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data used in earthquake engineering are occasionally collected in the near field. But when
one takes up in more detail the question of where the near field ends and where the far field
begins, it becomes apparent that far-field terms also can be big enough to cause earthquake
damage to engineering structures. (See Problem 4.1.)

4.2.1 PROPERTIES OF THE FAR-FIELD P-WAVE

We introduce here the far-field P-wave, which for (4.23) has the displacement uP given by

u P
i (x, t) =

1

4πρα2 γiγ j
1

r
X0

(
t −

r

α

)
. (4.24)

As in (4.23), this is for a point force X0(t) in the x j-direction at the origin. Along a given
direction γγγ from the source, it follows from (4.24) that this wave

(i) attenuates as r−1;

(ii) has a waveform that depends on the time–space combination t − r/α, and therefore
propagates with speed α (recall that α2 = (λ + 2µ)/ρ);

(iii) hasadisplacement waveform thatisproportionaltotheapplied forceatretardedtime;
and

(iv) has a direction of displacement at x that is parallel to the direction γγγ from the source.
Thisfollowsfromtheproperty u P

i ∝ γi (see (4.24)).The far-field P-waveis therefore
longitudinal (sometimes called radial) in that its direction of particle motion is the
same as the direction of propagation. If t = 0 is chosen as the time at which X0(t)
first becomes nonzero, then r/α is the arrival time of the P-wave at r .

4.2.2 PROPERTIES OF THE FAR-FIELD S-WAVE

The far-field S-wave in (4.23) has displacement uS given by

uS
i (x, t) =

1

4πρβ2
(δij − γiγ j )

1

r
X0

(
t −

r

β

)
. (4.25)

As in (4.23), this is for a point force X0(t) in the x j-direction at the origin. Recall that γγγ

is the unit vector directed from the source to the receiver. Along a given direction γγγ , this
wave

(i) attenuates as r−1;

(ii) propagates with speed β and has arrival time r/β at x;

(iii) hasadisplacement waveform thatisproportionaltotheapplied forceatretardedtime;
and

(iv) has a direction of displacement uS at x that is perpendicular to the direction γγγ from
the source. (From (4.25) it is easy to show that uS · γγγ = 0.) The far-field S-wave is
therefore a transverse wave, because its direction of particle motion is normal to the
direction of propagation.

Radiation patterns for uP and uS are given in Figure 4.2.
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Associated far-field displacements are then

uP(x, t) =
F P µA

4πρα3r
u̇

(
t −

r

α

)
l,

uSV (x, t) =
F SV µA

4πρβ3r
u̇

(
t −

r

β

)
p̂,

uSH (x, t) =
F SH µA

4πρβ3r
u̇

(
t −

r

β

)
φ̂φφ.

(4.92)

4.5.3 ADAPTING THE RADIATION PATTERNTO THE CASE

OF A SPHERICALLY SYMMETRIC MEDIUM

Wehavetakencaretoobtain P, SV , and SH displacements(4.92)inaformcomparablewith
the geometric ray solutions derived in Section 4.4 (see (4.62), (4.65), (4.66)). To complete
the comparison for P-waves, itremains only to identify and generalize r/α as the ray travel
time T P , 1/r as the geometrical spreading factor 1/RP(x, ξξξ), and µ/(ρα3) as the factor
µ(ξξξ)/

[√
ρ(ξξξ ) ρ(x) α(ξξξ ) α(x) α2(ξξξ)

]
. This last result follows from generalizing µ/(ρα3)

to a term proportional to 1/
√

ρ(x)α(x) (as required by (4.62)), in which the constant of
proportionality can depend only on properties at the source. Then

uP(x, t) =
F P µ(ξξξ) A u̇(t − T P) l

4π
√

ρ(ξξξ) ρ(x) α(ξξξ) α(x) α2(ξξξ ) RP(x, ξξξ )
, (4.93)

and similarly

uSV (x, t) =
F SV µ(ξξξ) A u̇(t − T S) p̂

4π
√

ρ(ξξξ ) ρ(x) β(ξξξ ) β(x) β2(ξξξ ) RS(x, ξξξ)
, (4.94)

uSH (x, t) =
F SH µ(ξξξ) A u̇(t − T S) φ̂φφ

4π
√

ρ(ξξξ ) ρ(x) β(ξξξ) β(x) β2(ξξξ ) RS(x, ξξξ)
. (4.95)

The radiation patterns here are exactly the same as for a homogeneous medium, and
are given in (4.89)–(4.91). The only noteworthysymmetry isa reversalin signof F P, F SV ,

F SH if the rake is changed by 180◦. Particularly, one should note that there is no symmetry
to changes of 180◦ in strike φs, or takeoff azimuth φ, so that care must be taken to follow
the definitions given in Figures 4.13 and 4.20, in which these angles increase clockwise
round from North.

