Supplemental Material Table 1: Details for Table 1 of the paper.

Ichnotaxon

Biological Counterpart (Trackmaker)

1

Ameghinichnus Rhynchosauroides hyperbates Rhynchosauroides spp. Chirotherium lulli Procolophonichnium Gwyneddichnium Apatopus Brachychirotherium parvum new taxon B Batrachopus deweyii "Batrachopus deweyii "Batrachopus" gracilis unnamed dinosaurian genus 1 Otozoum "Grallator" "Anchisauripus" Eubrontes giganteus Atreipus spp. Anomoepus scambus	advanced synapsid, possibly trithelodontid (1) lepidosauromorph or primitive archosauromorph (2,3) lepidosauromorphs (2,3) crurotarsan, possibly aetosaurid (4) procolophonid parareptile (5) tanystropheid (6) phytosaur (3) rauisuchian crurotarsan (7) crurotarsan, possibly crocodylomorph (8) crocodylomorph (9) crocodylomorph (9) unknown dinosaur, perhaps herrerasaurid prosauropod dinosaurs (10,11) small theropod dinosaur (12) small to medium sized theropod dinosaur (12) large theropod dinosaur (13) ornithischian dinosaur (14)

Supplementary Materials: Table 2: Ages and localities for Figure 2 of paper and Figures 1 and 2 of supplementary materials. na, indicates that although many tracks are known from the locality and are in various institutions, we have not attempted to quantify their numbers for this study; Maximum size is based on a survey of the largest of the specimens (¹⁵).

Ichnotaxa

age Ma	Formation	Abbrev -iation	Basin	Locality	Age	Ichnotaxa	#Non-Dino- saur Tracks	#Dino- saur Tracks	%Dino- saur Tracks	Max. Thero- pod Track Size	#Non Dino- saur Taxa	#Dino- saur Taxa	% Dino- saur Taxa	Comments
199	Portland	1	Hartford	Stony Brook, Kelsey Furguson Quarry, Simsbury, CT	Hettangian- Sinemurian	Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Otozoum moodii, Anomoepus scambus	na	na	na	34	1	5	83	(16)
199	McCoy Brook	2	Fundy	Five Islands Provincial Park, Blue Sac shore	Hettangian- Sinemurian	Batrachopus deweyii, Batrachopus gracilis, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus, Otozoum moodii	na	na	na	35	2	5	71	(14,27)
200	Portland	3	Hartford	Chicopee, MA	Hettangian- Sinemurian	Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Anomoepus scambus	na	na	na	20	1	3	75	(revised from ref. 17)
200	Turners Falls	4	Deerfield	Stoughton Quarry, Montague, MA	Hettangian	Batrachopus deweyii, Batrachopus gracilis, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus	na	na	na	35	2	3	60	(revised from ref. 17,)
200	Turners Falls	5	Deerfield	Barton Cove, Lily Pond, Gill, MA	Hettangian	Batrachopus deweyii, Batrachopus gracilis, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus	na	na	na	35	2	4	67	(revised from ref. 17)
201	Portland	6	Hartford	Portland brownstone Quarry, Portland, CT	Hettangian	Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Anomoepus scambus, Otozoum moodii	na	na	na	25	1	4	80	(revised from ref. 17)
201	Boonton	7	Newark	Boonton Dam, Boonton, NJ	Hettangian	Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus	1	9	82	35	1	4	80	youngest Newark basin assemblage (16)

Su	plementa	ry Ma	terial											3
201	Towaco	8	Newark	Riker Hill Quarry, Roseland, NJ	Hettangian	Ameghinichnus n. sp., Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus	100	1400	93	35	2	4	67	the most densely sampled locality in Newark basin (17)
201	Towaco	9	Newark	Stephen Drive, Montville, NJ	Hettangian	Rhynchosauroides sp., Grallator parallelus, Anchisauripus tuberosus	1	9	82	20	1	2	67	LA Rhynchosauroides (16)
201	East Berlin and lower Turners Falls	10	Hartford		Hettangian	Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus	na	na	na	36	1	4	80	(revised from ref.17)
201	Towaco	11	Newark	Vreeland Quarry, Montville, NJ	Hettangian	Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus	1	404	100	35	1	4	80	(16)
201	Towaco	12	Newark	Toms Point, Lincoln Park, NJ	Hettangian	Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus	1	99	98	35	1	4	80	(16)
201	Feltville	13	Newark	Shrump Quarry, Roseland, NJ	Hettangian	Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Anomoepus scambus	1	9	82	25	1	3	75	(16)
201	Turkey Run	14	Culpeper	Oak Hill Estate, Aldie, VA	Hettangian	Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, cf. Anomoepus scambus	na	na	na	35	0	4	100	(27)
201	Feltville	15	Newark	Exeter Golf Course, Exeter, PA	Hettangian	Grallator cf. G. parallelus, Anchisauripus tuberosus, Eubrontes giganteus	0	4	100	33	0	3	100	(16)
201	McCoy Brook	16	Fundy	Wasson Bluff	Hettangian	Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Anomoepus scambus, Otozoum moodii	na	na	na	35	1	5	83	(27)
201	Shuttle Meadow	17	Hartford		Hettangian	Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus	na	na	na	34	1	3	75	(revised from ref. 17)

Su	oplement	ary Ma	aterial											4
201	Midland	18	Culpeper	Licking Run Reservoir, Midland, VA	Hettangian	Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus, Batrachopus deweyii	na	na	na	34	1	4	80	(16)
201	Feltville	19	Newark	Vosseller Rd., Martinsville, NJ	Hettangian	Anchisauripus tuberosus, Eubrontes giganteus	0	6	100	35	0	2	100	oldest interflow assemblage (16)
201	Passaic	20	Newark	Exeter Village, Exeter, PA	Hettangian	Rhynchosauroides sp., Grallator parallelus	1	3	60	11	1	1	50	(16)
201	Passaic	21	Newark	R. H. Hamilton Quarry, and Montclair State Univ., Clifton and Paterson, NJ	Hettangian	Rhynchosauroides n. sp., Batrachopus deweyii, Grallator parallelus, Anchisauripus tuberosus, Eubrontes giganteus	200	1000	83	35	2	3	60	FA, <i>Eubrontes giganteus</i> ; superb specimens of all taxa (16)
202	Passaic	22	Newark	Exeter Village, Exeter, PA	Rhaetian	Batrachopus deweyii, Rhynchosauroides sp., Grallator parallelus, Anchisauripus tuberosus	50	2	4	20	2	2	50	(16)
202	Passaic	23	Newark	Exeter Village, Exeter, PA	Rhaetian	Rhynchosauroides sp., Grallator parallelus	120	60	33	23	1	1	50	(16)
202	Passaic	24	Newark	Friendship Home, Exeter, PA	Rhaetian	Rhynchosauroides sp., Batrachopus gracilis, Apatopus sp., ?Brachychirotherium, New taxon B, Grallator parallelus, Anchisauripus tuberosus	20	10	33	20	5	2	29	LA, definite <i>Apatopus</i> sp. modified from ref. (18)
202	Passaic	25	Newark	Friendship Home, Exeter, PA	Rhaetian	Brachychirotherium sp., Grallator parallelus	1	1	50	13	1	1	50	LA, definite Brachychirotherium (16)
202	Passaic	26	Newark	Friendship Home, Exeter, PA	Rhaetian	Rhynchosauroides, Batrachopus gracilis, Brachychirotherium, New taxon B, Grallator parallelus, Anchisauripus tuberosus	150	200	57	22	4	2	33	very good and abundant <i>Brachychirotherium</i> . Modified from ref. (18)

