all of Africa experienced increased aridity 
at this time.

The onset of Northern Hemisphere glaciation signaled a 
change in the periodicity of some features of African climate 
variability. Dust records off West and East Africa document a 
shift from precession paced humid-arid cycles before 2.8 Ma, to 
obliquity frequency after ca. 2.8 Ma, suggesting a glacial  control 
on either transport strength or source aridity (figure 4.5; 
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 during the LGM (Pokras and Mix, 1987), and grass phytoliths 
that indicate increased aridity in cold stages (Abrantes, 2003). 
Lake levels were almost uniformly low across Africa (Street 
and Grove, 1979). Leaf wax biomarker hydrogen isotope 
reconstructions from the Congo fan record arid conditions in 
Central Africa (Schefuss et al., 2005). In southern Africa, fos-
sil dunes in the Mega Kalahari (Stokes et al., 1997) and sedi-
mentation in the Tswaing Impact Crater (Partridge et al., 
1997) indicate arid conditions 26–10 ka. In East Africa, Lakes 
Victoria (Talbot and Laerdal, 2000) and Albert (Beuning 
et al., 1997) record two prolonged droughts between 18 and 
12.5 14C ka that led to complete desiccation of both lakes. 
Lake levels in Lake Tanganyika dropped by ~350 m (Scholz 
et al., 2003). A diatom record from Lake Massoko, Tanzania, 
shares the pattern of climate variability seen in the northeast 
African lakes with dry conditions up to 15 ka (Barker et al., 
2003). Pollen-based precipitation reconstructions from 
Burundi also indicate an arid LGM (Bonnefille and Chalie, 
2000). These precipitation records correlate well with 
 alkenone-derived SST reconstructions in the southwest 
Indian Ocean (Sonzogni et al., 1998), suggesting that cool 
SSTs resulted in reduced East African precipitation during 
the LGM. These many records indicate arid conditions 
 throughout much of Africa at the LGM.

THE HOLOCENE 

The early Holocene was anomalously wet in most of Africa. 
Lake levels across Africa are almost uniformly higher and 
indicate a 150- to 400-mm annual increase in precipitation 
in the Sahara (Street and Grove, 1979; Street-Perrott and 
 Harrison, 1984). Fluvial sediments, lacustrine carbonates, 
freshwater algae, faunal records, paleosols, and stabilized 
fossil dunes all indicate that the early to mid-Holocene was 
more humid than the present (e.g., Haynes and Mead, 1987; 
Kropelin and Soulie-Marsche, 1991). Marine records off West 
Africa indicate that the “African Humid Period” extended 
from 15 to 5 ka in North Africa (Pokras and Mix, 1987; 
deMenocal et al., 2000). While records from South Africa are 
comparatively rare, stalagmites in Makapansgat Valley and 
pollen records from Wonderkrater have revealed generally 
warm conditions between 10 and 6 ka (Scott, 1999;  Holmgren 
et al., 2003). 

High-resolution paleoclimate records are revealing new 
details of Holocene climate change. A tropical ice core, recov-
ered from Mount Kilimanjaro, Tanzania, has provided a con-
tinuous and detailed record of East African climate variability 
throughout the entire Holocene (Thompson et al., 2002). The 
ice core oxygen isotope and aerosol records indicate an abrupt 
cooling and drying event ca. 8.3 ka that corresponds to a 
cooling event in the North Atlantic Ocean (Alley et al., 1997). 
Further arid shifts are observed between 6.4 and 5.2 ka and at 
4 ka (Thompson et al., 2002). 

The late Holocene has been comparatively arid in much of 
Africa. An abrupt transition has been identified in many 
tropical records ca. 4 ka (Marchant and Hooghiemstra, 2004). 
Late Holocene arid conditions in East Africa are recorded in 
Arabian Sea dust records (Davies et al., 2002) and lake-level 
low stands (Halfman and Johnson, 1988; Talbot and Laerdal, 
2000). In West Africa, there is evidence for a southerly shift 
of arid vegetation zones (Kutzbach and Street-Perrot, 1985; 
Lezine, 1989) and low lake levels since mid-Holocene times 
(Street and Grove, 1979; Street-Perrott and Perrott, 1990). 
This mid-Holocene transition to arid conditions in Africa is 

ca. 2 Ma relative to warm SSTs in the western Pacific (La Niña–
like conditions) indicates the initiation of Walker circulation 
and the likely beginning of ENSO variability. 

