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Short Note

Quantifying Natural Fault Geometry: Statistics of Splay Fault Angles

by Ryosuke Ando,* Bruce E. Shaw, and Christopher H. Scholz

Abstract We propose a new approach to quantifying fault system geometry, using
an objective fit of the fault geometry to a test function, specifically here a fault branch.
Fitting a Y-shaped object using a cost function to dextral faults in California, we find a
number of significant results arising from use of a a systematic, objective, quantitative
approach. (1) The largest angle of the branch structure is generally very close to 180°,
implying that the branch is a splay fault off the primary through-going fault. (2) The
distribution of the smallest angle, the splay angle, has a peak near �17°, symmetric
about the primary fault. (3) These features appear independent of scale. These results
are not yet explained by any theory, and they pose new questions and constraints for
the physics of fault system formation and behavior.

Online Material: Event information and color figures.

Introduction

Faults do not act as isolated objects, but rather as parts
of complex fault systems. Quantifying the geometry of fault
systems remains an important and, in many ways, an un-
solved problem. Here, we propose a new approach to the
problem, using objective criteria to match geometrical ob-
jects to mapped faults. Specifically, we focus on a geometri-
cal object of a branching fault and numerically fit with a cost
function the mapped fault system to this geometrical object.
This approach allows for a systematic, unbiased, quantitative
measure of a significant aspect of fault system geometry.

We examine the particular geometrical object of fault
branches for a few reasons. One reason is that it is a geomet-
rical object that does not have an explicit scale, and because
fault structures appear similar from ranges of hundreds of
meters to hundreds of kilometers, we would like to find
scale-independent measures of geometry—and, moreover, to
test the apparent scale invariance.

Fault branches are not, of course, the only relevant
geometrical irregularities—fault stopovers (e.g., Wesnousky,
2006) and bends (e.g., King and Nabelek, 1985) are other
examples. These geometrical irregularities play an important
role in earthquake behavior and are used to segment faults to
try to understand fault and earthquake behavior.

Fault segmentation is seismologically important in con-
trolling earthquake rupture processes including nucleation,
propagation, and termination of ruptures (e.g., King and
Nabelek, 1985; Shaw, 2006). Splay faults are particularly im-

portant for dynamic fault segment interactions and earth-
quake rupture path selectivity. There are examples in recent
earthquakes that show ruptures branched off into splay faults
from primary faults from the evidence of surface rupture
traces such as the 1992 Landers earthquake (Sowers et al.,
1994), the 2001 Kunlun earthquake (Xu et al., 2006), and the
2002 Denali earthquake (Eberhart-Phillips et al., 2003). A
difference in a rupture path leads to differences in seismic
hazards and, further, splay fault ruptures may cause disas-
trous damage; for example, it is thought that the rupture
propagation into an offshore upward splay fault branching
from a subduction plate boundary was responsible for inten-
sive Tsunami generation during the 1944 Tonankai earth-
quake (e.g., Park et al., 2002). Several recent theoretical
studies suggest that one of the key parameters in determining
the rupture extension into splay faults is the splay angle (e.g.,
Kame et al., 2003; Ando and Yamashita, 2007; Bhat et al.
2007). However, the general characteristics of splay fault
geometry are poorly understood. Here, we quantify splay an-
gles for the case of strike-slip faults.

The quantification of natural fault geometries using
mapped surface traces has been widely conducted; however,
these analyses mostly dealt with lengths or separation dis-
tances of fault segments (e.g., Cowie et al., 1996) or the
roughness (topography) of fault surfaces (e.g., Brown and
Scholz, 1985).

The difficulties in the analysis of splay faults should be
in the definition of objective criterion to geometrically quan-
tify the structure. For instance, regarding the splay angle, the
value may change depending on the observer’s visual percep-
tion: one could lay a protractor along different portions of a
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rough fault segment. The size of the protractor may also
affect the results. Dealing with a large number of data is
another difficulty because the fault geometry is usually ana-
lyzed by visual and manual procedures.

