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vYork Institute for Tropical Ecosystems, Environment Department, Wentworth Way University of York, York, UK

wDepartment of Geography, Durham University, Durham, UK
xDepartamento de Edafoloxı́a e Quı́mica Agrı́cola, Universidade de Santiago de Compostela, Santiago de Compostela, Spain

yDepartment of Marine Geosciences, University of Miami – RSMAS, Miami, USA
zDepartment of Chemistry, Claflin University, Orangeburg, USA

aaPeatland Ecology Research Group (PERG), Centre for Northern Studies, Université Laval, Quebec City, Canada
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Abstract
Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiqui-
tous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bac-
terial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air
temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely
unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad
mean annual air temperature (�8 to 27 �C) and pH (3–8) range and present the first peat-specific brGDGT-based temperature
and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with
pH, pH = 2.49 � CBTpeat + 8.07 (n = 51, R2 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively
correlated with MAAT, MAATpeat (�C) = 52.18 � MBT0

5me � 23.05 (n = 96, R2 = 0.76, RMSE = 4.7 �C). These peat-specific
calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (�4.7 �
C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively
small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude,
longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial
period (�15.2 kyr), we demonstrate that MAATpeat yields absolute temperatures and relative temperature changes that are
consistent with those from other proxies. In addition, the application of MAATpeat to fossil peat (i.e. lignites) has the potential
to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and
lignites to reconstruct past terrestrial climate.
� 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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1. INTRODUCTION

Although reconstructions of terrestrial environments are
crucial for the understanding of Earth’s climate system,
suitable depositional archives (especially longer continuous
sequences) are rare on land. Peatlands and lignites (natu-
rally compressed ancient peat) are one exception and offer
remarkable preservation of organic matter. Peats can be
found in all climate zones where suitable waterlogged con-
ditions exist. Typical peat accumulation rates are on the
order of 1–2 mm/year (Gorham et al., 2003) and because
they exhibit minimal bioturbation (although roots might
be present) they are widely used as climate archives during
the late Quaternary, predominantly the Holocene (e.g.,
Barber, 1993; Chambers and Charman, 2004). Peat-based
proxies include those based on plant macrofossils, pollen,
and testate amoebae (e.g., Woillard, 1978; Mauquoy
et al., 2008; Väliranta et al., 2012), inorganic geochemistry
(e.g., Burrows et al., 2014; Chambers et al., 2014; Hansson
et al., 2015; Vanneste et al., 2015), (bulk) isotope signatures
(e.g., Cristea et al., 2014; Roland et al., 2015) and organic
biomarkers (e.g., Nichols et al., 2006; Pancost et al., 2007;
Pancost et al., 2011; Huguet et al., 2014; Zocatelli et al.,
2014; Schellekens et al., 2015; Zheng et al., 2015). Although
these proxies can be used to provide a detailed reconstruc-
tion of the environment and biogeochemistry within the
peat during deposition, an accurate temperature or pH
proxy for peat is currently lacking (Chambers et al.,
2012). This is particularly problematic because temperature
and pH are key environmental parameters that directly
affect vegetation type, respiration rates, and a range of
other wetland features (e.g., Lafleur et al., 2005; Yvon-
Durocher et al., 2014). The aim of this paper is to develop
peat-specific pH and temperature proxies for application to
peat cores as well as ancient peats from the geological
record preserved as lignites.

We focus on using membrane-spanning glycerol dialkyl
glycerol tetraether (GDGT) lipids. In general, two types of
GDGTs are abundant in natural archives such as peats: (1)
isoprenoidal (iso)GDGTs with 2,3-sn-glycerol stereochem-
istry that are synthesized by a wide range of Archaea,
and (2) branched (br)GDGTs with 1,2-sn-glycerol stereo-
chemistry that are produced by Bacteria (see review by
Schouten et al., 2013 and references therein). A wide range
of brGDGTs occur in natural archives such as mineral soils
and peat; specifically, tetra-, penta-, and hexamethylated
brGDGTs, each of which can contain 0, 1, or 2 cyclopen-
tane rings (Weijers et al., 2006b). In addition, recent studies
using peat and mineral soils have demonstrated that the
additional methyl group(s) present in penta- and hexam-
ethylated brGDGTs can occur on either the a and/or x-5
position (5-methyl brGDGTs) or the a and/or x-6 position
(6-methyl brGDGTs) (De Jonge et al., 2013, 2014).
brGDGTs are especially abundant in peat, in fact
brGDGTs were first discovered in a Dutch peat
(Sinninghe Damsté et al., 2000). The concentration of
brGDGTs (as well as isoGDGTs) is much higher in the
water saturated and permanently anoxic catotelm of peat
compared to the predominantly oxic acrotelm, suggesting
that brGDGTs are produced by anaerobic bacteria
(Weijers et al., 2004, 2006a, 2011), potentially members of
the phylum Acidobacteria (Weijers et al., 2009; Sinninghe
Damsté et al., 2011, 2014). Although the exact source
organism(s) are/is currently unknown, in mineral soils
(and potentially lakes) the distribution of bacterial
brGDGTs is correlated with mean annual air temperature
(MAAT) and pH (Weijers et al., 2007; Peterse et al.,
2012; De Jonge et al., 2014; Loomis et al., 2014; Li et al.,

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. Structures of brGDGTs (with numbering) as well as
isoprenoidal GDGT crenarchaeol (cren), following (De Jonge
et al., 2014). Roman numbers indicate tetra- (I), penta- (II), and
hexamethylated (III) brGDGTs, whereas letters indicate the
absence (a), presence of one (b), or two (c) cyclopentane rings.
Prime symbols indicate 6-methyl brGDGTs in which the additional
methyl groups of the penta- and hexamethylated brGDGTs occur
at the a and/or x-6 position instead of a and/or x-5 position of
5-methyl brGDGTs.
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2016). Over the past decade ancient deposits of mineral
soils (e.g., Peterse et al., 2014) and peat (e.g., Ballantyne
et al., 2010) have been used to reconstruct past terrestrial
temperatures.

