SUPPLEMENTARY DATA

Fig. S1. Time course of ${ }^{13} \mathrm{C}$ discrimination $\left(\delta^{13} \mathrm{C}\right.$) in garden cress (Lepidium sativum) plantlets grown from seed for up to 21 days after watering (DAW) in air or helox atmosphere at high (HH; A,D,G) or low humidity (LH; B,E,H), under total pressure reduced to one-half of normal pressure (RP: C,F,I), and at three different atmospheric CO_{2} mixing ratios C_{a} : subambient ($180 \mu \mathrm{~mol} \mathrm{~mol}^{-1}$; A-C), ambient ($400 \mu \mathrm{~mol} \mathrm{~mol}^{-1}$; D-F) or superambient ($800 \mu \mathrm{~mol} \mathrm{~mol}^{-1}$; G-I). Isotopic compositions of CO_{2} in the mixed atmosphere (δ_{a}) and of seed carbon $\left(\delta_{\mathrm{s}}\right)$ were -28.19% and 28.13%, respectively. Means and standard deviations $(n=3)$ are shown. The data indicate that (i) δ of cotyledons at $0,7,14$ and 21 DAW follows a sigmoid-like time course and approaches the δ value of true leaves after 21 days; (ii) helox-grown plants were almost always depleted in ${ }^{13} \mathrm{C}$ compared to air-grown plants; (iii) ${ }^{13} \mathrm{C}$ discrimination increases (δ becomes more negative) with rising C_{a}; (iv) the discrimination in hypobaric plants (RP) is remarkably decreased (less negative δ) than in plants grown at normal atmospheric pressure with similar C_{a} (compare RP at 800/2 with LH at 400 and RP at $400 / 2$ with LH at $180 \mu \mathrm{~mol} \mathrm{~mol}^{-1}$).

Fig. S2. Time course of stomatal density in garden cress (Lepidium sativum) plantlets grown from seed for up to 21 days after watering (DAW) in air or helox atmosphere at high (HH; A,D,G) or low humidity (LH; B,E,H), under total pressure reduced to one-half of normal pressure (RP; C,F,I), and at three different atmospheric CO_{2} mixing ratios C_{a} : subambient ($180 \mu \mathrm{~mol} \mathrm{~mol}^{-1}$; A-C), ambient (400 $\mu \mathrm{mol} \mathrm{mol}{ }^{-1}$; D-F) or superambient ($800 \mu \mathrm{~mol} \mathrm{~mol}^{-1}$; G-I). Data points are means of total number of stomata per mm^{-2} of projected leaf area (adaxial plus abaxial side) of counts on 60 areas in samples from three plants. Bars represent standard deviations. The data indicate that (i) stomatal density in cotyledons is insensitive to C_{a} as well as to atmospheric humidity and to reduced atmospheric pressure; (ii) stomatal density of true leaves decreases with increasing C_{a} and reduced atmospheric humidity; (iii) stomatal density on hypobaric plant leaves is increased compared to plants grown under normal pressure.

Fig. S3. Kinetics of seed-derived carbon in cotyledons of garden cress plants grown at three different ambient CO_{2} concentrations from seeds for 14-21 days after the seed watering (DAW) in artificially mixed atmosphere. Other growth conditions are described in legend of Figs S1 and S2. Sigmoid regression curves are shown. The fraction of seed-derived carbon f was calculated from time-course of carbon isotope composition $\delta^{13} \mathrm{C}$ in dry matter of the cotyledons and true leaves.

Fig. S4. Details of the stomatal density SD, pavement cell density PCD and stomatal index SI response of garden cress true leaves and cotyledons to leaf internal CO_{2} concentration C_{i}. The plants were grown for 21 days at PPFD of $100,170,240,310,380,450,520,590 \mu \mathrm{~mol}$ (photons) $\mathrm{m}^{-2} \mathrm{~s}^{-1}$. The data showing total SD, PCD and SI values summed (SD, PCD) or averaged (SI) over both leaf sides are presented in Fig. 4 of the main text. Here, we present values separately for adaxial and abaxial leaf sides and in the form of differences between treatments (all irradiance levels except $310 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$) and the "control" arbitrarily set as the optimum irradiance of 310 $\mu \mathrm{mol} \mathrm{m} \mathrm{m}^{-2}$.

Table S1. Carbon isotope discrimination (δ) and stomatal density (SD) data compiled from published controlled factorial experiments with dicotyledonous plants.
The differences of δ and SD between treatments (t) and the respective controls (c) were used in calculation of the treatment effect on leaf internal CO_{2} concentration $\left(C_{\mathrm{i}}\right)$ using equation 3 and in plotting the C_{i} response of SD (Fig. 5).