The principal use of our final formulas (4.93)–(4.95) lies in estimating the seismic
moment. Froma far-fieldobservationofthedisplacement, onecanobtain µAu̇(t − T ) after
correction fortheradiation pattern, geometricalspreading, and scalingfactors at sourceand
receiver. (In practice, correction is typically required also for the effects of transmission
across material boundaries, attenuation, and instrument response.) It often occurs that the
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obliquely propagating wave, is nothing but the ray parameter p. (Horizontal distance is 1

in dimensionless units and is r1 in units of length.)
Thus consider how the distance function depends on  p.  From Figure 9.12b it is clear that

distance and slope decrease together for the branch BC , but along AB and CD distance
is increasing while slope decreases. This is shown explicitly in Figure 9.13, and some
special significance is attached to the points B and C . Note that d1/dp changes sign at
these points, and it can happen that d1/dp remains continuous, so that d1/dp = 0 at C or
at B and C . Since the geometrical spreading function R−1 is proportional to 1/

√
d1/dp

Aki/Richards;forpaperbackversionofedition2 2011/8/24 21:41 p.407 (chap09)

                                              9.3  Classical  Ray  Theory  in  Seismology                 407
 

 
                                We begin in Figure 9.12 with a look at the S-wave rays that are present for a surface

                                  source in a model of the upper mantle. Clearly, several rays might arrive at a given
                                  receiver, and the travel-time function (Figure 9.12b) is multivalued for a certain range
                                  of distances. However, each point along the travel-time curve has a unique slope, the
                                  value decreasing from A to B, B to C , etc. This suggests a useful independent variable.
                                  It follows from Figure 5.2 that this slope, dT/d1, which is the horizontal slowness for an
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FIGURE 9.12
(a) The S-wave velocity for the upper mantle, taken from model CIT 11 GB. (b) Corresponding
reduced travel-time curve. Point C is clearly identified with strong focusing of rays in (c) at 1 near
14◦, and amplitudes there will be large. Lines AB , BC , and CD together constitute a triplication, as
do the lines CD , DE , and EF , andeach of thesetwo triplications is associated with amajor velocity
increase (with depth) in the Earth model. (c) Corresponding S-wave rays for a point source at the
surface,calculated for take-offanglesincreasing from 28◦ to 50◦ in 1

2
◦

increments. Notethatdistance
between source and receiver in the Earth is measured by the angle 1 subtended at the Earth’s center.
[After Julian and Anderson, 1968.]

(see Problem 4.4), ray theory predicts a singularamplitude for the displacement. This is the
phenomenon of a caustic, and an example is shown in Figure 9.12 at the distance 14◦. A
causticistheenvelopeofasystemofrays,andforthesourceandEarthmodelofFigure9.12
the envelope in three dimensional space is a surface inside the Earth, which intersects the
Earth’s surface at a circle centered on the seismic source. Of course, the prediction of ray
theory here is incorrect: there is no singularity at finite frequencies, although amplitudes
may be large in the vicinity of a caustic (as shown by the focusing of rays in Figure 9.12c).

Inpractice,thesensitivityofamplitudes(calculatedbyraytheory)tothequantity d1/dp
leads to some difficulties in computation. The problem is that Earth models are ordinarily
specified by givingthe values ofdensity (ρ) and P-and S-wavespeeds (α and β) at several
different radii. But different methods of interpolation between such discrete values can
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FIGURE 10.7
Slip function for a circular
fault with uniform slip.