Mineral soils differ from peat as the latter are normally
water saturated, consist predominantly of (partially decom-
posed) organic matter (the organic carbon content of peat is
typically >30 wt.%), are typically acidic (pH 3–6), and have
much lower density. The combination of these factors
means that peat becomes anoxic at relatively shallow
depths, whereas mineral soils are typically oxic. Indeed,
Loomis et al. (2011) showed that the brGDGT distribution
in waterlogged soils is different from that in dry soils and
Dang et al. (2016) recently provided direct evidence of
moisture control on brGDGT distributions in soils. These
differences suggest that microbial lipids in peat might not
reflect environmental variables, i.e. pH and temperature,
in the same way as they do in mineral soils.

Despite the high concentration of GDGTs in peats rela-
tively few studies have examined the environmental con-
trols on their distribution in such settings (Huguet et al.,
2010, 2013; Weijers et al., 2011; Zheng et al., 2015). Those
studies found that the application of soil-based proxies to
peats can result in unrealistically high temperature and
pH estimates compared to the instrumental record. How-
ever, owing to the small number of peats that have been
studied to date as well as the lack of peatland diversity sam-
pled (the majority of peats sampled for these studies come
from temperate climates in Western Europe), the correla-
tion of temperature and pH with brGDGT distribution in
peats is poorly constrained. Notably, the lack of tropical
peat brGDGT studies limits interpretations of brGDGT
distributions in lignite deposits from past greenhouse cli-
mates (Weijers et al., 2011).

Here we compare brGDGT distributions in a newly gen-
erated global data set of peat with MAAT and (where avail-
able) in situ peat pH measurements. Our aim is to gain an
understanding of the impact of these environmental factors
on the distribution of brGDGTs in peat and develop for the
first time peat-specific temperature and pH proxies that can
be used to reconstruct past terrestrial climate.

2. MATERIAL AND METHODS

2.1. Peat material

We generated a collection of peat comprising a diverse
range of samples from around the world. In total, our data-
base consists of 470 samples from 96 different peatlands. In
order to assess the variation in brGDGT distribution within
one location, where possible we determined the brGDGT
distribution in multiple horizons from within the top 1 m
of peat (typically representing several centuries of accumu-
lation) and/or analyzed samples taken at slightly different
places within the same peatland. A peat deposit typically
consists of an acrotelm and catotelm, although marked
heterogeneity can exist even over short distances (Baird
et al., 2016). The acrotelm is located above the water table
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for most of the year and characterized by oxic conditions
and active decomposition. The acrotelm overlies the cato-
telm, which is permanently waterlogged and characterized
by anoxic conditions and very slow decomposition. Our
dataset spans those biogeochemical gradients (e.g. acro/ca-
totelm). Variations in peat accumulation rates differ
between sites, implying that the ages of the brGDGT-
pool might differ.

Our database includes peats from six continents and all
major climate zones, ranging from high latitude peats in
Siberia, Canada, and Scandinavia to tropical peats in
Indonesia, Africa, and Peru (Fig. 2). It covers a broad range
in MAAT from �8 to 27 �C. Although most samples come
from acidic peats with pH < 6, the dataset includes several
alkaline peats and overall our dataset spans a pH range
from 3 to 8. All samples come from freshwater peatlands,
except for the one from the Shark River peat (Everglades,
USA) that is marine influenced. Unsurprisingly, given their
global distribution, the peats are characterized by a wide
variety of vegetation, ranging from Sphagnum-dominated
ombrotrophic peats that are abundant in high-latitude
and temperate climates to (sub)tropical peats dominated
by vegetation such as Sagittaria (arrowhead) and Cyper-

aceae (sedge), and forested tropical peatlands.

2.2. Environmental parameters

The distribution of brGDGTs was compared to MAAT
and in situ pH. MAAT was obtained using the simple bio-
climatic model PeatStash, which provides surface air tem-
peratures globally with a 0.5 degree spatial resolution (for
details, see Kaplan et al., 2003; Gallego-Sala and
Prentice, 2013). The temperature data in PeatStash is
obtained by interpolating long-term mean weather station
climatology (temperature, precipitation and the fraction
of possible sunshine hours) from around the world for the
period 1931–1960 (Climate 2.2 data are available online
http://www.pik-potsdam.de/~cramer/climate.html). Cru-
cially, mean annual temperatures in peat are similar to
MAAT, assuming that the peat is not snow-covered for
long periods of time (McKenzie et al., 2007; Weijers
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Fig. 2. Map with the location of all peats used in this study. The star
et al., 2011). The temperature at the top surface of (high-
latitude) peat can differ from the MAAT due to insolation
by snow during winter and intense heating during summer.
Despite this, the seasonal temperature fluctuations in peat
are dampened at depth as temperatures converge to MAAT
(Hillel, 1982; Laiho, 2006; McKenzie et al., 2007; Weijers
et al., 2011). We assume that all peat horizons experienced
MAAT (the only data available on a global basis). This is
likely an oversimplification that introduces some additional
uncertainty in our calibration.

Where available, pH data were obtained from measured
values reported in the literature or our measurements dur-
ing sampling. For peats, pH cannot be determined using
dried material, as is normally done for soils (Stanek,
1973). Accurate pH measurements can only be obtained
from in situ measurements, especially for groundwater-fed
wetlands, and these are not available for all locations.
2.3. Lipid extraction

For the majority of samples (>430 out of 470), between
0.1 and 0.5 g of dried bulk peat were extracted with an
Ethos Ex microwave extraction system with 20 mL of a
mixture of dichloromethane (DCM) and methanol (MeOH)
(9:1, v/v) at the Organic Geochemistry Unit (OGU) in Bris-
tol. The microwave program consisted of a 10 min ramp to
70 �C (1000 W), 10 min hold at 70 �C (1000 W), and 20 min
cool down. Samples were centrifuged at 1700 rounds per
minute for 3 to 5 min and the supernatant was removed
and collected. 10 mL of DCM:MeOH (9:1) were added to
the remaining peat material and centrifuged again after
which the supernatant was removed and combined with
the previously obtained supernatant. This process was
repeated 3 to 6 times, depending on the amount of extracted
material, to ensure that all extractable lipids were retrieved.
The total lipid extract (TLE) was then concentrated using
rota-evaporation. An aliquot of the TLE (typically 25%)
was washed through a short (<2 cm) silica column using
DCM:MeOH (9:1) to remove any remaining peat particles.
The TLE was dried under a gentle nitrogen flow and then
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indicates the location of the Hani peat sequence in NE China.
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re-dissolved in hexane/iso-propanol (99:1, v/v) and filtered
using 0.45 lm PTFE filters.

