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a b s t r a c t

The extended finite element method (XFEM) provides a natural way to incorporate strong and weak dis-
continuities into discretizations. It alleviates the need to mesh discontinuities, allowing simulation
meshes to be nearly independent of discontinuity geometry. Currently, both quasistatic deformation
and dynamic earthquake rupture simulations under standard FEM are limited to simplified fault net-
works, as generating meshes that both conform with the faults and have appropriate properties for accu-
rate simulation is a difficult problem. In addition, fault geometry is not well known; robustness of
solution to fault geometry must be determined. Remeshing with varying geometry would make such
tests computationally unfeasible. The XFEM makes a natural choice for discretization in these crustal
deformation simulations on complex fault systems. Here, we develop a method based upon the XFEM
using Nitsche’s method to apply boundary conditions, enabling the solution of static deformation and
dynamic earthquake models. We compare several approaches to calculating and applying frictional trac-
tions. Finally, we demonstrate the method with two problems: an earthquake community dynamic code
verification benchmark and a quasistatic problem on a fault system model of southern California.

Published by Elsevier B.V.

1. Introduction

Modeling earthquakes and geologically short time-scale events
on fault networks is a rich problemwith important implications for
human safety and engineering design. In order to quantitatively
model earthquakes, scientists must incorporate an extremely com-
plex network of intersecting faults. Incorporating this geometry
accurately has proven crucial in the simulation of both earthquake
rupture and long-term quasistatic deformation [3,8,30]. Computa-
tionally, this provides a stern challenge for modelers – static and
dynamic equations must be solved on domains with many faults
characterized by large variation in length, orientation, density,
and connectivity.

Crustal deformation simulation is similar, but not identical, to
engineering problems such as contact problems and crack growth
problems. Unlike contact problems, lithostatic pressure ensures
that faults are kept in contact, and strains are generally small, indi-
cating that linear elasticity without cavitation is a good approxima-
tion. Unlike crack growth problems, earthquakes repeatedly
rupture pre-existing weak faults, and the fault system is generally

assumed to be fixed for any given simulation. However, mixed, his-
tory-dependent boundary conditions on these faults differ from
typical contact and crack growth problems, and provide unique dif-
ficulties to spatial discretization. See Scholz [36] and references
therein for a summary of these observations.

Several techniques have been used to simulate crustal deforma-
tion. Boundary Integral Methods have been used in dynamic simu-
lations with complex geometry [27,9,26,42], but cannot simulate
nonlinear bulk rheologies, which play an important role in off-fault
deformation. Finite differences allow simulations of long, repeated
rupture problems [37,39,38], but are limited in their ability to
incorporate complex fault system geometry. Here we focus on
Finite Element Methods (FEM), which have the ability to incorpo-
rate bulk rheology and nonplanar fault geometry [1,14].

In order to incorporate faults into the FEM, the computational
mesh must align with faults and exhibit aspect ratios and other
properties for accurate simulation. Some three-dimensional simu-
lations of realistic fault structures have been done for limited
regional models (for example, in quasistatic tectonic deformation
simulations [29] and subsistence in geomechanical simulations
[19]). However, generating appropriate three-dimensional meshes
on domains such as the entirety of tectonically active faults near a
plate boundary (such as the 243 faults identified in one Southern
California model [43]) is a difficult problem. In addition, fault
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geometry is uncertain; under the FEM, to test the robustness of
simulations to changes in fault geometry, the mesh must change.

As an alternative, mesh-independent finite element methods
can capture discontinuous fields on fault geometries. In particular,
the eXtended Finite Element Method (XFEM), as developed by
Belytschko and colleagues [7,33,13] and modified by Fries [20], ex-
tends the finite function space to include both discontinuous func-
tions across the fault and tip functions which match the stress
singularity of elasticity at crack tips. This method, based upon
the partition of unity FEM [31,15], allows faults to cut elements
in a nearly-arbitrary way, making it an ideal choice for complicated
fault geometries. It has been applied successfully to applications of
crack growth [33], Stokes flow [44], biofilms [16], and other prob-
lems where material or physical interfaces play an important role.
This, however, represents the first application to our knowledge to
crustal deformation and earthquake dynamics.

Fault physics simulation is not, however, a trivial implementa-
tion of the XFEM. In these types of problems, boundary conditions
along the faults are of mixed type depending on whether the fault
is stuck or slipping, and additional interpenetration constraints are
required. Most of the difficult physics in these models arise from
friction and failure processes, so an accurate treatment of bound-
ary conditions is required.

Typical finite element methods for earthquake rupture rely on
interpolatory relations on the fault boundary to track failure. These
methods keep stress at a set of mesh nodes: basis functions {wi}
have a corresponding set of mesh nodes {xi} such that

wiðxjÞ ¼ dij; ð1Þ

at which essential boundary conditions can be evaluated and ap-
plied in a strong sense. These methods for rupture detection and
propagation are often called Traction at Split Nodes (TaSN) in the
crustal deformation literature, and have been used in both finite dif-
ference and finite element methods [2,11,1]. This is not possible in
the XFEM, where mesh nodes do not lie on the boundary. We must
use a weak formulation of boundary conditions and a corresponding
weak formulation to track the rupture front along the fault. While a
weak formulation of boundary conditions is computationally more
complex than TaSN methods, it is also mathematically more gen-
eral, and can be used for higher-order and spectral FEM.

