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Equivalent Volume Sources for Explosions at Depth: Theory

and Observations

by Paul G. Richards and Won-Young Kim

Abstract For simple theoretical models of an underground explosion, two appar-
ently different relationships between isotropic moment and volume change have been
published. We show that there is no inconsistency, because these relationships are
based on two different definitions of volume change at the explosion source. We
report observations of three 25-ton chemical explosions conducted in 1997 at the
former nuclear test site near Semipalatinsk, Kazakhstan. These show the theoretically
predicted decrease of signal strength as the shot depth increases. We argue that the
relationship between isotropic moment and volume change proposed by Müller
(1973) is preferred.

Introduction

For decades before the concepts of body force equiva-
lents were developed, point sources of elastic waves were
commonly characterized by nucleii of strain. For simple ex-
plosion point sources, the strain nucleus corresponds to the
insertion of a finite volume of rock (of the same type as
present at the shot point) into the medium effectively at the
position of the point source. In modern seismology, with
sources that add no linear or angular momentum, the theory
for body force equivalents has been developed and widely
applied in terms of moment tensors. Müller (1973) compared
the two different approaches, and obtained the formula

M � (k � 2l) dV , (1)I

relating the isotropic moment (MI) of an explosive point
source to an equivalent volume change (here, dV), which he
took to be the product of the surface area of a sphere of
material surrounding the explosion, and the radius increase
of this material as a result of the explosion. The constant of
proportionality in equation (1) between MI and dV is k �
2l � q�2, in which q is the mass density, � the P-wave
speed, and k and l the Lamé moduli. For wavelengths that
are long compared to the diameter of the sphere surrounding
the source and whose volume increases from V to V � dV,
dV is an apparent volume change introduced effectively at a
point in the medium, and generating only P-wave motions.

Müller’s formula given in equation (1) is appealing be-
cause of its similarity to the result M0 � ldV for the scalar
moment (M0) of a double-couple point source (shear dislo-
cation), where l � qb2, b is the S-wave speed, and dV is
the product of average fault area and average fault slip. Such
a source radiates both P- and S-waves, with the latter pre-
dominating.

We can interpret the basic formulas for MI and M0 in

several different ways. For example, if the explosion is mod-
eled as a pressure jump inside a spherical cavity whose ra-
dius is smaller than the shortest radiated wavelength of in-
terest, then the radius increase (say, from a to a � da) is
simply related to dV by dV � 4 pa2 da, and the volume
increase is the actual increase in cavity volume. This is the
approach taken by many authors including Sharpe (1942),
Latter et al. (1959, 1961), and Mueller and Murphy (1971).
For the point source of faulting, dV has been called the po-
tency by Heaton and Heaton (1989) and Ben-Zion (2001),
going back to ideas of Ben-Menahem et al. (1965), who
chose a volume change rather than M0 for characterizing the
point-source strength of shearing sources (equivalent to their
capability to excite long wavelength seismic waves).

Unfortunately, Müller’s (1973) result, equation (1),
seems to conflict with a relationship

M � [k � (2/3)l] DV (2)I

between isotropic moment MI and a volume change DV used
by several authors to characterize the strength of explosion
sources. For example, Doornbos (1977), Bowers and Hud-
son (1999), and Dreger et al. (2000), use equation (2) to
relate isotropic moment and volume change, and some au-
thors imply the merit of a relationship between this volume
change and the yield of a well-tamped and fully contained
explosion. Equation (2) is appealing, in part because the
combination k � (2/3)l is just the bulk modulus.

The difference between equations (1) and (2) was first
pointed out by Müller (2001), though he used the same sym-
bol for volume change in these equations, and he regarded
the two relationships between moment and volume change
as inconsistent. He wrote that “the discrepancy . . . is not
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resolved,” and thus whether equation (1) or (2) is correct
was left as an open question.

Our first goal in this paper is to show that there is no
discrepancy. We do this by reviewing the derivations of
equations (1) and (2), showing that the volume changes in-
volved in these two equations are different. Both versions of
the relationship between moment and volume change are
correct.