Sup	oplement	ary Ma	aterial											5
202	Passaic	27	Newark	Wingspread, Exeter, PA	Rhaetian	Rhynchosauroides sp., Gwyneddichnium sp., Batrachopus gracilis, Brachychirotherium, New Taxon B, Grallator parallelus, Anchisauripus tuberosus	~50	100	67	20	5	2	29	LA, <i>Gwyneddichnium</i> , very good <i>Anchisauripus</i> <i>tuberosus</i> . Modified from ref. (18)
202	Passaic	28	Newark	Type Pine Ridge, Exeter, PA	Rhaetian	Grallator parallelus	0	4	100	12	0	1	100	(16)
202	Passaic	29	Newark	Pathfinder Meadows, Exeter	Rhaetian	Grallator parallelus	0	2	100	11	0	1	100	(16)
202	Passaic	30	Newark	Pathfinder Meadows, Exeter Township	Rhaetian	NewTaxon B, ?Brachychirotherium sp., Rhynchosauroides sp., Grallator parallelus	5	30	86	17	3	1	25	major reptile bone site (26,16)
202	Passaic	31	Newark	West Orange, NJ	Rhaetian	Apatopus sp.	1	0	0	na	1	0	0	(19)
204	Passaic	32	Newark	Heister's Creek, Exeter Township, PA	Rhaetian	Rhynchosauroides sp., New Taxon B, ?Gwyneddichnium sp., Grallator parallelus	4	75	95	9	3	1	25	Modified from ref. (8)
204	Passaic	33	Newark	Tulpehocken Rd., Exeter Township	Rhaetian	Grallator parallelus	0	2	100	16	0	1	100	(16)
204	Passaic	34	Newark	Shelbourn Square, Exeter Township, PA	Rhaetian	Rhynchosauroides sp., New Taxon B, Batrachopus gracilis, Brachychirotherium sp., Grallator parallelus	10	20	67	9	4	1	20	Modified from ref. (8)
205	Passaic	35	Newark	Valley Ridge, Exeter Township, PA	Rhaetian	Grallator parallelus	0	12	100	9	0	1	100	(16)
205	Passaic	36	Newark	Fairview Chapel, Exeter Township, PA	Rhaetian	Rhynchosauroides sp.	20	0	0	na	1	0	0	(16)
206	Passaic	37	Newark	Passaic, NJ	Rhaetian	Procolophonichnium sp., ?Gwyneddichnium sp.	3	0	0	na	2	0	0	(19)

Sup	oplementa	ry Ma	terial											6
206	Passaic	38	Newark	Furnace Hill, Exeter Township, PA	Rhaetian	Rhynchosauroides sp., Batrachopus cf. B. gracilis, Brachychirotherium sp., Chirotherium lulli, Atreipus sp., Grallator parallelus	75	40	35	10	6	1	14	modified from Szajna and Hartline (20) LA C. lulli, LA Atreipus
206	Blomidon	39	Fundy	Red Head, Rossway, Nova Scotia	?Rhaetian	Rhynchosauroides sp., Apatopus cf. A. lineatus, Brachychirotherium, cf. Atreipus sp., Grallator parallelus, Anchisauripus tuberosus	na	na	na	18	3	3	50	(27)
207	Passaic	40	Newark	Monacacy Hill , Amity Township, PA	?Rhaetian	Rhynchosauroides sp., Brachychirotherium sp., Atreipus sp.	8	2	20	na	2	1	33	(16)
208	Passaic	41	Newark	Victoria Hill, Amity Township, PA	?Rhaetian	Rhynchosauroides sp., Apatopus lineatus, New Taxon B, Grallator parallelus, Anchisauripus tuberosus	7	5	42	25	3	2	40	FA Batrachopus cf. B. gracilis (16)
208	Passaic	42	Newark	Douglassville, Amity Township, PA	?Norian	Rhynchosauroides sp., Gwyneddichnium sp., ?Batrachopus sp., Brachychirotherium sp., Atreipus sp., Grallator parallelus	5	200	98	10	4	2	33	modified from ref. (8)
209	Balls Bluff	43	Culpeper	Floris, VA	Norian	Apatopus sp.	na	na	na	na	1	0	0	(21)
209	Balls Bluff	44	Culpeper	Manassas National Park, VA	Norian	Rhynchosauroides sp.	na	na	na	na	1	0	0	(22)
210	Passaic	45	Newark	East Greenville	Norian	Atreipus sp.	0	6	100	14	0	1	100	(16)
211	Balls Bluff	46	Culpeper	Culpeper Crushed Stone Quarry, Stevensburg. VA	Norian	Rhynchosauroides sp., Brachychirotherium spp Anchisauripus tuberosus, Anchisauripus sp.	na	na	na	25	2	2	50	(23)
211	Passaic	47	Newark	Rutherford, NJ	Norian	Rhynchosauroides sp., Apatopus sp., Brachychirotherium sp., unnamed dinosaurian genus 1, Atreipus sp., Grallator parallelus, Anchisauripus tuberosus	50	50	50	16	3	4	57	FA Anchisauripus tuberosus Modified from ref. (13)

Su	oplement	ary M	laterial											7
214	Passaic	48	Newark	Limrick Airport Business Campus, Limerick, PA	Norian	Rhynchosauroides sp., Atreipus sp., Grallator parallelus	6	6	50	5	1	2	67	(16)
214	Passaic	49	Newark	Sanatoga Commons, Liberty Hill, Sanatoga, PA	Norian	Gwyneddichnium sp., Atreipus sp.	2	2	50	11	1	1	50	(16)
214	Passaic	50	Newark	Sanatoga Auto Body Shop, Sanatoga, PA	Norian	Rhynchosauroides sp., Brachychirotherium sp., Atreipus sp.	32	8	20	14	2	1	33	(16)
215	Passaic	51	Newark	Smith-Clark Quarry, Milford, NJ	Norian	Rhynchosauroides sp., R. hyperbates, Apatopus lineatus, Chirotherium lulli, Brachychirotherium sp., Atreipus sp., Grallator parallelus, new genus 2	25	200	89	12	5	4	44	FA <i>C. lulli</i> . Modified from ref. (<i>13</i>)
215	Passaic	52	Newark	Sanatoga Quarry, Sanatoga, PA	Norian	Rhynchosauroides sp., Brachychirotherium sp., Atreipus acadianus, New Genus 1	900	250	22	10	2	2	50	Modified from ref. (13)
215	Blomidon	53	Fundy	Paddy Island area, Medford, Nova Scotia	Norian	Rhynchosauroides sp., R. hyperbates, Apatopus lineatus, Chirotherium lulli, Brachychirotherium, Atreipus, unnamed dinosaurian genus 1	na	na	na	na	5	3	38	
216	Passaic	54	Newark	Heather Glen, Limerick, PA	Norian	Rhynchosauroides sp, Atreipus sp	12	3	20	12	1	1	50	(16)
216	Passaic	55	Newark	Graterford Prison, Graterford, PA	Norian	Rhynchosauroides sp., Atreipus sp.	20	200	91	12	1	1	50	
217	Passaic	56	Newark	Nishisackawic k Creek,	Carno- Norian	Rhynchosauroides sp., Brachychirotherium sp., Atreipus sp.	50	80	62	13	2	1	33	Modified from ref. (13)

Su	oplementa	ry M	aterial											8
217	Passaic	57	Newark	Mainland, PA	Carno- Norian	Rhynchosauroides sp., Gwyneddichnium sp., Brachychirotherium sp., Atreipus sp., Grallator parallelus	20	25	56	10	3	2	40	(16)
217	Passaic	58	Newark	Ridge Pike & Township Ln. Rd., Trappe, PA	Carno- Norian	Rhynchosauroides sp., Brachychirotherium sp., Atreipus sp., Grallator parallelus	38	12	24	10	2	2	50	(16)
218	Passaic	59	Newark	Blooming Glen Quarry, Blooming Glen, PA	Carnian	Rhynchosauroides sp., Apatopus lineatus, Gwyneddichnium sp., Brachychirotherium sp., Atreipus sp.	21	6	22	15	4	1	20	(16)
219	Lockatong	60	Newark	Upper Fairview, PA	Carnian	Rhynchosauroides sp., Brachychirotherium sp., indt. dinosaur	28	2	7	na	2	1	33	(16)
221	Lockatong	61	Newark	Arcola, PA	Carnian	Rhynchosauroides sp., R. hyperbates, Gwyneddichnium sp., Apatopus sp., Brachychirotherium sp., Atreipus sp., Grallator parallelus	200	10	5	12	5	2	29	FA <i>R. hyperbates</i> , Modified from ref. (13)
222	Lockatong	62	Newark	Gwynedd, PA	Carnian	<i>Gwyneddichnium</i> sp., ? <i>Atreipus</i> sp.	20	2	9	12	1	1	50	FA Gwyneddichnium (13)
222	Stockton	63	Newark	Grandview and South Nyack, NY	Carnian	Brachychirotherium sp., Atreipus sp.	4	2	33	12	1	1	50	(16)
222	Stockton	64	Newark	Haverstraw (south), NY	Carnian	Brachychirotherium sp., Grallator parallelus	3	2	40	7	1	1	50	FA <i>Grallator parallelus</i> . Modified from ref. (24)
222	Stockton	65	Newark	Haverstraw (north), NY	Carnian	Rhynchosauroides sp., Apatopus sp., Brachychirotherium sp., Atreipus sp., ?Grallator parallelus sp.	10	4	29	9	3	2	40	FA listed taxa; oldest Newark basin track assemblage? Modified from ref. (24)