In order to overcome these difficulties, we propose an
objective method to quantify splay structures based on a
pattern-matching analysis using a computer. The pattern
matching is a standard methodology in computer-based
geometrical pattern recognition and data mining algorithms
where we search for a certain geometry that is similar to a test
function prepared in advance to mimic a targeted geometry.
To model the splay fault geometry, we employ a set of three
line segments connected to each other at one end as the test
function in this study. The degree of matching can be eval-
uated in terms of an index similar to a correlation coefficient
so that the analysis becomes quantitative and objective.

In this article, we concentrate on the presentation of our
methodology and our observational results; modeling of
what we observe will be done in subsequent papers. The pur-
pose of this article is to present geometrical characteristics
that are found for the first time.

Method

We employed a pattern-matching algorithm for the auto-
matic detection of splay fault structures. In our method, any
part of fault traces in the data is compared with a test function
prepared in advance, and the degree of their similarity is eval-
uated; finally, test functions well fitted to the fault traces are
retained. For the geometry of the test function, we simply
implement a set of three line segments with the same length
that are connected with each other at a point. To adopt any
splay angles in the fault traces, we allow any orientation for
the assumed line segments. Examples of test functions fitted
to fault traces are shown in Figures 1 and 2.

The shape of the test function is defined by the length of
each line segment R and the two angles Φp and Φs, which
respectively denote the angles made by the most separated
and the closest two line segments. (The subscripts p and
s are chosen as they will be found to be associated with
the primary and splay faults, respectively.) For instance, if
the test function is T shaped, Φp � 180° and Φs � 90°.
As shown later, we can measure not only the splay angles
through Φp and Φs but also the scale length of the splay
faults through R.

The degree of similarity between the test function and
the fault traces is quantified in terms of the index F defined
as follows. For simplicity, we define F for an individual line
segment, not for the whole test function consisting of the
three line segments. In this sense, F is defined as

F � 1
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where r�r� and r0 are respectively the location on this line
segment and a point on the fault trace. θ and θ0 represent
the orientations of the normal vectors for this line segment
and the fault trace at locations r and r0, respectively. The
max function searches over the fault traces to find the value
closest in both distance and orientation to the line segment,
thereby maximizing the function (a Gaussian) inside. That is,
for each value of r along the line segment, we search over the
fault traces r0 to find the trace which best matches both the
location and the orientation of the line segment at r. The in-
tegration is taken over r, the distance along the line segment.
Thus no extra credit is given for having more than one nearby
fault trace, just credit for the best fitting fault trace. Because
the integrand is the shape of the Gaussian function, if the line
segment completely overlaps with a fault trace, F takes 1; on
the contrary, if both are far apart, F becomes 0. The width of
the Gaussian is controlled by σr and σθ so that the sharpness
of the fit is also controlled, where smaller or larger values
give tighter or looser fits. Allowing a loose fit to some extent
with σr and σθ is, in fact, essential in this study because the
actual fault geometry is not a straight line but can still be
reasonably approximated by the line. In other words, the
fault roughness is absolved by a lobe existing around the line
segment of the test function, which corresponds with the skirt
of the Gaussian.

For the sake of implementation, we need to expand on
the previously mentioned matching procedure supposing a
single line segment to a procedure assuming the test function
with three arms. We follow two stages in the procedure. As
the initial stage, we first choose an arbitrary point on the fault
in the data to locate the center of the test function. Next, we
pick up one line segment whose one end is fixed at this cho-
sen point, and we evaluate its matching with the fault geom-
etry at any orientation. In this way, we can obtain the index
F�φ� as the function of the orientation φ�0 < φ < 360°�.
The orientations corresponding to the three largest peaks
in the F�φ� distribution become the possible orientation
of the three arms of the test function. Then, the threshold
Fc is applied to the three largest peaks for their values P1,
P2, and P3. If all of these peak values exceed Fc, then this
test function is qualified in the initial stage. In the second
stage, we first iterate the initial stage to provide the candi-
dates of the qualified test functions along the fault traces.
Second, we select the most qualified candidates within cer-
tain neighborhoods, which are defined as the test functions
having the largest values of P1 � P2 � P3 with them; spe-
cifically, to determine the size of the neighborhood, we as-
sume the minimum distance between the qualifiers Ro taken
typically to be a fraction of R. This selects the optimal fit of a
branch while excluding nearby local poorer fits to the same
branch. We find that the results are not sensitive to Ro. Fi-
nally, we can obtain a set of test functions well fitted to the
fault trace geometry in the data.