No	species	variant	treatment/level		$\begin{aligned} & \begin{array}{l} \boldsymbol{\delta} \text { air } \\ \text { [\%] }] \end{array} \\ & \hline \end{aligned}$	C_{a}	$\begin{gathered} \mathrm{SD} \\ \mathrm{~mm}^{-2} \\ \hline \end{gathered}$	Δ or δ	C_{i}	$\begin{gathered} \text { diff. } \\ \text { c-t } \\ \hline \delta \\ {[\% \text { }} \\ \hline \end{gathered}$	difference treatcontrol			Source	
					SD						c_{i}	$\begin{gathered} \hline \text { SD } \\ {[\%]} \end{gathered}$			
\checkmark	Vigna sinensis	control ctreated t	P nutrition, soil water,			-8	380	440	16.1	180.0					
					-8	380	244	19.4	231.7	3.4	196	51.7	-45	Sekiya \& Yano, 2008	
\sim	Glycine max	C	UV-B	-UV	-8	380	170	19.5	233.3						
				+UV	-8	380	100	18.0	210.1	-1.5	-70	-23.2	-41	Gitz III et al., 2005	
m	Frenelopsis (3 species)	t	salinity		-8	380	60								
					-8	380	168	-20.8	129.8	-7.0	108	-108.1	180	Aucour et al., 2008	
-	Lycopersicon esculentum	C		-ABA	-8	380	207	-29.6	265.8						
		t	ABA	+ABA	-8	380	248	-29.1	257.7	-0.5	41	-8.2	20	Bradford et al., 1983	
-	Solenites vimineus	C		high (1896)	-8	380	45	-26.3	214.7						
		t	CO 2	low (1512)	-8	380	38	-27.8	237.9	1.5	-7	23.2	-16	Yan et al., 2009	
\bullet	Arabidopsis thal., Col.	C		-UV	-8	380	563	22.9	285.9		-				
		t	UV-B	+UV	-8	380	369	24.3	307.2	1.4	194	21.3	-34	Lake et al., 2009	
N	Parashorea chinensis	C			-8	380	558	-27.8	237.1						
		t	tree height	35 m	-8	380	503	-29.1	258.4	1.4	-55	21.3	-10	He et al., 2008	
∞	Oleandra pistillaris	C												Takahashi \& Mikami,	
		t	canopy	understorey	-8	380	167	-32.6	312.0	2.7	-62	41.7	-27	2006	
a	Ginkgo biloba	C		lit	-8	380	96	-26.6	219.3						
		t		shaded	-8	380	79	-24.6	188.5	-2.0	-17	-30.9	-18		
		c		lit	-8	380	113	-29.3	261.1						
		t	irradiance	shaded	-8	380	91	-29.9	270.3	0.6	-22	9.3	-20	Sun et al., 2003	

$\stackrel{\sim}{\sim}$	Vitis vinifera	c	root temp.	warm cool			$\begin{aligned} & \hline 117 \\ & 128 \\ & \hline \end{aligned}$		$\begin{aligned} & 275.4 \\ & 262.3 \end{aligned}$		11	-13	10	Rogiers \&Clarke, 2013
$\stackrel{\square}{\square}$	Betula mioluminifera	C		$\begin{aligned} & \text { low } \\ & \text { high } \\ & \hline \end{aligned}$	-6 -6	$\begin{aligned} & 316 \\ & 387 \\ & \hline \end{aligned}$	$\begin{aligned} & 256 \\ & 207 \\ & \hline \end{aligned}$	$\begin{aligned} & -29.1 \\ & -30.9 \end{aligned}$	$\begin{aligned} & 240.6 \\ & 321.7 \end{aligned}$	1.7	-49	81	-19	
	Carpinus miofangiana	c	CO 2	low high	-6	$\begin{array}{r} 316 \\ 387 \\ \hline \end{array}$	$\begin{aligned} & 278 \\ & 244 \\ & \hline \end{aligned}$	$\begin{aligned} & -28.3 \\ & -30.3 \end{aligned}$	$\begin{aligned} & 229.7 \\ & 313.1 \end{aligned}$	2.0	-34	83	-12	Sun et al., 2012
$\stackrel{ }{\text { N }}$	Medicago sativa,	c t		75 25	-8 -8	380 380	118 185	$\begin{array}{r} -29.6 \\ -27.6 \end{array}$	$\begin{aligned} & 265.7 \\ & 234.0 \end{aligned}$	-2.1	67	-31.7	57	
	CV. Algonquin, Longdon, Xinjiangdaye	c t		75 25	-8 -8	380 380	154 182	$\begin{aligned} & -29.4 \\ & -27.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 263.1 \\ & 232.9 \\ & \hline \end{aligned}$	-2.0	28	-30.1	18	
		c	soil water capacity (\%)	75 25	-8	$\begin{aligned} & 380 \\ & 380 \\ & \hline \end{aligned}$	139 152	$\begin{aligned} & -29.6 \\ & -27.7 \end{aligned}$	$\begin{aligned} & 265.2 \\ & 236.0 \end{aligned}$	-1.9	13	-29.2	9	He et al., 2012