Age Ma	Formation	Abbrev- iation	Basin	Locality	Age	Osteological Taxon	Comments
199	Portland	66	Hartford	Hines Quarry, Longmeadow, MA	Sinemurian	protosuchian Stegomus longipes	type specimen, partial skeleton and skull (17)
201	McCoy Brook	67	Fundy	Wasson Bluff, Cumberland County, Nova Scotia	Hettangian	protosuchian Protosuchus micmac	Abundant skeleteal elements, site also has produced abundant prosauropod dinosaurs, rare ornithischian and possible theropod dinosaur teeth and bones, and abundant sphenosuchian skeletons and elements, and rare trithelodonts (25)
202	Passaic	68	Newark	Pathfinder Meadows, Exeter Township	Rhaetian	protosuchian Protosuchus sp., Hypsognathus fennerii	<i>Protosuchus</i> : osteoderms, jaw, postcranial fragments. <i>Hypsognathus</i> , abundant skulls, partial skeletons and individual bones and teeth (<i>16</i>)
202	Passaic	69	Newark	Walnut Street, Exeter Township, PA	Rhaetian	phytosauria indet.	teeth (16)
202	Passaic	70	Newark	Clifton, NJ	Rhaetian	Hypsognathus fennerii	type specimen, partial skeleton and mandibles (26)
205	Passaic	71	Newark	Passaic, NJ	Rhaetian	Hypsognathus fennerii	several partial skulls and skeletons (26)
206	Passaic	72	Newark	Passaic, NJ	Rhaetian	Hypsognathus fennerii	partial skull (26)
206	Blomidon	73	Fundy	Red Head, Rossway, Annapolis Co., Nova Scotia	Norian-Rhaetian	phytosauria indet.	rostrum, fragmentary mandible, osteoderm (27)
210	Passaic	74	Newark	East Greenville	Norian	Hypsognathus fennerii	partial skull (26)
211	Passaic	75	Newark	Hosensack Creek, lower Milford, PA	Norian	phytosaur: Clepsysaurus pennsylvanicus	teeth, skull and postcranial fragments (28)
214	Passaic	76	Newark	Sanatoga Auto Body Shop, Sanatoga, PA	Norian	phytosauria indet.	postcranial elements and teeth (16)
215	Passaic	77	Newark	Smith-Clark Quarry, Milford, NJ	Norian	phytosauria indet.	tooth (16)
215	Blomidon	78	Fundy	Paddy Island area, Medford, Nova Scotia	Norian	Hypsognathus cf. H. fennerii	Complete skull and fragmentary postcranial elements , partial mandible (26)
221	Lockatong	79	Newark	Granton Quarry, North Bergen, NJ	Carnian	phytosaur, cf. Rutiodon	partial juvenile skull (29)
222	Stockton	80	Newark	Edgewater, NJ	Carnian	Rutiodon manhattanensis	partial postcranial skeleton (30)

Supplemental Material, Table 3: Concentrations of elements at the four sections shown is Supplemental Material Figure 3 (*31,32,33*). LOI, represents loss on ignition and corresponds roughly to organic matter content plus water. Depth is depth above (+) or below (-) base of blue-gray sandstone: first number is top of sample, second is bottom. (--), indicates problems with the mechanics of processing the sample (e.g. vial damage). The prefixes 1, 2, 3, and g correspond to samples from sections I, II, III, and Grist Mills sections. Coordinates for localities given in ref. *34*.