A small number of peats were extracted using different
methods and either the TLE or polar fraction was analyzed
for GDGTs (see Table S1). Samples from the Kyamban-
gunguru peat in Tanzania were extracted using the Bligh–
Dyer protocol. Previous work on peat demonstrated that
the brGDGT distribution is similar using Bligh–Dyer
extraction as Soxhlet extraction (Chaves Torres and
Pancost, 2016). The TLE was cleaned over a short Si col-
umn at the OGU in Bristol. Both cleaned TLE and polar
fractions were re-dissolved in hexane/iso-propanol (99:1,
v/v) and filtered using 0.45 lm PTFE filters.
2.4. Analytical methods

All samples were analyzed for their core lipid GDGT
distribution by high performance liquid chromatography/
atmospheric pressure chemical ionisation – mass spectrom-
etry (HPLC/APCI-MS) using a ThermoFisher Scientific
Accela Quantum Access triplequadrupole MS. Normal
phase separation was achieved using two ultra-high perfor-
mance liquid chromatography silica columns, following
Hopmans et al. (2016). Crucially this method allows for
the separation of the 5- and 6-methyl brGDGT isomers.
Injection volume was 15 lL, typically from 100 lL. Analy-
ses were performed using selective ion monitoring mode
IR6me ¼ IIa0 þ IIb0 þ IIc0 þ IIIa0 þ IIIb0 þ IIIc0

IIaþ IIa0 þ IIbþ IIb0 þ IIcþ IIc0 þ IIIaþ IIIa0 þ IIIbþ IIIb0 þ IIIcþ IIIc0

� �
ð4Þ
(SIM) to increase sensitivity and reproducibility (m/z

1302, 1300, 1298, 1296, 1294, 1292, 1050, 1048, 1046,
1036, 1034, 1032, 1022, 1020, 1018, 744, and 653). The
results were integrated manually using the Xcalibur soft-
ware. Based on daily measurements of an in–house gener-
ated peat standard, analytical precession (r) over the
12 months during which the data were analyzed is 0.01
for the proxy index we define below (MBT0

5me, Eq. (2)).

2.5. Proxy calculation

Guided by previous studies we used a range of proxies to
express ratios of different GDGTs and the nomenclature of
De Jonge et al. (2014) (Fig. 1).
MBT ¼ ðIaþ Ibþ IcÞ
ðIaþ Ibþ Icþ IIaþ IIa0 þ IIbþ IIb0 þ IIcþ IIc0 þ IIIaþ IIIa0 þ IIIbþ IIIb0 þ IIIcþ IIIc0Þ ð1Þ
The original methylation of branched tetraether (MBT)
index compared the relative abundance of tetramethylated
brGDGTs (compounds Ia–Ic) to that of penta- (com-
pounds IIa–IIc0) and hexamethylated (compounds IIIa–
IIIc0) brGDGTs that have one or two additional methyl
groups (Weijers et al., 2007). It was recently discovered that
the additional methyl groups in penta- and hexamethylated
brGDGTs can also occur at the C6 position (6-methyl
brGDGTs, indicated by a prime symbol; e.g. brGDGT-
IIa0): the 6-methyl penta- and hexamethylated brGDGTs
(De Jonge et al., 2013). Excluding the 6-methyl brGDGTs
from the MBT index resulted in the MBT0

5me index. In the
global soil database the application of MBT0

5me led to an
improved correlation with temperature (De Jonge et al.,
2014).

MBT 0
5ME ¼ ðIaþ Ibþ IcÞ

ðIaþ Ibþ Icþ IIaþ IIbþ IIcþ IIIaÞ ð2Þ

In addition to different number of methyl groups,
brGDGTs can contain up to two cyclopentane moieties
(e.g., brGDGT-Ib and -Ic). CBT0 is a modified version of
the original cyclisation of branched tetraether (CBT) index
(Weijers et al., 2007) and in soils CBT0 has the best correla-
tion with pH (De Jonge et al., 2014):

CBT 0 ¼ log
Icþ IIa0 þ IIb0 þ IIc0 þ IIIa0 þ IIIb0 þ IIIc0

Iaþ IIaþ IIIa

� �

ð3Þ
The isomer ratio of 6-methyl brGDGTs (IR6me) reflects

the ratio between 5- and 6-methyl brGDGTs (Yang et al.,
2015) with low (high) values indicative of a dominance of
5-methyl (6-methyl) brGDGTs:
The isomerization of branched tetraethers (IBT) is
related to IR6me but reflects the isomerization of
brGDGT-IIa and -IIIa only (Ding et al., 2015):

IBT ¼ � log
IIa0 þ IIIa0

IIaþ IIIa

� �
ð5Þ

The branched versus isoprenoidal tetraether (BIT) index
(Hopmans et al., 2004) reflects the relative abundance of the
major bacterial brGDGTs versus a specific archaeal
isoGDGT, crenarchaeol (Fig. 1), produced by Thaumar-

chaeota (Sinninghe Damsté et al., 2002):

BIT ¼ Iaþ IIaþ IIa0 þ IIIaþ IIIa0

Iaþ IIaþ IIa0 þ IIIaþ IIIa0 þ cren:
ð6Þ
Finally, the isoprenoidal over branched GDGT ratio
(Ri/b), related to the BIT index, records the relative abun-
dance of archaeal isoGDGTs over bacterial brGDGTs
(Xie et al., 2012).
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Ri=b ¼
P

isoGDGTsP
brGDGTs

ð7Þ
2.6. Statistical methods

Temperature and pH calibrations were obtained using
the average proxy value for each peat and Deming regres-
sions. The software we used was RStudio (R Studio Team,
2015) and Method Comparison Regression (MCR) package
(Manuilova et al., 2014), which are freely available to down-
load1. The Rscript and data are available in the appendices.

Deming regressions differ from simple linear regression,
which so far have been used in brGDGT proxy calibra-
tions, as they account for error in the data on both the x-
(e.g., proxy) and y-axis (e.g., environmental variable)
(Adcock, 1878).