The weak application of boundary conditions has been pro-
posed in many ways. Lagrange multiplier methods [4] and penalty
methods [5] are the most common approaches. Lagrange multi-
plier methods require the construction of a dual function space
for tractions which satisfy the Ladyzhenskaya-Babuska-Brezzi
(LBB) condition [4,10]. Ji and Dolbow [25] and Moes et al. [32]
point out that the simplest approach of defining the dual space
on the boundary via intersection of the crack with elements of
the domain mesh does not satisfy this condition. Moes et al. [32]
provides an algorithm for determining a subset of intersections
to use as elements and calculates a mesh on the boundary that
can be numerically tested for the LBB condition. However, this ap-
proach is extremely mesh dependent and is not obviously extensi-
ble to three dimensions. The most basic penalty methods typically
result in ill-conditioned systems of equations.

Nitsche’s method [35], as developed for this type of problem by
Hansbo and Hansbo [21], provides another way to apply essential
boundary conditions weakly through an alternate bilinear form.
This method can be thought of as a hybrid of penalty methods
and Lagrange multiplier methods, and results in a symmetric bilin-
ear form. The resulting stabilized linear equations are better condi-
tioned than standard penalty methods, and they avoid saddle-
point problem complications inherent to Lagrange multiplier
methods. Nitsche’s method has been used in contact problems un-
der standard finite element methods [45], and more recently in ex-

tended finite element methods [12], and are similar to other
stabilized methods such as [34,28].

Once a solution for displacement is determined, tractions on the
fault are calculated to determine the location of the rupture front.
On regions where the fault is still stuck, a Dirichlet boundary con-
dition is applied. The tractions necessary to keep that fault stuck
are compared to a failure criteria. This type of calculation, by which
a solution on the full domain must be used to determine the point-
wise value of a function on the boundary, has been attempted in
several ways. One such way is the use of Lagrange multipliers,
which provides the traction as the solution of the dual variable. Ji
and Dolbow [25] and Mourad et al. [34] propose a domain integral
method, which uses the simple dual space on cracks with a local
stabilization. The most basic application of this technique as in
[25] results in a smoothed solution for tractions in contact prob-
lems. However, actual tractions in the earthquake problem can
be discontinuous at the rupture front and at fault kinks and
branches. Here we introduce an approach which uses a discontin-
uous dual function space to capture discontinuous tractions.

In this paper, we consider a Nitsche- extended finite element
method for discretization of a model of crustal deformation. We
use Nitsche’s method to stabilize the problem, the XFEM to discret-
ize the weak formulation, and a smoothed inversion for calculating
tractions on the boundary. We compare this approach to a domain
integral method for stabilized tractions. The resulting approach is
more versatile than domain integral methods, as it can be designed
to more accurately include geometric discontinuities in tractions
along the fault. This enables tracking when a point on the fault rup-
tures or sticks, which requires a change in the type of boundary
condition at that point. The resulting approach is natural for the
mixed, history dependent boundary conditions inherent to crustal
deformation.

We apply the method to problems of dynamic rupture and sta-
tic relaxation on complex fault networks. Several major simplifica-
tions from the earth are made here. Most notably, we consider only
two-dimensional problems as a prototype for future three-dimen-
sional simulations. Indeed, two-dimensional fault models are triv-
ially meshed via Delaunay triangulation, limiting the advantages of
the XFEM. However, two-dimensional problems provide an excel-
lent proof-of-concept for the method. XFEM has been used in
three-dimensions for material failure [41,17], and Nitsche’s meth-
od and traction determination are extended to three dimensions in
a straightforward manner. Extension of the approaches here to
three-dimensions are theoretically straightforward, but computa-
tionally complex. Therefore, two-dimensional prototypes for the
method are an important step.

The equations of dynamic earthquake rupture are shown in Sec-
tion 2, and a quasistatic simplification is discussed. In Section 3 the
method is presented: Section 3.1 applies Nitsche’s method to gen-
erate a symmetric, coercive weak formulation of the problem
incorporating mixed stickslip boundary conditions. Section 3.2 dis-
cretizes the spatial component of equations for displacement via
the XFEM. Section 3.3 presents a stabilized inversion to determine
a solution for tractions on the faults, updating friction and testing
the fault for regions which have failed or stuck. The method is
demonstrated through a series of example problems in Section 4.
This work represents an important connection between the newly
developing numerical techniques of Nitsche-XFEM and crustal
deformation models, which benefit greatly from computational
advantages of the combined method.

2. Earthquake rupture physics

We wish to solve static and dynamic linear elasticity equations
for displacement u on a domain X $ C % R2, where C consists of a
system of faults,C &

S
Ci, which are lower-dimensional subspaces
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ofX. In-plane (Mode II) displacement u is governed by the solution
of momentum balance, under isotropic linear elasticity:

q @2u
@t2

¼ r ' rðuÞ; ð2Þ

r & rðuÞ ¼ k trð!ðuÞÞI þ 2l!ðuÞ; ð3Þ

! & !ðuÞ ¼ 1
2
ðruþ ðruÞTÞ; ð4Þ

where q is the density, r stress, ! strain, k and l are Lamé’s param-
eters, and I is the identity tensor. Throughout, bold quantities rep-
resent vectors or tensors in R2, while standard font indicates
scalar quantities. This vector-valued equation is subjected to mixed
boundary conditions. On the exterior boundary, @X, displacement is
specified as