Sample Depth (cm)	1TJ-1 0,+10	1TJ-2 0, -5	1TJ-3 -5,-10	1TJ-4 -10,-14	1TJ-5 -14,-22	1TJ-6 -22,-34	1TJ-7 -34,-42	1TJ-8 -42,51	1TJ-9 -51,-60	1TJ-10 -60,-79	1TJ-11 -79,-111	2TJ-12 +8,0	2TJ-13 0,-9	2TJ-14 -9,-14	2TJ-15 -14,-25	2TJ-16 -25,-35	2TJ-17 -35,-43	2TJ-18 -43,-50	2TJ-19 -50,-56
Ir ppt(35)	97±19	< 80	25±10	96±19	76±17	71±17	40±12	35±12	56±15			21±9	119±21	103±20	<85	61±15	23±9	73±17	35±12
SiO2 % TiO2 % Al2O3 % Fe2O3 % MnO % MgO % CaO % Na2O % K2O % P2O5 % LOI %	$\begin{array}{c} 75.1 \\ 0.75 \\ 10.9 \\ 5.10 \\ 0.04 \\ 0.34 \\ 0.31 \\ 2.23 \\ 0.11 \\ 4.93 \end{array}$	$\begin{array}{c} 31.0\\ 0.55\\ 11.0\\ 4.13\\ 0.02\\ 1.15\\ 2.24\\ 1.76\\ 2.19\\ 0.09\\ 46.0 \end{array}$	$\begin{array}{c} 49.2\\ 0.83\\ 18.5\\ 8.06\\ <\!\!0.01\\ 1.2\\ 1.34\\ 0.36\\ 3.51\\ 0.12\\ 16.7\end{array}$	$\begin{array}{c} 62.7\\ 0.89\\ 17.8\\ 4.96\\ 0.14\\ 0.87\\ 0.37\\ 0.40\\ 3.55\\ 0.04\\ 8.04 \end{array}$	$\begin{array}{c} 64.2\\ 0.97\\ 16.7\\ 5.92\\ 0.13\\ 0.88\\ 0.53\\ 0.48\\ 3.29\\ 0.06\\ 6.80\end{array}$	$53.3 \\ 0.98 \\ 17.5 \\ 13.4 \\ < 0.01 \\ 0.92 \\ 0.23 \\ 0.66 \\ 4.16 \\ 0.12 \\ 8.41$	$56.8 \\ 1.01 \\ 19.5 \\ 8.77 \\ 0.15 \\ 1.29 \\ 0.32 \\ 0.32 \\ 4.64 \\ 0.13 \\ 7.11 \\$	$\begin{array}{c} 68.6\\ 0.94\\ 15.0\\ 4.50\\ 0.11\\ 1.07\\ 0.28\\ 0.85\\ 3.04\\ 0.10\\ 5.33\end{array}$	$\begin{array}{c} 69.3\\ 0.95\\ 14.7\\ 4.72\\ 0.07\\ 1.08\\ 0.29\\ 0.86\\ 3.09\\ 0.10\\ 5.20\end{array}$	$\begin{array}{c} 70.8\\ 0.92\\ 13.2\\ 3.59\\ 0.14\\ 1.05\\ 0.28\\ 3.84\\ 1.58\\ 0.10\\ 4.9 \end{array}$	$\begin{array}{c} 77.7\\ 0.75\\ 10.1\\ 3.36\\ 0.35\\ 0.77\\ 0.24\\ 0.88\\ 1.81\\ 0.07\\ 3.58\end{array}$	$\begin{array}{c} 44.4\\ 0.44\\ 17.8\\ 5.83\\ 0.70\\ 4.16\\ 20.0\\ 0.85\\ 3.46\\ 0.16\\ 0.92\end{array}$	$\begin{array}{c} 77.9\\ 0.68\\ 8.0\\ 6.21\\ <0.01\\ 0.11\\ 0.19\\ 0.55\\ 1.79\\ 0.10\\ 4.78\end{array}$	53.0 0.7 12.6 9.12 0.09 0.97 1.66 0.47 2.96 0.19 17.86	$52.6 \\ 0.92 \\ 20.0 \\ 9.06 \\ 1.96 \\ 1.31 \\ 0.62 \\ 0.24 \\ 4.8 \\ 0.15 \\ 8.59 \\$	$56.1 \\ 0.97 \\ 20.5 \\ 7.95 \\ < 0.01 \\ 1.23 \\ 0.41 \\ 0.26 \\ 4.87 \\ 0.13 \\ 7.43 \\ \end{cases}$	$58.9 \\ 0.98 \\ 15.7 \\ 13.14 \\ 0.03 \\ 0.82 \\ 0.25 \\ 0.58 \\ 3.64 \\ 0.17 \\ 6.19 \\$	$\begin{array}{c} 70.2 \\ 0.85 \\ 12.4 \\ 7.30 \\ 0.32 \\ 0.64 \\ 0.23 \\ 0.92 \\ 2.43 \\ 0.21 \\ 4.41 \end{array}$	$56.6 \\ 1.08 \\ 21.4 \\ 6.05 \\ <0.01 \\ 2.02 \\ 0.52 \\ 0.53 \\ 5.09 \\ 0.13 \\ 7.15 \\ \end{cases}$
TOTAL	99.97	100.07	99.84	99.73	99.90	99.69	100.01	99.82	100.35	100.46	99.64	98.70	100.29	99.64	100.23	99.81	100.33	99.97	100.5
Sc ppm V ppm Cr ppm Co ppm Ni ppm Cu ppm Zn ppm As ppm Se ppm Br ppm Fr ppm Y ppm Zr ppm Y ppm Zr ppm Nb ppm Sb ppm Cs ppm Ba ppm Cs ppm Ba ppm Cs ppm Ba ppm Cs ppm Sm ppm Gd ppm Tb ppm Tb ppm Tb ppm Tb ppm Tb ppm Tb ppm Th ppm I u ppm Ir ppb(<i>36</i>) Au ppb Th ppm U ppm	$\begin{array}{c} 10.0\\ 174\\ 66\\ 4.5\\ 17\\ 7\\ 169\\ 61\\ 10\\ 1.6\\ 96.1\\ 74\\ 20\\ 233\\ 13\\ 2.73\\ 4.41\\ 363\\ 36.7\\ 72.3\\ 32.4\\ 5.63\\ 1.10\\ 3.87\\ 0.55\\ 0.38\\ 2.75\\ 0.44\\ 6.68\\ 0.89\\ <1\\ 2\\ 10.1\\ 6.11\\ \end{array}$	$\begin{array}{c} 21.5\\ 159\\ 221\\ 13.4\\ 68\\ 485\\ 185\\ 30\\ 9\\ 0.3\\ 102\\ 142\\ 274\\ 426\\ 6\\ 8.88\\ 6.45\\ 286\\ 66.2\\ 125\\ 148\\ 57.5\\ 12.8\\ 49.6\\ 8.19\\ 2.40\\ 16.5\\ 2.16\\ 4.26\\ 0.77\\ <1\\ 0.4\\ 10.2\\ 18.6\end{array}$	$\begin{array}{c} 22.4\\ 249\\ 151\\ 12.9\\ 33\\ 180\\ 146\\ 272\\ 6\\ 10.9\\ 202\\ 122\\ 80\\ 138\\ 12\\ 11.9\\ 12.5\\ 465\\ 70.4\\ 151\\ 91.3\\ 23.7\\ 4.43\\ 17.6\\ 2.65\\ 1.15\\ 7.32\\ 1.03\\ 4.87\\ 1.18\\ < 2\\ 3\\ 18.2\\ 46.4 \end{array}$	$\begin{array}{c} 19.7\\ 135\\ 98\\ 2.9\\ 13\\ 21\\ 86.4\\ 77\\ 3\\ 2.5\\ 201\\ 119\\ 35\\ 294\\ 22\\ 4.94\\ 12.1\\ 431\\ 66.3\\ 116\\ 61.6\\ 9.93\\ 1.54\\ 6.5\\ 0.90\\ 0.63\\ 4.53\\ 0.71\\ 7.01\\ 1.49\\ < 1\\ 2\\ 18.4\\ 13.2 \end{array}$	$\begin{array}{c} 19.0\\ 137\\ 98\\ 3.9\\ 15\\ 45\\ 100\\ 78\\ 3\\ 0.8\\ 199\\ 111\\ 35\\ 242\\ 21\\ 7.71\\ 10.4\\ 473\\ 57.5\\ 102\\ 46.0\\ 9.29\\ 1.51\\ 6.51\\ 0.94\\ 0.55\\ 7.29\\ 1.40\\ <1\\ 3\\ 17.5\\ 12.8\\ \end{array}$	$\begin{array}{c} 16.8\\ 170\\ 93\\ 3.9\\ 