We used the average proxy value for each peat to calcu-
late Deming regressions, calibration errors (RMSE, see
below), and calibration coefficients of determination (R2).
The errors associated with proxy measurements
(e.g. MBT0

5me) and environmental parameters (MAAT/pH)
are independent and assumed to be normally distributed.
To calculate a Deming regression, the ratio of variances
(d) must be calculated. For MAAT we took a standard
deviation (r) of 1.5 �C based on the estimated mean predic-
tive error of up to 1.4 �C for mean temperature in a similar
dataset (New et al., 1999). For pH we took a standard devi-
ation of 0.5 based on the average reported heterogeneity in
pH for the peatlands used in the database (see Supplemen-
tary Table 1). For MBT0

5me, CBT
0, and CBTpeat we calcu-

lated the average standard deviation of each proxy from
the entire peat data set (0.05, 0.25, and 0.2, respectively).
This results in a ratio of variances of 0.0011 for the
MBT0

5me/MAAT calibration and 0.25 and 0.16 for the pH
calibration based on CBT0 and CBTpeat, respectively.
Residuals were calculated for the full dataset and using

Residualy ¼ yobserved � ypredicted ð8Þ
The root mean square error (RMSE) for y, the predic-

tive error for the environmental parameter of interest
(MAAT or pH), was calculated for the average proxy value
of each peat and using

RSMEy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

x¼1

ðyx;observed � yx;predictedÞ2

n
� n
df

vuuuut ð9Þ

Where df stands for degrees of freedom, which in this
case is n-1.

3. RESULTS

Although we did not calculate concentrations, based on
changes in signal intensity the relative abundance of
GDGTs was always higher at depth compared to the top
(�0–20) cm of peat. BIT indices (Eq. (6)) range between
0.75 and 1, but 99% of the samples have a BIT
1 https://www.rstudio.com and https://cran.r-project.org/web/p
ackages/mcr/index.html
value P 0.95. Similarly, Ri/b ratios are typically <0.5. Only
three samples from the São João da Chapada peat in Brazil
have a Ri/b ratio >1.

The majority of brGDGTs are tetramethylated and
5-methyl penta- and hexamethylated brGDGTs. The most
abundant brGDGTs in peat are brGDGT-Ia and IIa. By
extension, the IR6me ratio (Eq. (4)) is low. brGDGTs con-
taining cyclopentane moieties are much less abundant than
acyclic brGDGTs and brGDGT-IIIb(0) and -IIIc(0) are
either below detection limit or present at trace abundances
(61% of total brGDGTs). Indeed, three brGDGTs domi-
nate the entire global dataset: tropical peats contain almost
exclusively brGDGT-Ia (up to 99% of total brGDGTs),
whereas in high-latitude peats brGDGT-IIa and -IIIa are
dominant (Fig. 3).

4. DISCUSSION

The observation that Ri/b ratios are low in most peats is
consistent with previous observations that bacterial
brGDGTs dominate over archaeal isoprenoidal GDGTs
in peat (Schouten et al., 2000; Sinninghe Damsté et al.,
2000; Pancost et al., 2003) and mineral soils (Hopmans
et al., 2004).

4.1. Shallow vs deep GDGT distributions

The apparent increase in GDGT abundance with depth
is consistent with previous observations in peatlands
(Weijers et al., 2004; Peterse et al., 2011) and reflects the
combined effects of preferential GDGT production in
anaerobic settings and the accumulation of fossil GDGTs
over time at depth (Liu et al., 2010; Weijers et al., 2011).

In one high-latitude peat (Saxnäs Mosse, Sweden) the
distribution of both intact polar lipids (compounds still
containing a polar head groups) and core brGDGTs (com-
pounds having lost their polar head group) differed between
the acro- and catotelm and brGDGT abundances were
much higher in the latter (Weijers et al., 2009; Peterse
et al., 2011). Based on these results Peterse et al. (2011)
speculated that microbial communities differed between
the oxic acrotelm and anoxic catotelm. As oxygen content
can influence cellular lipid composition of bacteria,
Huguet et al. (2010) speculated that oxygen availability
could be one of the factors directly influencing the
brGDGT synthesis by bacteria in peat, as opposed to influ-
encing the type of source organism(s). Studies from lakes
also suggested that changes in lake oxygenation state can
influence the brGDGT distribution (Tierney et al., 2012;
Loomis et al., 2014).

Our dataset consists of a mixture of surface (0–15 cm)
and deeper samples that extend through the top one meter
of peat. For the majority of peats there is no detailed infor-
mation available on water table depths and location of the
acro/catotelm boundary. Nonetheless, to provide a first
order assessment on whether there is a systematic and sig-
nificant difference in core brGDGT distribution between
the upper (assumed to be generally oxic) and underlying
anoxic peat, we compared the relative abundance of the
three most abundant brGDGTs (Ia, IIa, and IIIa) in the

https://www.rstudio.com


Fig. 3. Fractional abundances of the three main brGDGTs in the top 15 cm of each peat (assumed to be representative of the oxic acrotelm)
versus the fractional abundance of these brGDGTs between 15 and 100 cm in the peat (assumed to be representative for the anoxic catotelm).
For peats where multiple samples were analyzed, error bars represent 1r from the average fractional abundance.
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shallow surface peat (top 15 cm) with that of the deep peat
below 15 cm (Fig. 3), although we acknowledge that this is
likely an oversimplification.

There are some differences. In general the relative abun-
dance of brGDGT-Ia is slightly higher in the top 15 cm of a
peat compared to the peat below 15 cm, especially when its
abundance is <60%. Overall, however, the distributions
plot along the 1:1 line, indicating that there is no systematic
difference in brGDGT distribution between the (assumed)
oxic surface and the peat below 15 cm (likely anoxic). This
does not preclude differences in brGDGT production
between oxic and anoxic conditions, but this appears to
be primarily expressed via greater production of brGDGTs
under anoxic conditions as demonstrated by the higher
abundance of GDGTs across the acro/catotelm boundary
(Weijers et al., 2006a). These results provide indirect evi-
dence that oxygen availability does not significantly impact
the degree of methylation of (core) brGDGTs. One possible
explanation for why oxygen availability does not affect dis-
tributions is that brGDGTs could be predominantly pro-
duced by anaerobes throughout the peat, in low
abundance in anaerobic microenvironments in shallow peat
and in high abundance in the anaerobic catotelm.