Our second goal is to make a recommendation on which
of the two volume changes is to be preferred for purposes
of interpreting the seismic signal of underground explosions
(chemical or nuclear). We do this in the context of inter-
preting the regional signals of three chemical explosions,
each of 25 tons, conducted in 1997 at different depths in the
same source region of the former nuclear test site near Sem-
ipalatinsk, Kazakhstan. The two different definitions of vol-
ume change (dV and DV) associated with a particular isotro-
pic moment are proportional to each other, so it might seem
arbitrary as to which one to use. But, marginally, we prefer
the definition of dV, used in equation (1) as given originally
by Müller (1973), since it is a volume change that actually
occurs, that has a clear kinematic definition, and that neatly
matches the corresponding result for shear dislocations.

Theory

Many authors have developed a simple theory for the
seismic waves emanating isotropically from an explosion in
an infinite homogeneous isotropic elastic medium specified
by its mass density q, and its Lamé moduli k and l. The
main challenge is to relate near-source properties, such as a
volume change or the strength of three mutually perpendic-
ular dipoles, to the amplitude and pulse shape of far-field P-
waves. A modern understanding is easily developed from
first principles by use of the scalar P-wave potential �, in
terms of which displacement u is given by u � ��, since
no S-waves are generated. Here, � is the outgoing spheri-
cally-symmetric solution to the scalar wave equation (1/�2)
�2�/�t2 � �2�. With r as the radial coordinate in spherical
polars, it follows that �2� � (1/r2) (�/�r) [r2(� �/�r)] � (1/
r) �2 (r�)/�2r. From the well-known solution to the one-
dimensional wave equation (1/�2) �2(r�)/�t2 � �2 (r�)/�2r,
it follows that � (r, t) � � F(t � r/�)/r for some function
F, called the reduced displacement potential. Then (�/�r)
F � (�1/�)(d/dt) F and the radial displacement is given
exactly by

2u � (d/dt) [F(t � r/�)]/(�r) � [F(t � r/�)]/r . (3)r

The first term dominates in the far field (when r is large
compared to the wavelength), as shown by Rayleigh (1877,
article 279), and the second term dominates in the near field
(when r is less than a wavelength), for example at r � a,
the radius of a small sphere centered on the source at r �
0. For static problems, in a sense there is no far field and all
points are in the near field: only the second term is non-zero.

If r � a, then ur � da for times sufficiently long that
the final increase in radius has been attained. It follows from
use of the last term in equation (3) that

2F(�) � a da . (4)

In the case of a point-source explosion modeled by three
mutually perpendicular dipoles the final (static) displace-
ment appears first to have been obtained by Dougall (1898).
His solution, quoted by Love (1944, 132) and many others,
is

1
u � M , (5)r I24 p(k � 2l)r

using MI for the strength of each dipole. Comparison be-
tween equation (5) and the last term of equation (3) relates
MI to F as

M (t) � 4 p(k � 2l)F(t) . (6)I

Though results equivalent to these have been known for sev-
eral decades, Müller (1973) was the first to combine equa-
tions (4) and (6) as

2M (�) � 4 p(k � 2l)a da � (k � 2l) dV , (1, again)I

and to make the comparison with the usual shear dislocation
formula relating earthquake scalar moment to a source vol-
ume given by slip times fault area. The result here depends
directly on dV and is independent of a in the sense that it is
only the product a2 da, which influences source strength.
(If, say, the value of a were doubled, then for a given source
the value of da would, according to equation (4), be four
times smaller, in order that F(�) � a2 da would be un-
changed. The independence of dV on a has been noted by
many authors.)

In contrast to Müller’s (1973) approach, Eshelby (1957)
and others including Aki and Richards (1980, 2002) chose
to separate the medium containing both the source and the
seismic waves it generates into two regions: a source volume
V, inside which there may be nonlinear behavior such as
fracture and melting (for an explosion, rocks may even va-
porize); and a region outside V in which seismic waves prop-
agate linearly. The theory has been developed for general
volume sources. In application to the simple model of an
explosion, Eshelby’s approach (discussed next as a series of
thought experiments that we describe in five steps) is like
Müller’s (1973), in that it entails a spherical source region
which undergoes an expansion.