18\\ 71\\ 153\\ 42\\ 3\\ 0.6\\ 180\\ 102\\ 28\\ 220\\ 16\\ 2.60\\ 9.81\\ 50.5\\ 104\\ 47.21\\ 1.32\\ 4.93\\ 0.70\\ 0.48\\ 3.48\\ 0.56\\ 5.15\\ 1.37\\ 0.1\\ 1\\ 15.2\\ 6.57\end{array}$	$\begin{array}{c} 19.3\\ 171\\ 102\\ 6.2\\ 24\\ 49\\ 167\\ 69\\ 2\\ 1.0\\ 202\\ 119\\ 33\\ 217\\ 17\\ 4.02\\ 12.0\\ 549\\ 64.8\\ 132\\ 58.0\\ 9.42\\ 1.53\\ 6.07\\ 0.84\\ 0.52\\ 3.65\\ 0.56\\ 5.98\\ 1.24\\ < 1\\ 2\\ 17.2\\ 8.76\end{array}$	$\begin{array}{c} 14.5\\ 112\\ 76\\ 6.8\\ 26\\ 28\\ 134\\ 2\\ 0.8\\ 136\\ 83\\ 34\\ 386\\ 20\\ 1.68\\ 6.82\\ 450\\ 51.5\\ 95.4\\ 45.7\\ 7.48\\ 1.24\\ 6.56\\ 1.06\\ 0.66\\ 1.2\\ 1.38\\ <1\\ .2\\ 7.13\\ \end{array}$	$\begin{array}{c} 13.2\\ 111\\ 73\\ 7.3\\ 29\\ 45\\ 163\\ 25\\ <3\\ 0.5\\ 123\\ 87\\ 35\\ 417\\ 19\\ 1.63\\ 6.30\\ 468\\ 51.3\\ 97.6\\ 47.4\\ 7.54\\ 1.30\\ 6.54\\ 1.05\\ 0.67\\ 4.70\\ 0.73\\ 12.3\\ 1.36\\ <5\\ 15.2\\ 7.77\end{array}$	$\begin{array}{c} 12.0\\ 109\\ 70\\ 7.8\\ 38\\ 30\\ 166\\ 49\\ 3\\ 1.4\\ 109\\ 81\\ 37\\ 441\\ 20\\ 6.50\\ 5.53\\ 388\\ 53.4\\ 90.8\\ 43.9\\ 7.74\\ 1.34\\ 6.30\\ 0.98\\ 0.68\\ 4.80\\ 0.73\\ 12.6\\ 1.23\\ <1\\ 5\\ 14.6\\ 25.4 \end{array}$	$\begin{array}{c} 8.75\\ 94\\ 48\\ 43.5\\ 35\\ 110\\ 142\\ 10\\ 1\\ 0.6\\ 73.1\\ 58\\ 365\\ 14\\ 0.83\\ 3.57\\ 295\\ 365\\ 14\\ 0.83\\ 3.57\\ 295\\ 8.58\\ 1.82\\ 6.69\\ 1.02\\ 0.55\\ 3.68\\ 0.56\\ 9.66\\ 0.85\\ <1\\ 0.8\\ 11.5\\ 5.04 \end{array}$	$\begin{array}{c} 9.17\\ 318\\ 110\\ 1.8\\ 88\\ 147\\ 155\\ 16\\ 16\\ 19.9\\ 25.8\\ 111\\ 94\\ 340\\ 3\\ 2.07\\ 2.08\\ 492\\ 16.5\\ 49.8\\ 75.8\\ 31.8\\ 6.53\\ 24.1\\ 3.67\\ 1.32\\ 8.02\\ 1.16\\ 14.4\\ 0.23\\ <1\\ 2\\ 3.36\\ 28.5 \end{array}$	$\begin{array}{c} 7.22\\ 189\\ 51\\ 2.7\\ 35\\ 5\\ 133\\ 111\\ 18\\ 1.1\\ 75.7\\ 49\\ 24\\ 297\\ 12\\ 3.40\\ 2.81\\ 284\\ 35.7\\ 70.8\\ 33.1\\ 5.68\\ 1.07\\ 3.98\\ 0.57\\ 0.38\\ 2.71\\ 0.41\\ 8.47\\ 0.72\\ < 1\\ < 4\\ 8.98\\ 6.08 \end{array}$	$\begin{array}{c} 15.4\\ 475\\ 49\\ 3.4\\ 30\\ 106\\ 304\\ 34\\ 35\\ 9.3\\ 110\\ 78\\ 32\\ 150\\ 12\\ 7.55\\ 7.89\\ 334\\ 42.9\\ 87.2\\ 44.3\\ 1.23\\ 8.12\\ 1.23\\ 8.12\\ 1.23\\ 0.58\\ 3.76\\ 0.57\\ 9.39\\ 0.95\\ <1\\ 1\\ 11.7\\ 33.3\end{array}$	$\begin{array}{c} 19.8\\ 280\\ 111\\ 4.5\\ 21\\ 52\\ 230\\ 134\\ 22.5\\ 3.6\\ 222\\ 111\\ 26\\ 143\\ 16\\ 4.11\\ 13.5\\ 551\\ 66.5\\ 118\\ 51.6\\ 8.51\\ 1.28\\ 4.96\\ 0.65\\ 0.48\\ 4.96\\ 0.48\\ 4.46\\ 0.48\\ 1.29\\ 0.65\\ 0.45\\ 0.48\\ $	$\begin{array}{c} 18.8\\ 273\\ 106\\ 3.9\\ 18\\ 54\\ 169\\ 92\\ 10\\ 2.6\\ 194\\ 117\\ 32\\ 224\\ 19\\ 4.68\\ 538\\ 57.9\\ 108\\ 50.3\\ 0.74\\ 0.45\\ 3.09\\ 0.48\\ 4.83\\ 1.05\\ <1\\ 1\\ 15.5\\ 10.3\\ \end{array}$	$\begin{array}{c} 15.3\\ 141\\ 84\\ 4.3\\ 51\\ 30\\ 246\\ 72.7\\ 2.35\\ 0.67\\ 146\\ 84\\ 29\\ 207\\ 16\\ 6.69\\ 7.00\\ 476\\ 45.0\\ 83.2\\ 36.8\\ 6.84\\ 1.18\\ 5.16\\ 0.77\\ 0.46\\ 3.18\\ 0.48\\ 6.40\\ 1.07\\ <1\\ 0.4\\ 13.2\\ 11.3\\ \end{array}$	$\begin{array}{c} 10.6\\ 107\\ 64\\ 6.1\\ 22\\ 31\\ 179\\ 26\\ 6\\ 0.7\\ 93.7\\ 66\\ 31354\\ 14\\ 1.63\\ 4.26\\ 345\\ 41.7\\ 80.4\\ 36.08\\ 1.17\\ 5.46\\ 0.89\\ 0.54\\ 3.79\\ 0.60\\ 10.9\\ 1.04\\ <1\\ 0.4\\ 12.9\\ 7.11\\ \end{array}$	$\begin{array}{c} 22.1\\ 172\\ 111\\ 19.6\\ 43\\ 107\\ 186\\ 23\\ 2\\ 1.2\\ 236\\ 147\\ 44\\ 267\\ 22\\ 1.96\\ 15.4\\ 607\\ 74.8\\ 147\\ 71.9\\ 10.8\\ 1.95\\ 8.34\\ 1.27\\ 0.76\\ 5.27\\ 0.77\\ 6.81\\ 1.60\\ < 2\\ 1\\ 18.1\\ 8.43 \end{array}$
K / U Th / U La / Th Zr / Hf Hf / Ta La / Yb Eu/ Eu*	3030 1.65 3.63 34.9 7.51 13.3 0.72	977 0.55 6.49 100.0 5.53 4.01 0.73	628 0.39 3.87 28.3 4.13 9.62 0.66	2233 1.39 3.60 41.9 4.70 14.6 0.59	2134 1.37 3.29 33.2 5.21 15.5 0.59	5256 2.31 3.32 42.7 3.76 14.5 0.68	4397 1.96 3.77 36.3 4.82 17.8 0.62	3539 2.13 3.39 34.4 8.12 11.1 0.54	3301 1.96 3.38 33.9 9.04 10.9 0.57	516 0.57 3.66 35.0 10.2 11.1 0.59	2981 2.28 3.45 37.8 11.4 10.8 0.73	$1008 \\ 0.12 \\ 4.91 \\ 23.6 \\ 62.6 \\ 2.06 \\ 0.72$	2444 1.48 3.98 35.1 11.8 13.2 0.69	738 0.35 3.67 16.0 9.88 11.4 0.78	3089 1.32 3.91 32.1 9.29 20.8 0.60	3925 1.50 3.74 46.3 4.60 18.7 0.65	2674 1.17 3.41 32.3 5.98 14.2 0.61	2837 1.81 3.23 32.5 10.5 11.0 0.62	5012 2.15 4.13 39.2 4.26 14.2 0.63