Several (high-latitude) peats, however, do appear to
exhibit strong variations between deep and shallow sections
of the peat. The down core records from Stordalen (Swe-
den) and Andorra (S. Patagonia), for example, are charac-
terized by a large and abrupt shift in brGDGT distribution
at depth (Fig. 4). The MBT0

5me indices recorded at the very
top of these high-latitude peats are between 0.8 and 0.6, as
high as those found in mid-latitude and subtropical peats,
but decrease to values between 0.2 and 0.4 below �30 cm.
Peats from temperate climates (e.g. Walton moss, UK)
and the tropics (e.g. Sebangau, Indonesia) display much
smaller or no change in brGDGT distribution with depth
(Figs. 4 and 5). It appears that this offset in brGDGT dis-
tribution with depth is amplified in high-latitude peats. This
is consistent with previous studies that indicated a differ-
ence in brGDGT-distribution between the acro- and cato-
telm in a high-latitude peat from southern Sweden
(Weijers et al., 2009; Peterse et al., 2011).

We argue that the high MBT0
5me values at the top of

these high-latitude peats are heavily biased towards summer
temperatures. At these settings winter temperatures are
often below freezing for a prolonged period, likely causing
bacterial growth and GDGT production to slow down sig-
nificantly. Summer temperatures are much higher (e.g.
mean warmest month temperature at Stordalen is around
13 �C), in-line with the observed relatively high MBT0

5me

values (e.g., 0.6–0.7 at Stordalen, see Fig. 4). Deeper in
the peat, seasonal temperature fluctuations are much less
pronounced and temperatures rapidly converge to the
MAAT (Vitt et al., 1995; Laiho, 2006; McKenzie et al.,
2007; Weijers et al., 2011), likely accounting for the lower
MBT0

5me values in the deeper peat horizons. Moreover, the
greater production of GDGTs in the anaerobic part of
the peat will cause GDGT-based temperatures to rapidly
converge on the deep peat growth temperature, overprint-
ing the seasonal summer bias of fossil GDGTs synthesized
at the surface.

This effect is diminished in temperate and especially
tropical peatlands from around sea level, which we attribute
to the lack of a preferred growing season in settings with
smaller seasonal temperature ranges. In such settings tem-
peratures are less frequently (or never) below freezing and
brGDGT production in the top of the peat likely occurs
for all or most of the year, such that GDGTs produced in
both the shallow and deeper part of the peat record MAAT.



Fig. 4. Down core record of MBT0
5me in four peats a high-latitude peat from Sweden (blue squares), high-latitude peat from Patagonia (orange

squares), temperate peat from the UK (green triangles), and tropical peat from Indonesia (purple diamonds). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Standard deviation of MBT0
5me for each low-altitude (<1000 m) peat versus latitude. The four peats used in Fig. 4 are highlighted.
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This hypothesis needs further testing but indicates that (1)
brGDGT production may be biased towards the warm sea-
son in the upper part of high-latitude/altitude peats; (2)
care has to be taken when interpreting brGDGT-based
trends in the top of such peats; and (3) the temperature sig-
nal in such peats is imparted at depth, such that downcore
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GDGT variations in ancient peat archives could potentially
be temporally offset (precede) the climate events that caused
them. However, as brGDGTs in long peat cores, and by
extension ancient lignites (fossilized peats), are dominated
by production at depth where temperature equals MAAT
(see Section 2.2) it is very unlikely that temperatures
obtained from these archives are seasonally biased.

In the remainder of this work, for high-latitude peats
that show a clear offset between the top and deeper part
of the peat we use only the average GDGT distribution
from below 20 cm, as the majority of change appears to
occur in the top 20 cm. For the other peats we retain all
data from the upper 1 m, not differentiating between the
acro- and catotelm. To generate the temperature and pH
calibrations we use the average brGDGT distribution for
each peatland. For peats where multiple samples were ana-
lyzed, error bars indicate the deviation (1r) from the
average.

4.2. Influence of temperature and pH on brGDGTs in peats

It is well established that in soils and lakes, environmen-
tal conditions such as temperature and pH are highly corre-
lated with the brGDGT distribution (e.g.,Weijers et al.,
2007; Peterse et al., 2012; Schoon et al., 2013; De Jonge
et al., 2014; Loomis et al., 2014; Xiao et al., 2015; Li
et al., 2016). In the following sections we investigate the
influence of these parameters on the brGDGT distribution
in peat using the average proxy value (e.g. MBT0

5me) for
each peatland.
Fig. 6. Ratio of 6-methyl over 5-methyl brGDGTs (IR6me) versus pH f
10 cm of mineral soils (orange circles) (De Jonge et al., 2014; Ding et al.,
error bars on the peat data represent 1r and are based on the analysis of m
the spread in pH reported for each peat. (For interpretation of the refere
version of this article.)
4.2.1. Influence of peat pH on brGDGT distribution

Weijers et al. (2007) demonstrated that in a global min-
eral soil database the degree of cyclisation of brGDGTs is
correlated to pH, with a higher fractional abundance of
brGDGTs that contain cyclopentane moieties in soils with
a higher pH. Following the discovery of 6-methyl
brGDGTs (De Jonge et al., 2013), it was shown that the
degree of isomerization of brGDGTs, the ratio of 6-
methyl versus 5-methyl brGDGTs, is also correlated to soil
pH, with a higher fractional abundance of 6-methyl
brGDGTs in soils with a higher pH (De Jonge et al.,
2014; Xiao et al., 2015). Owing to the limited pH range of
the few peats used to study brGDGTs so far and because
all of these studies pre-date the recent analytical advances
that allow for the separation of 5- and 6-methyl brGDGTs,
it is unknown whether pH has an influence on brGDGTs in
peats or whether the dependence is similar to that found in
soils. Our peat database spans a pH range from 3 to 8, sim-
ilar to that of the soil database, allowing us to assess the
influence of pH on the brGDGT distribution in such
settings.