In the first step, the source region in Eshelby’s approach
is considered in its original state, and identification is made
of a sphere of volume V, centered on the place which will
become the explosion source point. The volume is suffi-
ciently large to include all the material which will undergo
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strains larger than can be related to stress by Hooke’s law.
The spherical volume V is removed from its surrounding
matrix. Tractions are applied on both the internal surface—
call it R�—of the matrix, and on the external surface—R�—
of the sphere that has been removed, in order to maintain
their shapes.

In the second step, the source region V (inside R�) un-
dergoes a transformation, which does not change its stress.
This is accomplished by a stress-free strain with cartesian
components D ers, which for our discussion of an explosion
source is an isotropic expansion to a new volume V � DV
where DV and the stress-free strain are related by D ers �
(1/3) (DV/V) drs.

In the third step, an additional stress field throughout
the transformed volume is applied to return the surface R�

to its original shape. In Eshelby’s approach, strain and stress
are still related by the same elastic moduli, so the additional
stress field must be related to strain throughout the source
volume by Hooke’s law for an isotropic material: �Dspq �
� k D err dpq � 2l D epq. It follows that to accomplish this
step we merely need to apply a pressure given by [k � (2/
3)l] (DV/V) to the surface R� (and hence throughout the
source volume). Not surprisingly, the elastic modulus ap-
pearing here is k � (2/3)l, equal to the bulk modulus.

In the fourth step we put the spherical source region
back into its hole (noting that it has the correct shape to
enable it to fit exactly), and weld it back in place so that
there can be no sliding across its surface, and no develop-
ment of any cavities. At this point there is still an extra
traction on the surface R� of the source region (the pressure
described in step four) so that there is a traction difference
between R� and R�.

In the fifth and final step, we release the applied traction
on R�. This is equivalent to imposing a traction disconti-
nuity across the newly welded surface. As a result, the source
region changes its size. We denote its new volume by V �
dV. Then, dV is the actual volume change of Müller (1973).
Aki and Richards (2002) analyze the displacement caused
by the traction discontinuity and show that the resulting mo-
ment tensor Mpq is given by the volume integral of Dspq

throughout the source volume, and hence in the present case
is given by Mpq � [k � (2/3)l] DV dpq. Since M is isotropic,
we can express this result in terms of the scalar explosion
moment as

M � [k � (2/3)l] DV . (2, again)I

There is no discrepancy between equations (1) and (2) once
it is realized that the two volume changes, denoted here as
dV and DV, have different definitions. They are proportional
to each other, with DV/dV � (k � 2l)/[k � (2/3)l] � 1.8
if k � l. In general, DV is significantly larger than dV be-
cause it is an unconfined volume change.

Combining equations (1) or (2) with the far-field term
in equation (3), we see that the far-field P-waves are pro-
portional to the rate of change of volume increase in the

source region. This conclusion is very helpful in developing
an intuitive understanding of how conditions at the source
can influence the strength of the radiated P-waves. In par-
ticular, the depth-of-burial of an explosive source influences
the signal strength, as discussed for example by Mueller and
Murphy (1971). The deeper the source, the greater the con-
fining pressure due to overburden. For a series of explosions
of fixed yield, fired at different depths but otherwise in con-
ditions that as nearly as possible are the same from shot to
shot, we therefore expect the deeper shots to have smaller
seismic signals, because their volume increase dV will be
smaller due to the greater confining pressure. (We are as-
suming a series in which all shots are tamped and fired at
depths great enough to achieve containment of the crushed
and perhaps vaporized products of the explosion. The fact
that the far-field P displacement amplitude is proportional
to rate of change of volume increase, implies that this dis-
placement is itself a pulse whose area—under the pulse—is
proportional to the volume increase.)

In the next section we describe data taken from a series
of shots, which approximately meet the conditions necessary
to study depth-of-burial effects experimentally. A final sec-
tion discusses whether the dV or DV definition of volume
change is more helpful to our understanding of these results.

Observations

During August–September, 1997, three 25-ton chemical
explosions were conducted at different depths of burial—50,
300, and 550 m—at the former Soviet Union’s Semipala-
tinsk Nuclear Test Site in Eastern Kazakhstan (Leith and
Kluchko, 1998). The location, origin time, and total charge
weight of the three explosions are listed in Table 1. A map
of shot locations and stations at regional distances is given
in Figure 1.