For subsonic rupture propagation, (10.24) can be written as

Ä(x, t) = v2
(

t −
r0

c

)
H

(
t −

r0

c

) ∫ 1U

(
t − r0/c

qc/v
, φ′

)

q2
c

dφ′, (10.25)

where the integral is taken over the range of φ′ for which [(t − r0/c)/(qc/v)] < ρb.
Suppose that the final slip 1U is uniform except near the fault perimeter, and suppose

thatwelookatthebeginningofthefar-fielddisplacement waveform, when t − r0/c issmall
and the range of integration for φ′ covers 0 to 2π . In that case, we see from (10.25) that
the displacement waveform is a linear function oftime (a ramp function). The linearity will
hold until the rupture front reaches the perimeter of the prescribed fault surface.

Thusasubsonicallyspreadingrupture withauniformstep-function slipgeneratesafar-
field displacement waveform (t − r0/c)H(t − r0/c) until the stopping signal arrives from
the perimeter of the fault. The corresponding particle-velocity waveform due to this type
of nucleation is a step function with a discontinuity at t = r0/c. The acceleration is a δ-
function, reaching infinity at t = r0/c. The spectral density of acceleration, velocity, and
displacement are therefore constant, and proportional to ω−1 and ω−2, respectively.

In order to see what happens when the rupture stops propagating, let us consider the
case of a circular fault with uniform slip, in which ρb = ρ0 (constant), 1U(ρ, φ′) = 1U0
(constant). Then 1u(ξξξ , t) is a function of ρ and t , as shown in Figure 10.7. The simplest
result is obtained in the direction normal to the fault plane. For θ = 0, qc = 1 and
equation (10.25) shows that the integral with respect to φ′ is constant for v(t − r0/c) < ρ0
and vanishes for v(t − r0/c) > ρ0. In other words, the far-field displacement waveform
Ä(x, t) for θ = 0, which grows like a ramp function beginning at t = r0/c, subsequently
has a jump discontinuity at t = r0/c + ρ0/v, when Ä(x, t) suddenly becomes zero. This
jump discontinuity gives infinite particle velocity and acceleration. The spectral density of
displacement, in the high-frequencylimit, will decayin proportion to ω−1. Aseismicsignal
associated with the stopping of rupture was named a “stopping phase” by Savage.

Forθ 6= 0, qc = 1 − (v/c) sin θ cos(φ − φ′) isafunctionof φ′,takingitsminimumvalue
in the azimuth φ′ = φ to the station and its maximum in the opposite azimuth φ′ = φ + π .
Since 1U (ρ, φ′) is constant and qc is a smooth function, the integral in equation (10.25)
is proportional to the range of φ′ for which [v(t − r0/c)]/qc < ρ0. As long as the locus of
ρ = [v(t − r0/c)]/qc is contained inside the circle ρ = ρ0, the integration range of φ′ is
2π . Since the minimum of qc is at φ′ = φ, the locus of ρ = [v(t − r0/c)]/qc will touch the
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FIGURE 12.3
Amplitude response |X (ω)| and
phase delay φ(ω) of an inertial
seismometer according to (12.4).
h is the dimensionless damping
constant, ε/ωs. Correction: the
horizontal axes here correspond
to ωs/ω (not to ω0/ω).

we find

|X (ω)| =
ω2

√
(ω2 − ω2

s)
2 + 4ε2ω2

and φ(ω) = − tan−1 2εω

ω2 − ω2
s

+ π. (12.4)

For ω À ωs, |X (ω)| → 1 and φ(ω) → π . In other words, the sensor displacement ξ

records the ground displacement faithfully at high frequencies, but with reversed sign. The
sign difference is usually eliminated by indicating the direction of ground motion properly
on the record. Figure 12.3 shows |X (ω)| and φ(ω) without the π term in (12.4). The curves
are shown with h = ε/ωs as a parameter; h is the damping constant, equal to half the
reciprocal of the Q-value (the quality factor of a damped oscillator).

The performance of an inertial seismometer can also be completely described by its
response f (t) to a unit impulsive acceleration ü(t) = δ(t), the Dirac δ-function. From
equation (12.2), f (t) satisfies

f̈ + 2ε ḟ + ω2
s f = −δ(t). (12.5)

Taking the Fourier transform of both sides of (12.5) and putting

∫ ∞

−∞

f (t)eiωt dt = f (ω), (12.6)
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