Although pH measurements are only available in 51 out
of 96 peats, our results indicate that 6-methyl brGDGTs
are present at either only trace abundances (IR6me < 0.1) or
are absent in acidic peats with pH < 5.4 (Fig 6). Higher ratios
occur in peats with higher pH. The highest ratio (0.58) occurs
in the marine-influenced alkaline peat from the Everglades.
Not surprisingly, the fractional abundances of the threemost
common 6-methyl brGDGTs (brGDGT-IIa0, -IIb0, -IIIa0)
are significantly correlated with pH with R-values between
0.4 and 0.6 (p < 0.01) (Fig. 7). These results are consistent
or peat samples (black squares) together with the IR6me in the top
2015; Xiao et al., 2015; Yang et al., 2015; Lei et al., 2016). Vertical
ultiple horizons from the same peat. Horizontal error bars represent
nces to color in this figure legend, the reader is referred to the web



Fig. 7. Fractional abundance of brGDGT versus pH for those compounds with a r-value greater than 0.45 (A) brGDGT-Ib, (B) brGDGT-
IIa0, (C) brGDGT-IIb, (D) brGDGT-IIb0, and E) brGDGT-IIIa0 (p < 0.01 for all compounds). Samples with fractional abundances <0.001
are not included. Vertical error bars represent 1r and are based on the analysis of multiple horizons from the same peat. Horizontal error bars
represent the spread in pH reported for each peat.
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with observations from soils that indicate a positive
correlation between the fractional abundance of
6-methyl brGDGTs and pH (De Jonge et al., 2014; Xiao
et al., 2015).

As a result, the IR6me as well as the related IBT index,
both of which have been used to reconstruct pH in soils
(Ding et al., 2015; Xiao et al., 2015), are correlated with
pH in the peats (not shown). However, this comparison is
complicated by the fact that 6-methyl brGDGTs are absent
in many of the peats. For IR6me the absence of 6-methyl
brGDGTs results in values that are 0, whereas IBT cannot
be calculated for samples that lack 6-methyl brGDGTs as
the logarithm of zero is undefined.

The abundance of 6-methyl brGDGTs is generally lower
in peats than in mineral soils with comparable pH. Indeed,
6-methyl brGDGTs are present in 99% of all soils in the
global soil database, including soils with pH < 5 where
IR6me ratios can be as high as 0.4 (Fig. 6). Recent work
has shown that in addition to pH the fractional abundance
of 6-methyl brGDGTs is negatively correlated with soil
water content, with fewer 6-methyl brGDGTs versus 5-
methyl brGDGTs in soils with 60% water content com-
pared to soils with <10% water content (Dang et al.,
2016). It is likely that the negative correlation between soil
water content and fractional abundance of 6-methyl
brGDGTs can explain the overall lower IR6me in peats as
these are generally water saturated.
In addition to 6-methyl brGDGTs, the fractional abun-
dances of brGDGTs containing cyclopentane moieties
(brGDGT-Ib and -IIb) are also significantly correlated to
pH (R = 0.73 and 0.56, p < 0.01, respectively)
(Fig. 7a and c). The other brGDGTs are not significantly
correlated to pH. These observations are consistent with
those from soils, where both 5- and 6-methyl brGDGTs
containing cyclopentane moieties are more abundant at
higher pH (Weijers et al., 2007; Peterse et al., 2012; De
Jonge et al., 2014). Consequently, and similar to soils (De
Jonge et al., 2014; Xiao et al., 2015), CBT0 (Eq. (3)) in peat
can be modeled as a function of pH (Fig. 8):

pH ¼ 2:69� CBT 0 þ 9:19ðn ¼ 50; R2

¼ 0:44; RMSE ¼ 1:0Þ ð10Þ
The slope of this calibration is different (higher) from

that found in soils (see supplementary information), but
the coefficient of determination is lower, and the RMSE
is higher. A stronger correlation is obtained by using only
compounds that are significantly correlated to pH in the
numerator, CBTpeat:

CBT peat ¼ log
Ibþ IIa0 þ IIbþ IIb0 þ IIIa0

Iaþ IIaþ IIIa

� �
ð11Þ

pH ¼ 2:49� CBT peat þ 8:07 ðn ¼ 51; R2

¼ 0:58;RMSE ¼ 0:8Þ ð12Þ



Fig. 8. (A) Average CBT0 for each peat versus pH (black circles) and (C) average CBTpeat for each peat versus pH (black circles). Solid blue
lines in A and C represent the Deming regression used to obtain the calibrations, while dashed black lines reflect simple linear regressions.
Horizontal error bars represent 1r and are based on the analysis of horizons samples from the same peat. Vertical error bars represent the
spread in pH reported for each peat. Also shown is the residual pH for all analyzed peat samples (yellow circles), obtained by subtracting the
estimated pH using the CBT0 (B) and CBTpeat (D) deming calibrations from the observed pH. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Although the coefficient of determination increases and
RMSE decreases using CBTpeat, the calibration uncertain-
ties are still larger than those reported for soils (see supple-
mentary information).

It is noteworthy that in peats the correlation between
brGDGT distributions and pH is much weaker than that
with MAAT (see below). This contrasts with mineral soils,
for which the correlation of CBT0 with pH (R2 = 0.85), is
stronger than that of MATmr with MAAT (R2 = 0.68)
(De Jonge et al., 2014). The weaker correlation can partly
be explained by the smaller sample set used for the peat cal-
ibration (n = 51) versus soil calibration (n = 221). However,
taking 51 random mineral soils from the latter still yields a
stronger correlation between CBT0 and pH than we obtain
for the peat data set. In addition, the coefficient of determi-
nation of a calibration based only on peats with pH P 5 is
�0.5 for CBTpeat, similar to that of the complete data set.
We argue that the difference could be related to the obser-
vation that in mineral soils water content also influences the
brGDGT distribution, especially that of 6-methyl
brGDGTs (e.g., Menges et al., 2014). Recently Dang
et al. (2016) showed that CBT(5me) is higher in dry soils
compared to wet soils. Because alkaline soils are often also
dry whereas acidic soils are often wet, this effect could
enhance the correlation between CBT0 and pH in soils. As
peats are typically water saturated, the additional effect of
soil water content is lacking, which may explain the weaker
correlation between CBT0 and pH in peats compared to
mineral soils.