uj@X ¼ mpT; ð5Þ

where mp is a tectonic loading rate which is much smaller than the
wave speed. This results in a separation of scales, where T = t0 + t,
for a long time-scale t0 and a perturbation (dynamic) time t. In
the loading, variations in t are ignored, and this boundary condition
becomes a constant depending only on the long time-scale:

uj@X ¼ mpt0: ð6Þ

Interior boundary conditions are specific to the two problems con-
sidered: static deformation and dynamic rupture. In the static case,
derivatives with respect to time are eliminated, and interior bound-
ary conditions are of the form:

sutCD ' t̂ ¼ g; ð7Þ
t̂ ' hriCN ' n̂ ¼ f ; ð8Þ
sutC ' n̂ ¼ 0; ð9Þ

where s'tC and h' iC indicate the jump (difference) and mean value
across C, respectively, '̂ indicates a unit vector, and n̂ and t̂ are ori-
ented normal and tangential to C, respectively. Faults C are split
into two sets: CD, on which slip g is provided (essential boundary
conditions), and CN on which tractions f are provided (natural
boundary conditions). On the entire fault system, neither dilation
nor interpenetration is allowed. Throughout, we refer to Eqs. (2)–
(9) as the static case.

In the case of dynamic rupture, boundary conditions are given
by:

s@u
@ttCD ' t̂ ¼ 0; ð10Þ

t̂ ' hriCN ' n̂ ¼ f ; ð11Þ
sutC ' n̂ ¼ 0: ð12Þ

C is again partitioned into two sets. On CD, the stuck portions of C,
a no slip condition is enforced. On CN, the slipping portions of C,
tractions f apply friction. Again, neither interpenetration nor cavita-
tion is allowed.

In both problems, shear stress sðuÞ & t̂ ' hrðuÞiCN ' n̂ is balanced
by friction f ¼ UrnðuÞ ¼ Uðn̂ ' hrðuÞiCN ' n̂Þ, which is assumed a
product of normal stress and a coefficient of friction. The coeffi-
cient of friction U is often a nonlinear function of slip, slip-rate,
and other state variables, and includes a signed direction opposing
slip rate.

The two sets CD and CN partition the faults C. Points on the
faults transition between the two sets by a history-dependent cri-
teria. A point x on CD fails when shear stress exceeds a maximum
frictional strength:

8x 2 CD s:t:
jsj
rn

P jUj ) x 2 CN ð13Þ

and sticks when slip rate returns to zero:

8x 2 CN s:t: s@u
@ttx

¼ 0 ) x 2 CD: ð14Þ

Note that in these problems, we restrict consideration to the com-
pressional situations appropriate for the earth, where rn > 0. The
dynamic problem therefore consists of Eqs. (2)–(5), (6), (11)–(14).

Loosely, the full earthquake cycle consists of alternating periods
of interseismic loading via slow, static deformation over periods of
hundreds to hundreds of thousands of years, and earthquakes,
which are dynamic ruptures over periods of one to hundreds of
seconds. For this paper, we consider the two independently in this
simplified form. Future work combines the two, modeling the full
repeated earthquake rupture cycle.

3. Numerical technique

The solution of these equations must be accomplished on gen-
eral fault system domains, where fault geometry C can often be
an extremely complicated set of intersecting subdomains. The fi-
nite element method provides a natural selection to discretize
these equations, as its local function spaces can be designed to
accommodate fault geometry. The weak form of the equilibrium
equations under the Galerkin method is to find u 2 V so that

8v 2 V;
Z

X
!ðvÞ : rðuÞ ¼

Z

CN
ðsvtC ' t̂Þf þ

Z

CD
v ' rðuÞ ' n̂

þ
Z

CN
ðsvt ' n̂Þðn̂ ' rðuÞ ' n̂Þ: ð15Þ

Natural boundary conditions f are included, but terms for the nor-
mal component of slip and the essential boundary conditions have
not yet been included. Under the FEM, admissible functions for u
are limited to come from a function space Vg which is a subset of
H1

g , Hilbert spaces of the needed regularity that match Dirichlet
boundary data g on CD and have zero normal component on CN,
while test functions v are taken fromH1

0, which are 0 on all Dirichlet
boundaries. Matching u on the Dirichlet boundary is equivalent to
constructing Vg % H1

g . Such a construction is difficult if not impossi-
ble in the XFEM with mixed boundary conditions.

Therefore, we use a weak formulation for including essential
conditions on the fault.

3.1. Nitsche’s method

Nitsche’s method considers an alternate formulation of the
weak form for Galerkin finite elementmethods. An in-depth deriva-
tion of the resulting bilinear forms is demonstrated in the Appendix
A. Applied to the static problem, we look to find a solution u to:

Bðu;vÞ ¼ ‘ðvÞ 8 v 2 V; ð16Þ

where

Bðu;vÞ ¼
Z

X
!ðvÞ : rðuÞ ð)Þ

$
Z

C
ðsvtC ' n̂ÞrnðuÞ þ rnðvÞðsutC ' n̂Þ ða1Þ

þ bI

h

Z

C
ðsvtC ' n̂ÞðsutC ' n̂Þ ða2Þ

$
Z

CD
ðsvtCD ' t̂jÞsðuÞ þ sðvÞjðsutCD ' t̂Þ ðb1Þ

þ bD

h

Z

CD
ðsvtCD ' t̂jÞjðsutCD ' t̂Þ ðb2Þ

$
Z

@X
v ' rðuÞ ' n̂þ rðvÞ ' n̂ ' u ðc1Þ

þ b@X

h

Z

@X
v ' uþ ðv ' n̂Þðu ' n̂Þ ðc2Þ ð17Þ
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‘ðvÞ ¼
Z