In addition, we would like to mention that this method
is readily applicable to raster formatted data as well as the
vector formatted data set used in this study. Rasterized data
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are more easily obtained by digital images. Thus, it is in-
teresting to apply this method to such data, including digi-
tized hand-drawn sketches and pictures taken in the field
or laboratory.

Results

We analyzed the splay angle of faults in California us-
ing the digital database of quaternary active faults (Bryant,
2005). This database includes the location of 18,730 fault
segments represented in vector format data points with spa-
tial resolution of a few hundred meters. Although the data are

only about the surface trace, they can be used to represent the
geometry of strike-slip faults at depth through the seismo-
genic layer because their dip angles tend to be 90°. We
choose to use the catalogued dextral faults, which are domi-
nant due to the tectonic setting in this region. To avoid near
surface characteristics in the fault geometry, we focus on
fault structures larger than 5 km by choosing R values that
are a substantial fraction or larger of the seismogenic layer
(Scholz, 2002) and can be considered as major persistent
structures throughout this layer.

We begin with the case of R � 20 km, which is the
length of each line segment of the test function. The surface
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Figure 1. Surface faults and fitted fault geometry. Plots for (a) the entire California and the zooms of the boxed areas for (b) northern and
(c) southern California. White and black lines represent catalogued faults and fitted fault geometry (test function), respectively. R � 20 km.
Ⓔ A high-resolution color version of this figure is available in the electronic edition of BSSA.
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traces of these dextral faults in the catalog are plotted in Fig-
ure 1 with fitted fault geometries or test functions obtained
by the present pattern-matching analysis. We select a set
of parameters Fc � 0:4, σr � 0:001, and σθ: � 0:05. These
values of the parameters are confirmed to return the most
appropriated fitting results after a systematic parameter
study, which we will discuss later.

First of all, we demonstrate the reliability of the method
and analysis results. The quality of the fitting can be con-
firmed in the zoom shown in Figure 1b,c for central and
southern California, respectively. We see that each line seg-
ment of the fitted fault geometry follows corresponding fault
traces in the catalog, and splay points in the fault traces are
centered by the junctures of the fitted test functions. As we

stated in the previous section, it is also confirmed that the
fitted line segments are located on the center of oscillating
fault traces, with the amplitudes of the oscillation being rea-
sonably small, as seen in the figures. The performance in
detecting splay fault locations, which can track nearly every
splay fault supposed to be marked, is satisfactory as well.
Note that the fitted fault geometries are exclusive within
the area Ro � 0:25R (throughout the analysis); some splays
in densely distributed areas are therefore not picked due to
this restriction.

Before detailing the investigations, it is worth character-
izing the overall splay fault locations and geometry. Figure 1a
shows that most of the fitted fault geometries are closely
placed near the San Andreas fault system (SAF). Moreover,
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Figure 2. Surface faults and fitted fault geometry. Plots for different scales (a) R � 5, (b) 15, (c) 30, and (d) 50 km in southern California.
Ⓔ A high-resolution color version of this figure is available in the electronic edition of BSSA.
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the splay faults are particularly localized in the central and
southern California regions along the SAF as boxed in Fig-
ure 1a. On the contrary, the rest of the areas have much less
splay faults and the dextral fault geometry appears to be
much simpler in these areas.

In central California (Fig. 1b), the fitted fault geometries
are closely located near the junctions of SAF and its major
splays: the Calaveras fault (CF) and San Gregorio fault
(SGF). There are interesting characteristics observed in this
area; these major splays are oblique to the SAF and parallel to
each other, but smaller splays are not. These splays do not
seem to cut the primary faults. In contrast to northern Cali-
fornia, a cluster of minor fault segments exists apart from the
SAF in southern California, which is called the Mohave shear
zone (MSZ). The distributions of the fitted fault geometries
are shown to be denser in the MSZ than in the region along
the SAF and its major splays: the San Jacinto fault (SJF) or
the Elsinore fault (EF).