4.2.2. Influence of MAAT on brGDGTs in peats

In mineral soils the distribution of brGDGTs is influ-
enced by MAAT, with the degree of methylation decreasing
as temperature increases (Weijers et al., 2007; De Jonge
et al., 2014). A temperature effect on the brGDGT distribu-
tion was recently also found in one peatland (Huguet et al.,
2013). Although the producers of brGDGTs are currently
unknown, such a response is consistent with homeoviscous
adaptation (Weijers et al., 2007). Here we investigate
whether temperature has a significant correlation with
brGDGTs in peats on a global scale.

When plotted against MAAT, only 5-methyl brGDGTs
lacking cyclopentane moieties (brGDGT-Ia, -IIa, and -IIIa)
have significant correlations with MAAT (Fig. 9).
brGDGT-Ia is positively correlated with MAAT
(R = 0.72, p < 0.01), whereas brGDGT-IIa (R = 0.82,
p < 0.01), and -IIIa (R = 0.63, p < 0.01) are negatively cor-
related with MAAT. These correlations are significantly
higher than those found in the global soil data set (De
Jonge et al., 2014). The degree of methylation of 5-methyl
brGDGTs is captured in the MBT0

5me index (Eq. (2)). As
such we use the MBT0

5me index to construct a peat-specific
temperature proxy (Fig. 10):

MAAT peat ð�CÞ ¼ 52:18�MBT 0
5me � 23:05

ðn ¼ 96; R2 ¼ 0:76; RMSE ¼ 4:7Þ ð13Þ
Crucially, no correlation is observed between MBT0

5me

and pH (R2 = 0 and p > 0.8) and we observe no trend in
the residuals. The coefficient of determination (R2) of
MAATpeat is higher compared to a Deming regression of
the expanded soil dataset (R2 = 0.60, see supplementary
information) as well as that of the linear MBT0

5me calibra-
tion (R2 = 0.66) suggested by De Jonge et al. (2014). Cru-
cially, because the slope of the MAATpeat calibration is
steeper, it could have greater utility for the reconstruction
of tropical temperatures (MAATpeat reaches saturation at
29.1 �C), although these maximum temperatures are higher
than the maximum MAAT in the modern calibration data
set which is 26.7 �C. In contrast, the Deming MBT0

5me soil
calibration reaches saturation (i.e. MBT0

5me = 1) at a tem-
perature of 24.8 �C (see supplementary information), while
the linear MBT0

5me calibration suggested by De Jonge et al.
(2014) has a maximum of 22.9 �C.



Fig. 9. Fractional abundance of the three main brGDGT versus MAAT (A) brGDGT-Ia, (B) brGDGT-IIa, and (C) brGDGT-IIIa (p < 0.01
for all compounds). Samples with fractional abundances <0.001 were not included. Vertical error bars represent 1r and are based on the
analysis of multiple horizons from the same peat.

Fig. 10. Average MBT0
5me for each peat versus MAAT (black circles). The solid blue line represents the Deming regression, whereas dashed

lines reflect the simple linear regression. Horizontal error bars represent 1r and are based on the analysis of multiple horizons from the same
peat. Also shown is the residual MAAT of all analyzed peat samples (yellow circles) obtained by subtracting the estimated MAAT using the
MBT0

5me Deming calibration from the observed MAAT. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article).
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4.3. Implications for paleoclimate reconstructions and future

work

Compared to the natural archives previously used to
reconstruct past terrestrial temperature change (e.g., river-
ine, lacustrine, and marine sediments), peats have a major
advantage. For example, the brGDGTs in peat are mainly
derived from in situ production. Mixing of brGDGT source
areas, which complicates the application of GDGTs in sed-
iments that represent a large catchment area (e.g., Zell
et al., 2014; De Jonge et al., 2015; Sinninghe Damsté,
2016), is unlikely to be a problem. In addition, peats are
overall characterized by anoxic conditions and the preser-
vation potential of organic compounds such as brGDGTs
is high. Finally, as peats are water saturated, especially
the catotelm where the majority of brGDGT production
occurs, the additional influence of changes in moisture con-
tent (Menges et al., 2014; Dang et al., 2016) is also negligi-
ble. Nevertheless, there are limitations to this proxy that
need to be considered when evaluating suitable palaeocli-
mate applications, and we explore those below.

4.3.1. Late Holocene climate

Here we provide peat-specific temperature and pH prox-
ies that could be used to reconstruct terrestrial climate over
a broad range of time scales, including the late Holocene.
However, the estimated variation in terrestrial temperature
of most places on earth during the last millennium is typi-
cally less than 1 �C (Mann et al., 2009; Pages 2k Consortiu
m, 2013), although there could be local exceptions. Such
temperature change is much smaller than the calibration
error (RMSE of �4.7 �C). Although based on different
lipids produced by different organisms, GDGT proxies
can potentially record temperature changes smaller than
the calibration errors when utilized within a highly con-
strained site-specific study (Tierney et al., 2010), although
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this interpretation was recently contested (Kraemer et al.,
2015).

Regardless of calibration issues, application of the
MAATpeat calibration to late Holocene palaeoclimate
remains problematic. A potential seasonal bias in the top
of some high-latitude peats, as well as a potential difference
between oxic and anoxic production, appear to prevent
application of this proxy to shallow peat sediments. Indeed,
our downcore profiles spanning the top 1 meter of peat
exhibit changes in brGDGT distributions equivalent to
temperature variations of up to several degrees Celsius, lar-
ger than the expected climate variations. Moreover, as dis-
cussed above, GDGTs appear to be predominantly
generated at depth, and although this evidently ensures they
record MAAT it does mean that their reconstructed tem-
perature signals start in deeper peat horizons, i.e. strati-
graphically preceding the climate changes that caused them.

Future work should determine whether these peat-
specific proxies can be used to reconstruct small amplitude
and/or short-lived temperature variation. However we cur-
rently urge caution in applying the peat-specific proxies to
shallow peat cores to reconstruct late Holocene climate
(e.g., Little Ice Age or Medieval Warm anomaly).