This project had as a goal the destruction of shafts orig-
inally constructed in the Soviet era for nuclear weapons test-
ing. The process of destruction was turned into a depth-of-
burial experiment, in which studies of the resulting seismic
signals were done to investigate the effects of different
depths of shots having the same charge.

The boreholes for the three different shots were cylin-
drical—about one meter in diameter—and the 25-ton chem-
ical explosive occupied about 34 m of shaft length. The ex-
plosive was poured into confined sections of the boreholes
at the designed depth, and detonated all at once. The blasts
were initiated by a detonator located at the center of the 34-
meter-long explosive column. The explosive was a granu-
lated waterproof form of tri-nitro toluene (TNT) called
“Granulotol” having a detonation speed of about 5.5 to 6.5
km/sec. The sources were fully tamped by filling the bore-
hole with a mix of sand and gravel.

Denny (1998) analyzed local data recorded at distance
ranges of 4 to 17 km from the depth-of-burial experiment,
and concluded that Sharpe’s (1942) simple spherically sym-
metric model is an adequate representation of the seismic-
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Table 1
Source Information for Three Chemical Explosions at Different Depths of Burial

Date
Origin Time
(hh:mm:sec)

Lat.
(�N)

Long.
(�E)

Depth
(m)

Magnitude
(ML)

Charge
(ton)

Shot
Hole

1997 Aug 03 08:04:20.04 49.9781 78.8200 50 2.35 25 1311
1997 Aug 31 07:08:39.26 49.8837 78.8148 300 2.09 25 1381
1997 Sept 28 07:30:15.13 49.8802 78.7587 550 1.95 25 1349
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Figure 1. Locations of eight broadband seismographic stations of the Kazakhstan
Network, closed triangles. Global Seismic Network (GSN) stations, inverted triangles;
underground nuclear test sites, crosses. Two stations installed in 1987 by the Natural
Resources Defense Council (NRDC) in 1987 at temporary sites (BAY, KKL) were rein-
stalled for the depth-of-burial experiment. Wave propagation paths between shot points
and seismographic stations are indicated by dotted lines.

source function for these underground explosions. A more
realistic cylindrical cavity model for chemical explosions
such as these 25-ton depth-of-burial shots was given by Abo-
Zena (1977). Glenn et al. (1986) showed that the source
corner frequency for underground explosions increases with
depth-of-burial, whereas the seismic moment decreases.

Figure 2 shows vertical-component seismic records at
the nearest station KUR (Kurchatov; distance � 83–94 km,
azimuth � 350–354�) from the three explosions. These re-
cords clearly show that the seismic signals from the explo-
sion set off at shallowest depth of 50 m are strongest, and
the signals from the explosion set off at the greatest depth
(550 m) are weakest among the three sets of records. As
discussed in the previous section, this change in signal
strength is due to the increase of overburden with depth,
leading to smaller actual volume change, dV, of the nonlinear

source region for the deeper explosions. Seismic records
from about 10 broadband seismographic stations at distance
ranges of 83–760 km in Kazakhstan all show seismic am-
plitude decreasing with explosion depth, as noted by Myers
et al. (1999).

Peak amplitudes, measured on simulated Wood-
Anderson vertical-component records from the three explo-
sions, are shown in Figure 3. Using an amplitude attenuation
curve for the northeastern U.S. (Kim, 1998), the local mag-
nitudes of these shots are estimated to be 2.5, 2.2, and 2.0,
for 50, 300, and 550 m depth, respectively. If we limit the
peak amplitude measurements in the P-wave window, then
the estimated local magnitudes are 2.35, 2.09, and 1.95, for
50, 300, and 550 m depth, respectively (Table 1).