Scale Dependence and Independence of Splays

The analysis is further applied to different scales over a
decade from 5 km to 50 km, assuming various lengths of the
test function R. Examples in southern California are shown
in Figure 2. First, we should emphasize that the fault struc-
tures of specific length scales can be detected by the proper
choice of R. For instance, at the junction of SAF and SJF lo-
cated near �X; Y� � �1:5; 1�, this position is not recognized
as the location of a splay for the cases of R � 5 km (a) and
15 km (b) due to the existence of a gap of about 4 km width
between them, while this gap is small enough for the cases
of R � 30 km (c) and 50 km (d) where the splay faults are
marked. On the contrary, smaller structures are captured by
smaller R cases. The four small splay faults, located along
SAF within X � 0:5 to 1:0 × 105 m and Y � 1 to 1:5×
105 m, are large enough for the case of 5 km but too small
for the cases of R > 5 km. These observations demonstrate
that this method can capture the fault structures of desired
scales with the adjustment of R.

The scale dependence observed in the number of splay
faults NR is a significant characteristic as roughly recognized
in Figure 2a–d. By counting the number for the entire state of
California, we found that NR is a decreasing function of R as
NR � 137, 97, 67, 50, 39, 34, and 27, respectively, for
R � 5, 10, 15, 20, 30, 40, and 50 km. It is interesting that
NR appears to follow a power law function over a decade in
scale length, but this is too limited a scale range to really
determine such functional forms. We can also observe in Fig-
ure 2 that splays themselves can have smaller splays. This
appears to coincide with the well-known fractal geometry
of natural faults (Aviles et al., 1987; Okubo and Aki, 1987).

Statistics of Primary and Splay Fault Angles

For angles made by three arms of each fitted test func-
tion in Figures 1 and 2, we can recognize a quite common

characteristic on the geometry of the splay fault structure re-
gardless of the scale and the region. That is, two of three arms
fall into almost a straight line. This is supported by a statis-
tical analysis as shown in Figure 3; we can see that Φp (see
the inset and the Method section for the definition) has a
well-defined peak at about 180° in the statistical distribution
over the entire state of California. This implies that Y-like
shapes of symmetric branches are very rare in natural fault
geometry. So far, we use the term of splay faults without the
definition. But our analysis clearly demonstrates that the ma-
jority of bifurcated structures in natural faults are actually
what has been inferred from splay faults by experiences in
the field, which consist of planar primary faults and subsidi-
ary oblique splay faults. This geometric asymmetry is an im-
portant clue to modeling the formation of the splay faults.

The statistical analysis is finally applied to evaluate the
obtained angle of the splay faults for the entire state of Cal-
ifornia. The splay fault angle technically corresponds to the
angle between the two closest line segments of the test func-
tion, Φs. The probability distributions of the obtained splay
angles Φs are shown in Figure 4 for various R. The sign of
the angle distinguishes the orientation of a splay; Φs is mea-
sured clockwise from the primary fault so that the plus and
minus signs denote splays located on the right- and left-hand
sides of a primary fault (see the inset).

In Figure 4, there are four significant properties in the
distribution of the splay angles Φs:

1. The splay angle distributions show sharp peaks at about
�=� 17° (refer the caption for the median of each case).

2. Unexpectedly, the distributions of the left- and right-hand
sides are remarkably symmetric considering the entire
fault system, with the splays symmetrically distributed
on either side of the primary faults.

3. The splay angle distributions for any R cases are similar
in their shapes and peak values. This means that the geo-

Angle [deg.]

Fr
ac

tio
n

 150        160        160        180        190        200        210

 0.3 

0.25

 0.2 

0.15

 0.1 

0.05

   0 

R=5km
R=15km
R=30km
R=50km

Figure 3. Probability distribution of primary fault bend angles
for different scales. The plot was made at intervals of 3°. The medi-
ans of the cases of R � 5, 15, 30, and 50 km are 178°, 179°, 180°,
and 181°.