4.3.2. Application to the last glacial

We envision these proxies are well-suited to reconstruct
large amplitude and more long-term temperature excursions
such as those associated with the last glacial termination and
early Holocene. Such transitions are recorded in some par-
ticularly long peat cores at several places around the world
(e.g., McGlone et al., 2010; Vanneste et al., 2015; Zheng
et al., 2015; Baker et al., 2016). To test whether the novel
peat-specific temperature calibration can be used to recon-
struct glacial/interglacial temperature variability, we applied
this proxy to samples from the Hani peat sequence (Fig. 2).
Hani peat is located in northeastern China and in places is up
to 10 meters thick, spanning �16,000 cal yrs (Zhou et al.,
2010). We analyzed two samples from �840 cm depth (cor-
responding to the late glacial at around 15.3 kyr), and com-
pared MAATpeat with that of two samples from around
100 cm depth (corresponding to the late Holocene with an
age of 700–1000 yrs). UsingMAATpeat we obtained an aver-
age temperature of around �0.8 �C for the late glacial
(15.3 kyr). For the late Holocene (0.7–1 kyr) we obtained
an average temperature of around 4.6 �C (Table 1).

Taking the calibration error of �4.7 �C into account the
reconstructed late Holocene temperatures (4.6 �C) are close
to the observed modern-day MAAT of around 4 �C at this
locality (Zhou et al., 2010). In contrast, applying soil cali-
Table 1
brGDGT-based temperatures for Hani peatland.

Depth (cm) Age (yr) MBT0
5ME MATmr soil (RMSE 4.6 �C

De Jonge, 2014

86 �700 0.53 6.6
102 �1000 0.53 6.6
838 �15,100 0.46 4.4
846 �15.400 0.39 2.8

D MAAT 3.0 �C
brations to reconstruct MAAT at this site results in signif-
icantly higher values (up to 11 �C; Table 1). MAATpeat (as
well as the soil MBT0

5me calibration) indicates that tempera-
tures increased from the late glacial to the late Holocene by
around 5 �C. In contrast the MATmr mineral soil calibra-
tion indicates a smaller increase of around 3 �C. A �5 �C
increase is similar to that observed in east Asian loess-
paleosol sequences (Peterse et al., 2014), although that is
based on the MBT(0)/CBT method. In addition a 5 �C
deglacial temperature increase is similar to those of several
sea surface temperature records available from similar lati-
tudes in the Sea of Japan (Lee, 2007). The next step should
be multiproxy temperature reconstructions in a variety of
locations to test the new calibration and to determine
whether absolute temperatures obtained using MAATpeat

are reliable. Nonetheless, this initial analysis indicates that
MAATpeat yields temperature estimates that are consistent
with both modern day observations and other proxy esti-
mates for the last glacial.

4.3.3. Deep time application

We see considerable scope for future work with this
proxy to reconstruct terrestrial temperature during past
greenhouse periods and across hyperthermals (e.g. Pale-
ocene/Eocene Thermal Maximum; PETM). These events
are recorded in lignite deposits. For example the PETM is
documented in lignites from the UK (Collinson et al.,
2003; Pancost et al., 2007). Importantly, lignites are the
lowest (maturity) rank of coal and have not experienced sig-
nificant burial and associated temperature and pressure
that leads to the loss of GDGTs (Schouten et al., 2004,
2013). Due to their low thermal maturity, lignites are
thought to retain their original brGDGT distribution over
geological timescales. For example, brGDGTs have been
reported in an immature late Paleocene lignite from the
USA (Weijers et al., 2011), early Eocene lignites from Ger-
many (Inglis et al., 2017), as well as Miocene lignite from
Germany (Stock et al., 2016). Although analyzed using
the classical analytical method that did not separate 5-
and 6-methyl brGDGTs, the brGDGT distribution in a late
Paleocene lignite from North America is dominated by
brGDGT-Ia (Weijers et al., 2011), similar to that seen in
modern peats from the tropics and suggesting high terres-
trial temperatures. This is consistent with our overall under-
standing of terrestrial climate during the greenhouse world
of the late Paleocene and early Eocene (Huber and
Caballero, 2011).

As the brGDGT distribution in peat deposits is domi-
nated by production in the anoxic catotelm below the water
) MAT0
5me soil (RMSE 4.8 �C) MAATpeat (RMSE 4.7 �C)

De Jonge, 2014 This study

10.9 4.5
11.3 4.8
6.7 1.2
5.4 �2.7
5.0 �C 5.4 �C
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table where the seasonal temperature cycle is muted (see
Section 4.1) brGDGT-based temperatures obtained from
lignite deposits can be considered to reflect MAAT. We
envision that future studies applying our new peat-specific
calibrations to immature lignites will provide valuable
new insights into terrestrial climate during the geological
past. In addition, the GDGT concentrations in peats are
generally much higher than those found in soils. We there-
fore propose that for studies of brGDGT distributions in
(marine) sediments with a peat-dominated catchment area
(e.g. Siberia (Frey and Smith, 2005)) or that contain inde-
pendent evidence for the input of peat-derived material
(e.g. high concentration of C31 ab-hopanes or palynologic
evidence for the input of typical peatland vegetation), the
majority of GDGTs is likely derived from peatlands. In
such settings it is more appropriate to use a peat-specific
calibration rather than a mineral soil calibration.

5. CONCLUSIONS

Using 470 samples from 96 peatlands from around the
world we explored the environmental controls on the bacte-
rial brGDGT distribution in peats. We demonstrate that
brGDGT distributions are correlated with peat pH and
especially mean annual air temperature (MAAT). We
develop for the first time peat-specific brGDGT-derived
pH and temperature calibrations. In addition to their appli-
cation in ancient peat-forming environments, we also sug-
gest that these calibrations could be preferable to the
available mineral soil calibration in marginal marine set-
tings when it is clear that brGDGTs are predominantly
derived from peats. We suggest caution in applying this
proxy to late Holocene peat (e.g., covering the Medieval
Climatic Anomaly and/or Little Ice Age) as both the cali-
bration error and downcore variation appears to be larger
than expected climate signals during this period. Taken
together our results demonstrate that there is clear potential
to use GDGTs in peatlands and lignites to reconstruct past
terrestrial climate, opening up a new set of sedimentary
archives that will help to improve understanding of the cli-
mate system during the geological past.
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