CN
ðsvtCN ' t̂Þf ð)Þ

$
Z

CD
sðvÞg ðb1Þ

þ bD

h

Z

CD
ðsvtCD ' t̂Þg ðb2Þ

$
Z

@X
rðvÞ ' n̂ ' mpt ðc1Þ

þ b@X

h

Z

@X
v ' mpt þ ðv ' n̂Þðmpt ' n̂Þ ðc2Þ: ð18Þ

The (⁄) terms are the typical FEM weak formulation, where the
divergence of r has been moved to the test function v, and natural
boundary terms from (8) arise in the linear form. Each lettered cou-
ple applies a separate essential boundary condition. In each couple,
the (1) term is similar to the terms in standard FEM which are elim-
inated by assuming vjCD ¼ 0, while the (2) term penalizes a mis-
match with the boundary condition. Term (a) applies the no
interpenetration constraint (9) with constant penalty coefficient
bI, (b) applies essential boundary conditions (7) with penalty coeffi-
cient bD, and (c) applies Dirichlet boundary data (6) on the exterior
boundary with penalty coefficient boX. h is a measure of the element
size.

Similarly, for the dynamic case,

Bðu;vÞ ¼
Z

X
qv ' @

2u
@t2

þ
Z

X
!ðvÞ : rðuÞ ð)Þ

$
Z

C
ðsvtC ' n̂ÞrnðuÞ þ rnðvÞðsutC ' n̂Þ ða1Þ

þ bI

h

Z

C
ðsvtC ' n̂ÞðsutC ' n̂Þ ða2Þ

$
Z

CD
ðsvtCD ' t̂jÞsðuÞ þ sðvÞjðsutCD ' t̂Þ ðb1Þ

þ bD

h

Z

CD
ðsvtCD ' t̂jÞj s

@u
@t

tCD ' t̂
! "

ðb2Þ

$
Z

@X
v ' rðuÞ ' n̂þ rðvÞ ' n̂ ' u ðc1Þ

þ b@X

h

Z

@X
v ' uþ ðv ' n̂Þðu ' n̂Þ ðc2Þ ð19Þ

‘ðvÞ ¼
Z

CN
ðsvtCN ' t̂Þf ð)Þ

$
Z

@X
rðvÞ ' n̂ ' mpt ðc1Þ

þ b@X

h

Z

@X
v ' mpt þ ðv ' n̂Þðmpt ' n̂Þ ðc2Þ: ð20Þ

Again, the (⁄) terms are the typical FEM weak formulation, (a) ap-
plies the no interpenetration constraint (12), (b) applies no slip con-
ditions (10) on stuck boundaries, and (c) applies Dirichlet boundary
data (6) on the exterior boundary. Note that frictional terms, despite
being nonlinearly dependent upon u, are included in the linear
form. These terms are incorporated via lagging or fixed-point
iteration.

These bilinear forms are derived from a minimization problem
discussed in the Appendix A, and apply both Neumann and Dirich-
let boundary data weakly. Note that, assuming boundary condi-
tions are satisfied, all (2) terms and the second part of all (1)
terms cancel, and the method is consistent with the usual weak
formulation. Given the symmetry of the stiffness term in (19)*, B
is symmetric. For large enough b’s, B is also coercive, as demon-
strated in a similar example by Heintz and Hansbo [24]. They also
demonstrate a sufficient condition on the penalty terms for coer-
civity, which guide the selection of the constants b. Noting that a
coercive bilinear form indicates that the residual grows more rap-
idly than the error, combined coercivity and symmetry indicate

that the resulting linear system is easily solved by many methods,
and simpler to solve than most saddle-point, Lagrange multiplier
systems. Therefore the choice of b is a careful balance. It should
be chosen large enough to result in a coercive operator, and the lar-
ger the b, the less mismatch at the boundary. However, if b is cho-
sen to be too large, the problem becomes unnecessarily expensive
(as the operator is ill-conditioned). This choice can be made inde-
pendently of mesh resolution (as h-dependence is included explic-
itly in the above equations). Therefore the choice should be made
to balance a desire for accuracy and performance. Here we simply
choose b to be large, as performance is not as much of an issue.

3.2. XFEM

As with other Galerkin FEMs, the test functions v and solution
uh are chosen from the same discrete function space, Vh % V. This
space is continuous on the domain, but must allow discontinuities
across faults C. The eXtended Finite Element Method (XFEM) pro-
vides a natural setting for encoding both strong and weak discon-
tinuities into the function space.

First, X is meshed with nodes {xi} independently of the faults. A
partition of unity function space is specified on this mesh; we use a
regular quadrilateral mesh with bilinear ‘‘hat’’ basis functions cwi

which are 1 at xi and 0 at all other nodes. Around each node xi, a lo-
cal neighborhood,Xi, is defined to be the support ofcwi (in this case
the four quadrilaterals bordering xi). Then this space is extended
with additional basis functions consisting of products of the bilin-
ear functions and extension functions. These extension functions
are chosen to accurately capture the physics across cracks, at crack
tips, and at crack junctions. For a more explicit derivation, see Dol-
bow et al. [13] and Fries [20]; herewe simply state the resulting dis-
crete approximation space. The final function space is the span of
the bilinear basis functions and the extended basis functions:

Vh& span fcwig;
[

Cj

fHjðxÞcwigi2Pj ;
[

xjk
branch

fHjkðxÞcwigi2Qj ;
[

xj
tip

fFjðxÞcwigi2Rj

0

B@

1

CA;

ð21Þ

where the following definitions have been made:

* Define C to be a union of curves,
S

j Cj.
* If Cj branches from Ck, call the branching point xjkbranch.
* Otherwise, let xjtip be the location of the tip.
* Crack Extensions: Nodes xi whose neighborhoodXi is bisected by
Cj are extended with sign functions defined on a local coordi-
nate system based upon Fig. 1:

HjðxÞ &
1 if ðx$ yÞ ' n̂ðyÞ > 0;
$1 otherwise;

#
ð22Þ

where y & argmin
z2C

jx$ zj

Pj & fi s:t: Xi [ Cj–0; i R Qj;Rjg: ð23Þ

* Branch Extensions: Nodes xi whose neighborhood Xi contain a
branch point are extended with a junction sign function. This
is effectively a sign function defined with the jump across both
the branching crack and all of the branched crack on one side of
the branch point. Typically a crack extension associated with
crack Ck and a junction function associated with crack Cj are
added, so that there are three degrees of freedom – unity, sign
extensions across crack k, and sign extensions across crack j
and part of crack k. This treats the junction like a triple point:

HjkðxÞ &
HjðxÞ if HkðCjÞ ¼ HkðxÞ;
HkðxÞ otherwise;

(
ð24Þ
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Qj & i s:t: xjkbranch 2 Xi
n o

: ð25Þ

* Tip Extensions: Tip extension functions are defined in a polar
coordinate system around the tip, where the branch cut is at
the crack (Fig. 1). The extension is chosen to match the singular-
ity associated with linear elastic crack tips. Blending elements
(as defined by Fries [20]) are added to smoothly transition from
crack extensions to tip extensions. These extensions are added
to all local spaces whose nodes within a fixed radius Rtol of
the tip. This radius stays fixed to ensure proper convergence
rates.

FjðxÞ &
ffiffiffi
r

p
sin

h
2

! "X

k2bRj

cwk ; ð26Þ

r & x$ xjtip
%%%

%%%;

h is the angle from the tangent of Cj at xjtip to x$ xjtip;

bRj & k s:t: xk $ xjtip
%%%

%%% < Rtol

n o
;

Rj & bRj [ fneighbors of xk for k 2 bRjg: ð27Þ

Fig. 2 diagrams the sets of nodes P, Q, and Rwhich are extended.
These scalar functions are multiplied by canonical vectors to span
the two-dimensional vector space under consideration.

3.3. Traction determination

Given a solution for displacement determined via Eq. (16) with
basis functions from Eq. (21), tractions are calculated for use in
friction and failure conditions. We must determine tractions which
would have resulted in the same displacement solved using the
mixed boundary conditions (10)–(12). In an all-Neumann problem
with data T, (16) results in

f &
Z

C
svtC ' T ¼

Z

X
qv ' @

2u
@t2

þ
Z

X
!ðvÞ : rðuÞ: ð28Þ

This linear formmust be inverted for T pointwise onC. To do this,C
is meshed to form elements Ce by introducing nodes yk at intersec-
tions of C with edges of the mesh for X (and kinks, branches, and
other physically relevant geometric complexity of the Ci), as in
Fig. 3. On these elements, a function space is defined so that
T ¼

P
iTi/i, where Ti are weights and /i are basis functions. Note

that T need only be square-integrable, and physically should be dis-
continuous at fault kinks and at the rupture front. Discontinuous
elements have the advantage of admitting tractions which are dis-
continuous at these geometric locations. Then,

ð
Z

C
switC ' /jÞTj ¼ f: ð29Þ

Defining P ¼
R
C switC ' /j, we can solve the normal equations

PTPTj ¼ PTf. This is poorly constrained due to our choice of fault
meshes not satisfying the LBB condition, and has spurious oscilla-
tions. To deal with these, we introduce a smoothing term. Further-
more, we can take advantage of the fact that part of the solution is
known, and introduce a term penalizing mismatches.

Fig. 1. Coordinate system used in defining extension functions near the fault
system. Faults are defined with an arbitrary direction which defines t̂. The normal is
then chosen via a right-hand rule, and Heaviside functions defined by this normal.
Each tip has its own local polar coordinate system to define the tip function.

Fig. 2. Sets of extended nodes for a crack systemwith two cracks, including one branching crack. Nodes are characterized by the intersection of their support (the neighboring
four quadrilaterals) with the cracks C. Nodes labeled P are extended with Heaviside functions across the crack, as their support is cut completely by the fault. Nodes labeled Q
are extended with branch functions, as their support contains the tip branching from another fault. Finally, nodes labeled R are extended with tip functions. R provides the
support for these tip functions, blending the function into the background basis functions. All nodes, including those not extended, also hold the standard background finite
element function, a bilinear hat function in this case.
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PTPþ bd

Z

C

d/i

ds
'
d/j

ds
þ bm

X

yk2S
j/i ' /jj

 !
Tj þ bN

Z

CN
/i ' /j

¼ PTfþ bN

Z

CN
/is: ð30Þ

Here, a penalty term bd has been added to smooth the solution,
where d

ds indicates derivatives along the element curve. bm enforces
continuity of the discontinuous functions on element boundaries in
the set S, which denotes nodes not at fault kinks. Finally, bN utilizes
the known portion of the tractions: the shear tractions on faults
which are actively slipping.