Supplementary Material
TABLE 3. CONTINUED: CONCENTRATIONS OF ELEMENTS AT THE FOUR SECTIONS SHOWN IN FIGURE 8

Sample Depth (cm	3TJ-20) +15,0	3TJ-21 0,-5	3TJ-22 -5,-9	3TJ-23 -9,-13	3TJ-24 -13,-22	3TJ-25 -22,-29	3TJ-25A -29,-36	gTJ-26 +3,0	gTJ-27 0,-5	gTJ-28 -5,-9	gTJ-29 -9,-21	gTJ-30 -21,-31	gTJ-31 -31,-40	gTJ-32 -40,-47	gTJ-33 -47,-51	gTJ-34 -51,-57	gTJ-35 -57,-62	gTJ-36 -62,-65	
Ir ppt (35)	158±25	285±33	87±18	114±21	34±11	48±14	39±12	60±15	83±18	177±26	113±21	116±21	19±9	83±18	97±19	28±10	30	25	
SiO2 % TiO2 % Al2O3 % Fe2O3 % MnO % MgO % CaO % Na2O % K2O % P2O5 % LOI %	$\begin{array}{c} 74.3 \\ 0.9 \\ 11.0 \\ 5.57 \\ < 0.01 \\ 0.49 \\ 0.25 \\ 0.80 \\ 2.21 \\ 0.13 \\ 4.78 \end{array}$	$57.3 \\ 1.17 \\ 19.9 \\ 7.59 \\ 0.01 \\ 1.18 \\ 0.35 \\ 0.42 \\ 4.81 \\ 0.11 \\ 7.19 \\$	$\begin{array}{c} 60.1 \\ 1.22 \\ 20.2 \\ 4.81 \\ < 0.01 \\ 1.15 \\ 0.34 \\ 0.46 \\ 5.05 \\ 0.09 \\ 6.82 \end{array}$	$57.2 \\ 1.22 \\ 19.8 \\ 6.14 \\ < 0.01 \\ 1.25 \\ 0.52 \\ 0.61 \\ 4.68 \\ 0.12 \\ 8.88 \\$	$\begin{array}{c} 76.5\\ 0.86\\ 11.9\\ 3.42\\ <\!\!0.01\\ 0.45\\ 0.25\\ 0.93\\ 2.59\\ 0.07\\ 3.55 \end{array}$	$\begin{array}{c} 17.5 \\ 0.26 \\ 5.22 \\ 2.34 \\ 0.68 \\ 1.63 \\ 41.8 \\ 0.93 \\ 1.07 \\ 0.10 \\ 28.5 \end{array}$	$\begin{array}{c} 75.1 \\ 0.90 \\ 12.2 \\ 4.04 \\ < 0.01 \\ 0.52 \\ 0.27 \\ 1.04 \\ 2.19 \\ 0.08 \\ 3.83 \end{array}$	$\begin{array}{c} 78.8\\ 0.75\\ 9.7\\ 3.19\\ 0.04\\ 0.56\\ 0.52\\ 0.80\\ 2.01\\ 0.11\\ 3.44 \end{array}$	$58.4 \\ 1.00 \\ 20.8 \\ 5.24 \\ < 0.01 \\ 2.16 \\ 0.66 \\ 0.39 \\ 5.12 \\ 0.21 \\ 5.76 \\ \end{cases}$	$\begin{array}{c} 65.1\\ 0.94\\ 16.4\\ 6.07\\ <\!\!0.01\\ 1.58\\ 0.49\\ 0.31\\ 4.09\\ 0.13\\ 4.72 \end{array}$	$\begin{array}{c} 71.4\\ 0.85\\ 12.6\\ 5.50\\ 0.02\\ 1.22\\ 0.45\\ 0.77\\ 2.91\\ 0.26\\ 4.15\end{array}$	$\begin{array}{c} 61.2\\ 0.94\\ 17.0\\ 8.10\\ < 0.01\\ 1.9\\ 0.52\\ 0.27\\ 4.26\\ 0.14\\ 5.94 \end{array}$	$\begin{array}{c} 60.3\\ 0.94\\ 18.4\\ 6.76\\ 0.01\\ 1.94\\ 0.5\\ 0.35\\ 4.67\\ 0.13\\ 5.96\end{array}$	$\begin{array}{c} 70.9\\ 0.12\\ 11.7\\ 3.29\\ < 0.01\\ 0.48\\ 0.25\\ 0.11\\ 2.43\\ 0.12\\ 8.63\end{array}$	$51.8 \\ 0.87 \\ 20.5 \\ 6.17 \\ 0.07 \\ 2.70 \\ 1.48 \\ 0.22 \\ 5.12 \\ 0.13 \\ 11.14$	$54.5 \\ 0.93 \\ 20.9 \\ 5.55 \\ 0.05 \\ 2.86 \\ 1.37 \\ 0.24 \\ 5.19 \\ 0.22 \\ 7.44$	$\begin{array}{c} 71.2\\ 0.97\\ 14.1\\ 4.02\\ <\!\!0.01\\ 1.34\\ 0.47\\ 0.86\\ 3.32\\ 0.07\\ 4.46 \end{array}$	$\begin{array}{c} 72.8\\ 0.77\\ 12.1\\ 3.99\\ <\!\!0.01\\ 1.26\\ 1.27\\ 0.84\\ 2.63\\ 0.08\\ 4.43 \end{array}$	
TOTAL	100.38	100.02	100.19	100.38	100.42	100.04	100.15	99.86	99.71	99.88	100.15	100.25	99.92	97.98	100.19	99.27	100.80	100.17	
Sc ppm V ppm Cr ppm Co ppm Ni ppm Cu ppm Zn ppm As ppm Se ppm Br ppm Rb ppm Sr ppm Y ppm Zr ppm Nb ppm Sb ppm Sb ppm Cs ppm Ba ppm Cs ppm Ba ppm Cs ppm Md ppm Sm ppm Eu ppm Gd ppm Tb ppm Tb ppm Tb ppm Tb ppm Tb ppm Th ppm Ta ppm Ir ppb (<i>36</i>) Au ppb	$\begin{array}{c} 10.9\\ 187\\ 92\\ 4.9\\ 33\\ 10\\ 264\\ 33\\ 4\\ 0.9\\ 98.1\\ 83\\ 350\\ 18\\ 1.92\\ 4.57\\ 324\\ 41.9\\ 74.9\\ 33.8\\ 7.01\\ 1.35\\ 5.68\\ 0.88\\ 0.52\\ 3.63\\ 0.55\\ 10.8\\ 1.05\\ <1\\ 1\\ 11.8\\ 6.15 \end{array}$	$\begin{array}{c} 18.9\\ 316\\ 165\\ 4.2\\ 23\\ 45\\ 486\\ 56\\ 4\\ 1.9\\ 163\\ 194\\ 48\\ 263\\ 22\\ 6.06\\ 8.77\\ 459\\ 90.9\\ 49.0\\ 9.15\\ 1.69\\ 6.43\\ 0.93\\ 0.56\\ 3.85\\ 0.58\\ 5.28\\ 1.16\\ <1\\ 0.4\\ 13.3\\ 7.22 \end{array}$	$\begin{array}{c} 20.2\\ 232\\ 145\\ 3.3\\ 17\\ 19\\ 379\\ 35\\ 3\\ 1.9\\ 197\\ 203\\ 44\\ 215\\ 24\\ 3.74\\ 11.0\\ 504\\ 60.2\\ 99.3\\ 48.6\\ 9.67\\ 1.46\\ 6.41\\ 0.90\\ 0.56\\ 3.89\\ 0.60\\ 5.79\\ 1.32\\ <1\\ 6\\ 15.0\\ 9.09 \end{array}$	$\begin{array}{c} 23.5\\ 330\\ 183\\ 4.9\\ 21\\ 49\\ 441\\ 52\\ 6\\ 8\\ 194\\ 158\\ 67\\ 220\\ 21\\ 3.91\\ 12.6\\ 503\\ 61.0\\ 106\\ 60.3\\ 13.3\\ 2.79\\ 10.7\\ 1.66\\ 0.87\\ 5.86\\ 0.92\\ 7.27\\ 1.41\\ 0.5\\ 10\\ 16.2\\ 15.0\\ \end{array}$	$\begin{array}{c} 11.0\\ 124\\ 83\\ 3.7\\ 18\\ 7\\ 188\\ 31\\ 3\\ 0.5\\ 100\\ 84\\ 31\\ 366\\ 17\\ 3.15\\ 4.47\\ 414\\ 44.8\\ 75.8\\ 39.1\\ 7.16\\ 1.11\\ 5.41\\ 0.49\\ 3.41\\ 0.52\\ 7.88\\ 1.21\\ < 0.2\\ 12.2\\ 7.07\\ \end{array}$	$\begin{array}{c} 10.8\\ 223\\ 81\\ 3.5\\ 18\\ 20\\ 233\\ 33\\ 2\\ 1.1\\ 101\\ 89\\ 36\\ 428\\ 17\\ 2.75\\ 4.49\\ 495\\ 50.4\\ 88.9\\ 44.5\\ 7.68\\ 1.39\\ 6.86\\ 1.12\\ 0.67\\ 4.62\\ 0.70\\ 13.5\\ 1.22\\ 0.2\\ 0.4\\ 14.3\\ 5.12 \end{array}$	$\begin{array}{c} 11.5\\ 118\\ 73\\ 3.3\\ 19\\ 19\\ 222\\ 27\\ 4\\ 0.9\\ 102\\ 86\\ 38\\ 396\\ 18\\ 2.50\\ 4.26\\ 361\\ 45.8\\ 87.6\\ 42.1\\ 7.27\\ 1.48\\ 6.66\\ 1.10\\ 0.69\\ 4.85\\ 0.72\\ 12.3\\ 1.23\\ 0.2\\ 1\\ 13.8\\ 5.17\end{array}$	$\begin{array}{c} 8.32\\ 107\\ 49\\ 11.0\\ 32\\ 55\\ 49.1\\ 8\\ <1\\ 0.6\\ 93.7\\ 57\\ 30\\ 363\\ 13\\ 1.26\\ 4.80\\ 349\\ 45.8\\ 89.0\\ 43.6\\ 8.12\\ 1.49\\ 6.01\\ 0.89\\ 0.52\\ 3.58\\ 10.4\\ 0.82\\ <1\\ 0.4\\ 11.5\\ 2.87\end{array}$	$\begin{array}{c} 21.8\\ 179\\ 109\\ 24.2\\ 52\\ 242\\ 104\\ 26\\ 2\\ 0.3\\ 251\\ 100\\ 44\\ 271\\ 21\\ 1.81\\ 13.7\\ 552\\ 62.4\\ 108\\ 51.8\\ 11.9\\ 1.93\\ 9.1\\ 1.38\\ 0.68\\ 4.50\\ 0.62\\ 6.42\\ 1.24\\ <1\\ <20\\ 17.7\\ 6.52\\ \end{array}$	$\begin{array}{c} 16.4\\ 143\\ 89\\ 16.7\\ 48\\ 74\\ 93.4\\ 13\\ 1\\ 0.5\\ 184\\ 79\\ 40\\ 254\\ 20\\ 2.13\\ 9.80\\ 484\\ 47.7\\ 92.0\\ 43.1\\ 8.42\\ 1.73\\ 6.69\\ 1.03\\ 0.57\\ 3.88\\ 0.59\\ 6.55\\ 1.10\\ <1\\ 2\\ 13.9\\ 3.3 \end{array}$	$\begin{array}{c} 11.1\\ 99\\ 59\\ 12.4\\ 49\\ 16\\ 72.7\\ 8\\ 1\\ 0.5\\ 129\\ 64\\ 42\\ 335\\ 17\\ 1.22\\ 6.47\\ 358\\ 40.0\\ 80.5\\ 44.9\\ 8.77\\ 1.79\\ 7.17\\ 1.12\\ 0.63\\ 4.33\\ 0.64\\ 8.77\\ 1.01\\ < 1\\ 1\\ 12.1\\ 3.47\end{array}$	$\begin{array}{c} 17.1\\ 138\\ 87\\ 17.7\\ 52\\ <2\\ 107\\ 94\\ <2\\ 2.6\\ 211\\ 80\\ 40\\ 246\\ 19\\ 4.78\\ 12.6\\ 576\\ 58.6\\ 98.8\\ 52.5\\ 9.47\\ 1.94\\ 7.65\\ 1.19\\ 0.66\\ 4.50\\ 0.67\\ 6.37\\ 1.35\\ <1\\ 2\\ 15.5\\ 10.6\end{array}$	$\begin{array}{c} 16.0\\ 154\\ 84\\ 14.6\\ 51\\ 43\\ 99.1\\ 10\\ 1\\ 0.2\\ 179\\ 85\\ 35\\ 177\\ 18\\ 2.02\\ 10.6\\ 508\\ 43.9\\ 87.3\\ 34.8\\ 7.14\\ 0.75\\ 0.45\\ 3.10\\ 0.47\\ 4.46\\ 0.92\\ <1\\ 2\\ 12.2\\ 4.06 \end{array}$	$\begin{array}{c} 5.8\\ 29\\ 21\\ 5.5\\ 17\\ 48\\ 27.1\\ 9\\ 2\\ 0.5\\ 39.7\\ 348\\ 28\\ 106\\ <3\\ 0.74\\ 1.89\\ 132\\ 17.1\\ 38.4\\ 24.9\\ 7.56\\ 1.63\\ 6.38\\ 1.01\\ 0.39\\ 2.43\\ 0.37\\ 1.22\\ 0.21\\ <1\\ 2\\ 3.17\\ 4.29 \end{array}$	$\begin{array}{c} 17.2\\ 182\\ 87\\ 21.9\\ 48\\ 392\\ 124\\ 16\\ < 2\\ 0.6\\ 212\\ 106\\ 35\\ 153\\ 18\\ 1.08\\ 11.7\\ 521\\ 56.5\\ 97.7\\ 44.1\\ 7.70\\ 1.50\\ 5.36\\ 0.77\\ 0.52\\ 3.72\\ 0.53\\ 4.18\\ 1.03\\ 0.2\\ 2\\ 14.5\\ 3.80\\ \end{array}$	$\begin{array}{c} 20.3\\ 198\\ 86\\ 20.8\\ 14\\ 227\\ 147\\ 30\\ 2\\ 0.6\\ 18.0\\ 106\\ 39\\ 156\\ 19\\ 1.66\\ 14.0\\ 545\\ 54.6\\ 99.4\\ 40.3\\ 90.8\\ 2.02\\ 7.96\\ 1.29\\ 0.62\\ 4.05\\ 0.60\\ 11.4\\ 1.28\\ <1\\ 2\\ 15.1\\ 7.21\end{array}$	$\begin{array}{c} 12.7\\ 100\\ 68\\ 10.3\\ 29\\ 66\\ 76.1\\ 8\\ 2\\ 0.5\\ 155\\ 78\\ 37\\ 479\\ 20\\ 1.15\\ 8.45\\ 563\\ 52.4\\ 102\\ 49.7\\ 7.97\\ 1.38\\ 7.15\\ 1.17\\ 0.70\\ 4.81\\ 0.72\\ 1.32\\ 1.54\\ <1\\ 0.4\\ 16.2\\ 5.00\\ \end{array}$	$\begin{array}{c} 9.23\\ 85\\ 48\\ 9.7\\ 26\\ 42\\ 40.3\\ 5\\ 1\\ 0.4\\ 105\\ 363\\ 70\\ 29\\ 304\\ 16\\ 5.19\\ 435\\ 36.2\\ 70.1\\ 34.9\\ 5.93\\ 1.12\\ 5.03\\ 0.82\\ 0.49\\ 3.43\\ 0.52\\ 8.90\\ 0.96\\ <1\\ 0.5\\ 10.9\\ 3.24\end{array}$	
K / U Th / U La / Th Zr / Hf Hf / Ta La / Yb Eu/ Eu*	2983 1.92 3.55 32.4 10.3 11.5 0.65	5530 1.84 3.75 49.8 4.55 13.0 0.67	4612 1.65 4.01 37.1 4.39 15.5 0.57	$\begin{array}{c} 2590 \\ 1.08 \\ 3.77 \\ 30.3 \\ 5.16 \\ 10.4 \\ 0.72 \end{array}$	3041 1.73 3.67 46.4 6.51 13.1 0.55	1735 2.79 3.52 31.7 11.1 10.9 0.59	3516 2.67 3.32 32.2 10.0 9.44 0.65	5814 4.01 3.98 34.9 12.7 12.8 0.65	6519 2.71 3.53 42.1 5.18 13.9 0.57	10289 4.21 3.43 38.7 5.95 12.3 0.70	6962 3.49 3.31 38.2 8.68 9.24 0.69	3336 1.46 3.78 38.6 4.72 13.0 0.70	9549 3.00 3.60 39.7 4.85 14.2 0.64	4702 0.74 5.39 86.5 5.81 7.04 0.72	11185 3.82 3.90 36.6 4.06 15.2 0.71	5976 2.09 3.62 13.7 8.91 13.5 0.73	5512 3.24 3.23 36.3 8.57 10.9 0.56	2141 3.36 3.32 3.26 9.27 10.6 0.63	