There is a practical complication in the interpretation of
these magnitudes in terms of the theory reviewed in the pre-
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Figure 2. Vertical-component Wood-Anderson records at KUR (distance � 83–93
km, azimuth � 350–354�) from three 25-ton explosions at 50, 300, and 550 m depths
at Balapan, on the former Soviet nuclear test site near Semipalatinsk, Kazakhstan. Note
that the phase denoted as Sg appears to be a P-to-S phase converted at the free surface.
True direct S waves are not excited by the explosive source in an isotropic medium,
and hence Sg amplitudes decay as Pg for various source depths.

vious section, because the data include near-source inter-
actions with the free surface, and effects during propagation
due to the Moho, and perhaps due to other interfaces and
layers. (The free surface typically amplifies signals at the
recording station [Kim et al. 1997], but this effect is the same
for all explosions, and free surface corrections at the receiver
are not an issue in this article.) In order to minimize near-
source effects of the free surface on seismic wave ampli-
tudes, which will be more significant for signals from shal-
lower burial depths, we measured zero-to-peak amplitudes
(one-half the peak-to-peak) of the first arrival P-waves at
three stations: KUR; VOS (Vostochnaya; distance � 626 km,
azimuth � 302�); and ZRN (Zerenda; distance � 758 km,
azimuth � 300�) as shown in Figure 4. The first arrival P-
wave amplitudes are plotted in Figure 3 for these three sta-
tions, for explosions at the three different depths. This figure
shows very clearly the increasing signal strength as the depth
of the shot decreases.

Discussion and Conclusions

It is gratifying to see such agreement between theory
and observations, in the way that signal amplitudes (Fig. 3)
decrease with increasing depth-of-burial. Such observations
support the idea that the seismic source strength of an ex-
plosion can usefully be characterized by the volume increase
at the source. But, which of the definitions, dV or DV, is
preferred?

The definition of DV, given in the second step of the

five steps described earlier, may seem appealing in that it is
associated with a stress-free strain that phenomenologically
appears to describe the consequences of the explosion in an
unconfined volume. It is on this basis that it might seem
appropriate to establish a connection between DV and the
explosion yield. But this appeal is weakened by the fact that
DV, in the practical interpretation of explosions with the
same charge size at different depths (such as we have de-
scribed in the previous section), is different for the different
explosions. As we noted, above, dV and DV are proportional
to each other, so they must both be depth dependent. Al-
though the source region V (inside R�) has, in the first step
of Eshelby’s approach, conceptually been removed from the
medium, the stress-free strain it undergoes in the second step
leads to a volume change DV that must be influenced by the
confining pressure into which the source volume will be re-
turned and released in steps four and five. The volume
change associated with stress-free strain is therefore, in prac-
tice, not a suitable candidate for a relationship to yield that
is independent of source depth.

In contrast, dV is a volume change that actually occurs
and has a clear kinematic definition (the expansion 4 p a2

da where da is proportional to 1/a2) that we can more easily
appreciate will depend on source depth. This definition di-
rectly indicates, for a series of well-tamped and fully con-
tained explosions of the same charge size but fired at differ-
ent depths, that deeper explosions will have weaker seismic
signals (because da at fixed a will be smaller for greater
confining pressure). In contrast the volume change symbol-
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Figure 3. Peak amplitude of the ground motions
from three explosions set off at different burial depths
are plotted against distance. Amplitudes are measured
from simulated Wood-Anderson vertical records and
are plotted with filled circles (50 m depth), filled tri-
angles (300 m depth), and filled squares (550 m
depth). Peak amplitude of the first arrival P waves in
micrometers measured from simulated Wood-Ander-
son vertical records at three stations are plotted with
shaded symbols; the amplitudes are plotted with one
quarter of their values to avoid crowding.
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Figure 4. The first arrival P waves on vertical-
component broadband records from the 25-ton explo-
sions at 50, 300, and 550 m depths, as recorded at
KUR, are plotted. Depth-of-burial and peak-to-peak
amplitude in Nm/sec are indicated at the beginning of
each trace. Arrows on the top trace indicate the range
of the peak-to-peak measurement for the first part of
the arriving signal.

ized by DV is hypothetical, and requires several steps before
it can be used to predict the weakening of seismic signals
for explosions of greater depth. We therefore conclude that
the volume change dV proposed by Müller (1973) is pref-
erable for characterizing seismic source strength of under-
ground explosions. Another attraction of this definition of
volume change is that Müller’s relationship MI � (k � 2l)
dV closely parallels the familiar relationship between seismic
moment and potency of an earthquake modeled by a shear
dislocation. Finally, we note for explosion sources that the
relationship between volume change and yield will depend
on source depth.
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