This bilinear form is now inverted for weights Ti, and normal
and shear tractions are calculated via rn ¼ n̂ ' T and s ¼ t̂ ' T.

Then, failure is handled on an element-by-element basis. Each
element Ce fails according to the mean value of (13):

8Ce 2 CD s:t:

%%%%%

Z

Ce

T ' t̂j P

%%%%%

Z

Ce

UðT ' n̂Þj ) Ce 2 CN: ð31Þ

Similarly, re-sticking is checked on these elements according to the
mean value of (14):

8Ce 2 CN s:t:
Z

Ce

s
@u
@t

tCe
' T 6 0 ) Ce 2 CD: ð32Þ

3.4. Temporal discretization

In dynamic problems, it remains to finish discretizing the bilin-
ear form (16) by introducing a timestepping scheme. Typically,
timestepping in earthquake rupture simulation is done explicitly.
By lumping mass matrices and lagging frictional terms, each time-
step is accomplished in a single matrix multiply, allowing many
events to be simulated with few computational resources. This
comes at the expense of introducing dispersion and concerns about
stiffness and stability.

With the XFEM, deriving lumped diagonal and block-diagonal
mass matrices are a problem of active research [18]. As we are fo-
cused on the spatial discretization in this paper, here we use a

standard semi-implicit, Crank-Nicolson timestepping scheme for
temporal discretization.

4. Examples

To test and demonstrate the method, we consider two
simplified problems. All relevant parameters, both physical and

Fig. 3. Elements along the faults are defined by a mesh of nodes on the fault, which
consists of the intersection of the faults with element edges of the background
mesh, along with physically important nodes such as kinks and branches.

Table 1
Relevant parameters.

Variable Value Description

q 2670 kg/
m3

Density

k = l 32.04 GPa Lamé’s parameters
mpt0⁄ 70L

k km Boundary loading, background shear stress = 70 MPa
mpt0! 120L

k km Boundary loading, static problem
bD, b@X 106 Penalty terms for stuck region, exterior boundary

conditions
b)I 106 Penalty term for interpenetration
byI 102 Penalty term for interpenetration

bd, bm 10$2 Smoothing and matching constraints
bN 102 Penalty term to enforce known Neumann data
Us;U)

d 0.677,
0.525

Static and dynamic coefficients of friction

D)
c 0.4 m Critical slip length in friction

Uy
s

0.7 Static coefficient of friction

! Variables denote values specific to Example 4.2.
⁄ Variables denote values specific to Example 4.1.

Fig. 4. Domains for the unrotated (solid) and rotated (dashed) simulations. In the
rotated case, exterior boundary conditions are adjusted to result in equivalent
problems (in fault coordinates) to test mesh independence. Initial shear tractions
(in black) specify strong (s0 = 62 MPa), nucleation (s0 = 81.6 MPa) and weak
(s0 = 78 MPa) patches along the fault. The nucleation patch is above the failure
criteria, shown in red.
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Fig. 5. Solutions of the SCEC Validation Exercise, Problem 205-2d. Black indicates the ‘‘true’’ solution, as calculated via a well-resolved solve (h = 25 m). Blue indicates an
unrotated XFEM solution, where the fault lies on element boundaries. Red indicates a solution where the fault is rotated 30! relative to y = 0, where the fault is no longer
coincident with the background mesh. In both simulations, the background mesh is a regular Cartesian grid (h = 100 m). Slip and slip rate are plotted in a fault-parallel
coordinate system so that solutions should be identical. Despite the complexity of the solution, differences are not visible to the eye, demonstrating that the solution is
qualitatively independent of mesh-fault orientation. Convergence rates for the rotated and unrotated fault are shown in Fig. 6(a). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Convergence rates of solutions solving the stabilized normal equations to invert for tractions in continuous piecewise linear elements. Blue circles indicate the
unrotated case, red squares the rotated case. As expected, second order accuracy for slip and first order accuracy for the higher derivatives is seen in both the rotated and
unrotated cases. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Comparison of error using several techniques for inverting for tractions on the fault. Green (triangle glyphs) lines represent the domain integral method of [25], blue
(circle) lines are the solutions of normal equations to invert for tractions using a continuous, piecewise linear function space, and red (square) lines use a discontinuous
piecewise linear function space as proposed in Section 3.3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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mathematical, are shown in Table 1. Variables denoted with a ⁄ are
specific to Example 4.1, and those denoted with a ! are specific to
Example 4.2.

4.1. Dynamic rupture benchmark

In the first example, we consider a single dynamic rupture in
Mode II on a planar fault from the SCEC/USGS Earthquake Code
Verification Exercise, Problem v. 205-2D [23]. These simulations

solve Eqs. (16) and (19), (20), which include the inertial term and
therefore radiated seismic waves. The domain is chosen to be the
interval [$L,L] + [$L,L] (L = 30 km) with a single fault given by a
30 km segment centered at (0,0) along the curve y = 0. Initial con-
ditions are given by the solution to a static problem. This initial
solve uses a specified shear traction which is uniformly at
sU ¼ 70 MPa along the fault, with the exception of three patches:
a ‘‘nucleation’’ patch at the center which is above failure, a ‘‘weak’’
patch, and a ‘‘strong’’ patch. Fig. 4 shows the simulation domain

Fig. 8. Error in the traction solution methods in time (a) and space (b). Black indicates the converged solution. Green, dotted lines are the domain integral method, blue,
dashed lines are the continuous function space, and red, dash-dotted lines are the discontinuous function space. Zooming in around the rupture front (c) indicates that only
the discontinuous method captures the arrival time correctly, while zooming in around the rupture peak (d) shows oscillations after the rupture, which are decreased in the
discontinuous method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Region of interest for the static example. All faults in the SCEC Community Fault Model Surface Traces are shown. The San Andreas fault is in blue, while faults included
in the simulation are shown in red. The domain of simulation, on which a regular Cartesian background mesh is used, is the gray box. The domain is oriented parallel to plate
motion, so that mp = mp(y). A blowup (located at the blue box) is shown at right to demonstrate the actual simulation mesh, as compared to the faults. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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and conditions on the fault. Exterior domain boundary conditions
used to solve this initial condition are under the same uniform
traction conditions.