Depth (cm)	average IR
-2	59.0
-1	84.0
0	84.0
1	141.2
2	91.1
3	80.9
4	109.8
5	121.9
6	118.1
7	101.5
8	77.0
9	75.8
10	75.8
11	75.8
12	75.8
13	62.0
14	62.0
15	66.3
16	65.0
17	65.0
18	65.0
19	55.5
20	60.8
21	60.8
22	36.5
23	30.0
24	46.7
25	43.7
26	43.7
27	43.7
28	65.0
29	61.0
30	61.0
31	61.0
32	61.0
33	68.0
34	68.0
35	68.0
36	33.5
37	33.5
38	33.5
39	33.5
40	34.5
40	34.5
42	34.5
42	34.5
43	32.0
44	25.0
J	23.0

Captions for Supplemental Material

Supplemental Material Figure 1, Detailed locality information for Figure 1 of paper. Numbers adjacent to ticks at specific stratigraphic levels refer to localities listed in Supplemental Material Table 2.

Supplemental Material Figure 2: Detailed sections for footprint localities (numbers), pollen- and spore-producing levels (P), and macrofossil plant localities (M). Numbers for footprint localities refer to Supplemental Material Table 2.

Supplemental Material Figure 3: Measured sections for four along strike sections and the average Ir concentrations (*34. 35*). Data from Supplemental Material Tables 2, 3, and 4. Note that the highest Ir levels tend to be associated with the white-weathering claystone or adjacent coaly unit (Sections 1-III). However, in the Grist Mills section, the highest Ir is within a red claystone under a light gray siltstone. We believe this red claystone correlates with some part of the white claystone in the other sections, but contains hematite because it was formed under a more oxidizing environment, closer to the border fault. In addition, there is another gray claystone lower in the Grist Mills section without an adjacent an Ir anomaly. Because, red units have the lowest organic C content (oxidizing depositional and diagenetic environment) and black units the highest organic C content (reducing depositional and diagenetic environment) and redox state of the strata, arguing against a diagenetic origin of the Ir anomaly. Note also that the uppermost Ir maximum in Section I, is within a gray sandstone containing visible clasts of white claystone, and the relatively high Ir levels probably reflect a reworked clast eroded from the underlying white claystone.