This reorganization of the tropical Pacific, from an El 
Niño–like to a La Niña–like mean state, may have produced 
climate repercussions with a global signature, since the same 
mechanisms that generate interannual ENSO variability in 
modern climates may also produce variability on longer tim-
escales (Cane and Zebiak, 1985; Clement et al., 2001; Molnar 
and Cane, 2002). Around this time, biostratigraphic events 
mark the Plio-Pleistocene boundary and local cooling in the 
Mediterranean (1.77 Ma; Raffi et al., 1993), and an increase in 
dust flux off Africa records increased aridity (deMenocal, 
1995). A C4 expansion is seen in the Turkana Basin, East 
Africa (2–1.7 Ma; Cerling et al., 1977), and organic carbon 
concentrations dramatically increase in marine sediments off 
West Africa (2.45–1.7 Ma; Wagner, 2002). These records 
appear to indicate an arid shift in North African climate 
ca. 2 Ma coincident with a major reorganization of the 
 tropical ocean-atmosphere system to a mean La Niña–like 
mean state.

COOL AND DRY CONDITIONS DURING THE LAST 
GLACIAL MAXIMUM

Most terrestrial paleoclimate research for Africa has focused 
on the Last Glacial Maximum (LGM) to the present, for which 
the geomorphological evidence is typically best preserved 
and reconstructions are within the range of radiocarbon and 
optical dating. Tropical paleoclimate records for the LGM 
have been reconsidered since CLIMAP concluded that there 
was minimal cooling (<2°C) or even a slight warming in the 
tropics (CLIMAP-project, 1976). Tropical SST reconstructions 
from the Atlantic (Guilderson et al., 1994; Emiliani, 1995; Lea 
et al., 2003), Indian (Sonzogni et al., 1998; Visser et al., 2003), 
and Pacific oceans (Emiliani, 1995; Prahl et al., 1995) have 
now demonstrated a 2°–6°C glacial cooling relative to mod-
ern. In addition, many modeling studies support the evidence 
for cooler tropical temperatures during glacials (Rind and 
Peteet, 1985; Pinot et al., 1999). Terrestrial temperature recon-
structions also indicate significant cooling at the LGM. In 
East Africa cooling estimates include 5°–6°C from tropical 
snowline depressions (Rind and Peteet, 1985), 2°–8°C from 
pollen assemblages (Coetzee, 1967; Chalie, 1995), and 3°–5°C 
in Lake Malawi from the new TEX86 molecular paleother-
mometer (Powers et al., 2005). In South Africa, 5°C glacial 
cooling is estimated from speleothems (Talma and Vogel, 
1992; Holmgren et al., 2003) and groundwater (Kulongoski 
et al., 2004). 

However, aridity changes may be more critical than tem-
perature changes for flora and fauna in African environ-
ments. Modern climate patterns would predict reduced pre-
cipitation in most regions as a result of cooler glacial SSTs. 
Various terrestrial records indicate broad arid phases between 
23 and 17 ka during the LGM. Fossil sand dunes indicate that 
the Sahara expanded southward during the LGM (Grove and 
Warren, 1968; Mauz and Felix-Henningsen, 2005). Terrige-
nous dust (Tiedemann et al., 1994; deMenocal, 1995), pollen 
(Dupont and Leroy, 1995; Hooghiemstra et al., 1998), and leaf 
wax biomarkers (Zhao et al., 2003) transported to marine 
sediments off northwest Africa indicate increased aridity and 
trade wind strength during the last glacial. Other terrigenous 
material reaching marine sediments include Melosira, fresh-
water diatoms, deflated from dry West African lake beds 
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largely independent of high-latitude climate change (March-
ant and Hooghiemstra, 2004). Modeling studies suggest that 
this humid-arid transition is strongly dependent on a nonlin-
ear climate response to precessional insolation forcing 
(Claussen et al., 1999). Thus in the Holocene, like much of 
the late Neogene, we find evidence for precessional forcing of 
African climate change. 
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