At t > 0, the nucleation patch begins to weaken and slip. Friction
is given by a slip-weakening law:

UðsutCN Þ ¼ Us $
ðUs $UdÞ

Dc
sutCN

%% %%: ð33Þ

In this frictional model, the coefficient of friction changes from a
static value of Us to a dynamic value of Ud over a critical slip length
DC. As the patch slips, stress near the patch increases, and a rupture
begins to propagate along the fault with crack-like behavior. During
the dynamic solve, exterior boundary conditions on oX are taken to
be lowest-order radiating boundary conditions relative to the uni-
form stress solution, where

@u
@t

$ ðrðuÞ ' n̂$ sU t̂Þ ¼ 0 ð34Þ

to limit reflections from the exterior boundary as waves propagate
from the rupturing fault.

To test the mesh independence of the method, we rotate the
fault and conditions to a new coordinate system, ð!x; !yÞ, given by
rotating h degrees around (0,0), while keeping the background
simulation mesh as a regular Cartesian mesh in (x,y). The solution
in the rotated coordinate system is independent of h, allowing the
testing of the fault mesh independence of the simulation mesh.
Solutions are summarized in Fig. 5, where tractions have been in-
verted to a continuous, piecewise linear finite element space, and
convergence rates are shown in Fig. 6. Note that convergence is cal-
culated by measuring the error at points corresponding to the
nodes of the fault mesh on the coarsest simulation. Error is mea-
sured relative to a highly-resolved simulation, and L2 norms of this
error are shown. As expected, convergence of slip is nearly second
order, with derivatives being first order. Note that the Crank-Nicol-
son time-stepping scheme used introduces dispersive error at the
patch edges, which are discontinuous in traction. Error at later
times in the dynamic simulation consists largely of a shift in the
location of the rupture front.

Additionally, we compare three techniques for determining
tractions on the fault: our penalized inversion where tractions

Fig. 10. Comparison of static simulations with zero friction and a constant frictional coefficient on a portion of the SCEC CFM in Southern California. In (a) and (b),
nondimensional slip relative to the background loading displacement is shown as both height and color. Positive values represent right-lateral slip; negative values are left-
lateral slip. With nonzero frictional coefficient, faults which are unfavorably oriented do not slip. Here, b@X = bD = 106, while bI = 102 allows some interpenetration to
regularize small kinks.
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are calculated using a continuous, piecewise linear function space,
our penalized inversion using a discontinuous, piecewise linear
function space, and the domain integral method of [25]. The do-
main integral method, which calculates the tractions via a weight-
ing function of stress in a region around the fault, results in a
smoothed solution for tractions, which results in early arrival times
for the rupture. While all approaches converge at the expected
rates, the discontinuous method is the most accurate, as shown
in Fig. 7. Key differences in the traction solutions are shown in
Fig. 8. We note, however, that as long as the rupture front is cap-
tured accurately, the slip and slip rate are robust to variations in
the calculated traction as tractions are integrated before inclusion
in the displacement solution.

4.2. Static simulations on complex fault networks

To demonstrate the type of domains on which we wish to sim-
ulate, a second example problem solves the elasto-static Mode II
problem with constant frictional coefficient on a more realistic do-
main of many faults. This domain includes 26 vertical faults in the
Eastern California Shear Zone from the SCEC Community Fault
Model [40] surface traces, including faults east of the southern
San Andreas fault in southern California, as shown in Fig. 9. The
bulk domain is discretized on a Cartesian, regular mesh with grid
spacing h = 2 km.

Initially, all faults are considered stuck with zero slip, and the
static problem is solved at a fixed loading time. This static problem
consists of Eqs. (16)–(18), in which inertial terms have been ig-
nored to consider long-time, steady-state effects. Then, stress r
on the faults is calculated via Section 3.3, and all fault segments
satisfying (31) given a maximum constant static stress coefficient
Us, are set to fail. On these faults, tractions are set as
f ¼ signðt̂ ' r ' n̂ÞUsrn. This solution is iterated to convergence via
a simple fixed-point iteration, which proves sufficient for simple
problems.

In the two-dimensional, Mode II elasticity problem, any varia-
tion from planar faults results in locking, or zero slip at the kink.
This locking is an artifact of the model, due to the discrete, piece-
wise linear representation of faults which are actually curves. Reg-
ularizing these singularities is easily accomplished under Nitsche’s
method; we relax the no-interpenetration constraint by decreasing
bI, allowing small interpenetration/dilation at kinks to regularize
these singularities. bI is chosen to be 102 by numerical experimen-
tation; at this value, small kinks due to geometric approximations
are regularized while major features of the geometry are respected.