Supplemental Material Figure 4: Detail and added contextual information for Figure 2 of text showing position detail of boundary section in the Jacksonwald Syncline Composite section as well as correlation to two other Newark basin boundary sections, paleomagnetic polarity data, and footprint and pollen and spore assemblage distribution. Note that "new taxon B" is the term applied to an unnamed form by (8), and cly, md, and ss, refer to claystone, mudstone, and sandstone, respectively. Average Ir and pollen and spore percentages from Supplemental Material Figure 3. Interval of time represented by Jacksonwald syncline detailed section based on linear extrapolation from the average accumulation rate implied by the astronomical calibration of the Jacksonwald syncline composite section. Correlation throughout the Newark basin is based on the distinctive magnetic polarity and cycle stratigraphy and the basalts.

References and Notes

- 1. P. E. Olsen, in *Field Guide and Proceedings of the Twelfth Annual Meeting of the Geological Association of New Jersey*, J. E. B. Baker, Ed. (Geological Association of New Jersey, William Patterson College, Patterson, 1995), pp. 156-190.
- 2. P. E. Olsen, in *Triassic-Jurassic Rifting and the Opening of the Atlantic Ocean*, W. Manspeizer, Ed. (Elsevier, Amsterdam, 1988), pp. 185-230.
- 3. D. Baird, Harvard College Mus. Comp. Zool. Bull. 117, 449 (1957).
- 4. Based on the relatively large manus, compared to the pes.
- 5. D. Baird, *The Mosasaur* **3**, 125 (1986).
- 6. P. E. Olsen, J. Flynn, *The Mosasaur* **4**, 1 (1989).
- 7. Based on the relatively small manus, radial arrangement of manual phalanges, and coalesced pads on digit IV.
- 8. S. M. Silvestri, M. J. Szajna, New Mexico Mus. Natural Hist. Sci. Bull. 3, 439 (1993).
- 9. P. E. Olsen, K. Padian, in *The Beginning of the Age of Dinosaurs*, K. Padian, Ed. (Cambridge University Press, New York, 1986), pp. 259-273.
- 10. M. Lockley, A. P. Hunt, Dinosaur Tracks and Other Fossil Footprints of the Western United States (New York, Columbia University Press, 1995).
- 11. E. C. Rainforth, Geol. Soc. Amer., Abst. Prog. 32, 67 (2000).
- 12. P. E. Olsen, J. B. Smith, N. G. McDonald, J. Vert. Paleo. 18, 586 (1998).
- 13. P. E. Olsen, D. Baird, in *The Beginning of the Age of Dinosaurs*, K. Padian, Ed. (Cambridge University Press, New York, 1986), pp. 61-87.
- 14. P. E. Olsen, E. C. Rainforth, in *The Great Rift Valleys of Pangea in Eastern North America: Volume 2, Sedimentology and Paleontology*, P. M. LeTourneau, P. E. Olsen, Eds., (Columbia University Press, New York, in press).
- 15. We are especially grateful to the many amateur paleontologists who allowed us access to their collections, without which this paper would have been impossible. Most of the Late Triassic age footprint assemblages with quantitative data are in the private collections of M.J.S. and B.W.H. Most of the Clifton locality data are from the collections of Donald Carter, Fred Cassel, and Ken McKim.
- 16. this paper.
- 17. R. S. Lull, State Connecticut, State Geol. Nat. Hist. Surv. Bull. 24, 1 (1915).
- 18. M. J. Szajna, S. M. Silvestri, Mus. Northern Arizona Bull. 60, 275 (1996).
- 19. D. Baird, The Mosasaur 3, 125 (1986).
- 20. M. J. Szajna, B. W. Hartline, in *The Great Rift Valleys of Pangea in Eastern North America: Volume 2, Sedimentology and Paleontology*, P. M. LeTourneau, P. E. Olsen, Eds., (Columbia University Press, New York, in press).
- 21. N. C. Fraser, pers. comm., 1999.
- 22. P. J. W. Gore, P. J. W. in *Triassic-Jurassic Rifting and the Opening of the Atlantic Ocean*, W. Manspeizer, Ed. (Elsevier, Amsterdam, 1988), pp. 369-400,
- 23. This particular footprint at the Culpeper basin has been termed *Kayentapus minor* (R. E. Weems, *Virginia Div. Min. Res. Pub.* **119**, 113, (1990)). but is in our view indistinguishable from large *Anchisauripus* sp.
- 24. P. E. Olsen, J. Flynn, *The Mosasaur* **4**, 1 (1989).
- 25. P. E. Olsen, N. H. Shubin, M. E. Anders, Science 237, 1025 (1987).
- 26. H.-D. Sues, P. E. Olsen, D. M. Scott, P. S. Spencer, J. Vert. Paleo. 20, 275 (2000).
- 27. P. E. Olsen, R. W. Schlische, P. J. W. Gore, *Field Guide to the Tectonics, Stratigraphy, Sedimentology, and Paleontology of the Newark Supergroup, Eastern North America.* (International Geological Congress, Guidebooks for Field Trips T351, American Geophysical Union, Washington, D.C., 1989).
- 28. I. Lea, Jour. Acad. Nat. Sci. Phil. (series 2) 2, 185 (1853).
- 29. E. H. Colbert, Novitates 2230, 1 (1965).

- 30. F. von Huene, Bull. Am. Mus. Nat. Hist. 32, 275 (1913).
- 31. All analyses by XRF and INAA except as noted.
- 32. Common datum for averaging is the base of the "blue-gray sandstone" at 0 m. Averaging performed by interpolated Ir values to common depth scale, in 1 cm increments in columns and then averaging across equal depths in rows.
- 33. Material consisted of channel samples (i.e. contiguous, continuously sampled intervals) covering an average of 3 cm. Samples were manually crushed in plastic wrap, then mechanically in an alumina (ceramic) jaw crusher, and powdered using an automatic agate mill. Analyses for major and selected trace elements was done by standard X-ray fluorescence spectrometry (XRF) procedures (for information on standards, procedures, accuracy and precision, see W. U. Reimold, C. Koeberl, J. Bishop, Geochim. Cosmochim. Acta, **58**, 2689, 1994). The rest of the elements, except the ICS Ir (see ref. *36*), were measured using instrumental neutron activation analysis (INAA). For details on the method, instrumentation, procedures, standards, data reduction, accuracy, precision, etc., see C. Koeberl, J. Radioanalytic. Nuclear Chem., **168**, 47 (1993). Samples were irradiated at the TRIGA Mark II type reactor at the Atominstitut der Österreichischen Universitäten in Vienna for 7 hours at a flux of about 2 x 10¹² ncm⁻²s⁻¹.
- 34. Section I, lat 40°18'76", long 075°50'56"; Section II, lat 40°18'76", long 075°50'55"; Section III, lat 40°18'81", long 075°50'38"; Grist Mills, lat 40°18'85", long 075°51'20".
- 35. Ir content was measured with the ICS (iridium coincidence spectrometry) system at the Institute of Geochemistry at the University of Vienna. Crushed and powdered samples of about 50 mg each, as well as standards, were sealed into high purity quartz glass tubes, packed into aluminum foil and an aluminum capsule, and irradiated for 24 to 48 at a flux of about 7 x 1013 ncm-2s-1. After a cooling period of about ten weeks, the samples were first measured for five to eight hours. The lines of 192Ir at 316 and 468 keV were used, and the method requires that only coincident signals at both lines are used for further processing. Samples that yielded results close to the detection limit (ca. 5 ppt) were measured for at least another 24 hours. The precision of the Ir measurements follows a logarithmic error function with the lowest relative errors in the highest concentrations (e.g., 21±9 ppt vs. 285±33 ppt). For details on this method (standards, instrumentation, data reduction, precision, accuracy, etc.), see C. Koeberl, and H. Huber, *J. Radioanalytic. Nuclear Chem.*, 244, 655. (2000).
- 36. INAA data for Ir have detection limits of 1 2 ppb and are hence not reliable.