Short Note 393



metrical relations between a primary fault and a splay
fault are self-similar, independent of the length of the
splay faults.

4. Looking at the distribution of the absolute values of
the angles, the distribution is asymmetric, with the peak
angle close to its minimum value. In other words, the
minima are sharply defined but the maxima are not.

Some roughness seen in the distribution of large R cases
in Figures 3 and 4 should mainly be due to the relatively
small sampling number. It is obviously confirmed that the
distributions tend to be much smoother as the sampling num-
ber increases. On the other hand, it should be noted that the
analysis covers the entire state of California, which includes
various tectonic settings from the SAF as a mature plate
boundary to the Mohave shear zone as a cluster of immature
faults. Further investigation with division regarding local tec-
tonic conditions may give us more detailed statistics behind
the current overall features. However, the previously men-
tioned features in the distribution of the splay angles are still
considered to be quite robust and tell us about the fundamen-
tal characteristics of splay fault structures.

The first and second features in the list of significant
properties imply that the fault tip stress field may not play
a predominant role in the formation of the splay faults, be-
cause its normal stress component is antisymmetric against
the fault plane. Regarding the third feature, it should be men-
tioned that this can add a different perspective and data to the
long-standing discussion of whether the fault geometry is
self-similar or self-affine and whether it is fractal or not; there
is a limitation in those discussions, as they have been mostly
based on the observation of fault surface topography (e.g.,
Brown and Scholz, 1985; Sagy et al., 2007) or the length
of fault segments (e.g., Cowie et al., 1996). Deeper under-
standings should be necessary for the individual physics of

the initiation and evolution of those characteristic structures.
In terms of dynamic rupture path selectivity, referring to
Kame et al. (2003), the observed splay angle of 17° suggests
that a rupture tends to propagate to either primary or splay
faults. But if the rupture speed is almost at the terminal
(Rayleigh-wave speed), the rupture can be bifurcated to both.

Validation of the Results

We validate the robustness of the obtained results in
terms of the parameters for the threshold Fc and the sharp-
ness of the fit σr and σθ. Figure 5a–c shows these effects on
the obtained splay angles, where the sign of the angles is not
considered.

We first find from Figure 5a that the choice of Fc does
not strongly affect the obtained splay angles as long as we
apply proper Fc that gives a statistically meaningful number
of splays. For instance, the cases of Fc < 0:7 show quite sim-
ilar results with sampling 55 splays in the case of Fc � 0:4

and R � 20 km; on the contrary, Fc � 0:7 shows a case
of poor statistics picking only eight splays. The choice of
threshold value can sometimes be a problem in pattern
matching; however, this analysis shows quite stable behavior
over a wide range of the parameter values.

For the sharpness parameters, we find that, as seen in
Figure 5b, a variation of σr within half of and double most
optimal values could lead the relatively large differences
up to 10°. Fortunately, however, the variation in the quality
of the fitting is also significantly noticeable when visually
checking the fits on the map: values that are too large (loose
fit) recognize parallel strands as splays by mistake, which
also causes higher splay angles to appear in the statistics,
while values that are too small (tight fit) tend to miss obvious
splays due to their roughness in the geometry. In contrast, the
variation in σθ (Fig. 5c) has a smaller effect although its im-
plementation is of great help to reduce mistakes in densely
distributed areas. Thus, the parameter tuning to obtain the
most optimal fit is quite straightforward, and the obtained
results become reliable once σr is properly chosen. It should
be emphasized that the obtained results are quite robust be-
cause of the stableness enabled by this method.
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Data and Resources

Fault traces used in this article came from the Digital
Database of Quaternary and Younger Faults from the Fault
Activity Map of California, version 2.0 (compiled by W. A.
Bryant in 2005). Data can be obtained from California Geo-
logical Survey web site at http://www.consrv.ca.gov/CGS/
information/publications/QuaternaryFaults_ver2.htm (last
accessed September 2006).
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