Solutions for slip on faults and stress in the bulk are summa-
rized in Fig. 10 for two problems, one with Us = 0 and one with
Us = 0.7, one estimate for average friction on faults. This example
serves to demonstrate that, even in relatively small simulations,
a large number of geometrically complex faults can be represented
in the simulation.

5. Conclusions

Current research indicates that fault geometry plays an impor-
tant role in the physics of both earthquake dynamics and static
deformation. Accurate depiction of the fault system, including
many, rough faults in a computational mesh has proven a difficult
task for current mesh generation techniques. Generating meshes
which incorporate fault surfaces while maintaining good computa-
tional properties has proven a limitation of current techniques for
fault system simulation.

The XFEM provides a alternate way of including fault system
geometry in computations. We demonstrate an application of the
XFEM, using Nitsche’s method to incorporate the mixed boundary

conditions needed on fault systems for rupture. In this method,
faults are included independently of the background mesh, while
extra basis functions which enable discontinuities and tip singular-
ities are added to the approximation space. Stress on those faults
are calculated using an inversion process, friction is updated, and
the stick/slip nature of the rupture process is accomplished weakly.

We demonstrate the method on a community verification
benchmark, and see good agreement with established solutions
when faults are on element edges and when coordinate systems
are rotated so that faults are no longer on element edges. We com-
pare several methods for inverting a solution on the entire domain
for tractions on the fault to update friction and failure, and find
that, as long as the rupture front is accurately captured, slip and
slip rate calculations are robust to the choice of method. Finally,
the method is demonstrated on a fault system with many, nonpla-
nar faults. This method demonstrates much potential for short-
term crustal deformation simulations on complex fault networks,
and is being actively used in scientific research, as we begin to con-
sider the role of fault system geometry in short-term crustal defor-
mation simulations.
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Appendix A. Nitche’s method

Nitsche’s method enables essential boundary conditions to be
implemented within the weak formulation, relaxing constraints
on the function spaces admitted. This has several advantages to
standard Dirichlet-projection methods. Most notably, Nitsche’s
method in extended finite element methods is identical to that
on a standard method, whereas standard techniques are difficult
if not impossible to use for XFEM. Here we present the method,
deriving first a bilinear form for a general problem, and then note
changes needed to arrive at (19) and (20).

We start by considering a more typical elasticity problem, of

r ' rðuÞ ¼ 0 ðA:1Þ

with constitutive relations as in (3) and (4) and boundary condi-
tions given by:

ujCD ¼ g; ðA:2Þ
rðuÞ ' n̂jCN ¼ f: ðA:3Þ

The strong form is multiplied by test functions v from an appropri-
ate space V and integrated over the domain. Green’s Identity is ap-
plied, resulting in the usual variational form with natural boundary
conditions included:

8v 2 V;
Z

X
!ðvÞ : rðuÞ ¼

Z

C
v ' rðuÞ ' n̂

¼
Z

CN
v ' f þ

Z

CD
v ' rðuÞ ' n̂: ðA:4Þ

In the typical variational formulation, V ¼ V0 is taken to be a subset
of H1

0, functions whose derivatives are square integrable and, cru-
cially, have the additional constraint that vjCD ¼ 0. In this approach,
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the last term in (A.4) vanishes. Under the Galerkin method,
v 2 Vh

0 % V0, and u ¼
P

iui/i þ uCD , where the uCD is taken to match
g on CD, either weakly or at node points. Construction of such a
boundary solution is not well-posed in the XFEM.

Therefore we turn to Nitsche’s method. The standard variational
form (A.4) is equivalent to the minimization of a functional, where
we look to find an approximate solution ~u:

~u & argmin
v2V0

J )½v $ u-; ðA:5Þ

where

J )½w- &
Z

X
!ðwÞ : rðwÞ: ðA:6Þ

This is also known as the strain-energy formulation, where the error
in the solution must minimize the strain-energy functional. To relax
the requirement that this functional be minimized over a function
space which vanishes on the Dirichlet boundary, Nitsche introduces
additional terms, instead minimizing a new functional. The minimi-
zation formulation is no longer over V0, but all of V, and the solution
is given by:

find ~u & argmin
v2V

J ½v $ u-; ðA:7Þ

where

J ½w- &
Z

X
!ðwÞ : rðwÞ $

Z

CD
w ' rðwÞ ' n̂þ b

Z

CD
w 'w: ðA:8Þ

If J achieves its minimum at uh $ u,

@

@d
J ½u$ uh þ dv-jd¼0 ¼ 0 ðA:9Þ

for variations of length d in all possible search directions v 2 V. Dif-
ferentiating, evaluating at d = 0, and substituting boundary condi-
tions and operators for u from (4) and (A.3) results in the
variational formulation:

Bðuh;vÞ ¼ ‘ðvÞ 8 v 2 V; ðA:10Þ

where

Bðu;vÞ ¼
Z

X
!ðvÞ : rðuÞ $

Z

CD
v ' rðuÞ ' n̂þ rðvÞ ' n̂ ' u

þ b
h

Z

CD
v ' uþ ðv ' n̂Þðu ' n̂Þ; ðA:11Þ

‘ðvÞ ¼
Z

CN
v ' f $

Z

@X
rðvÞ ' n̂ ' gþ b@X

h

Z

@X
v ' gþ ðv ' n̂Þðg ' n̂Þ:

ðA:12Þ

This formulation is clearly consistent with (A.4) as when uh = g on
the boundary and vjCD ¼ 0, all terms but those in (A.4) cancel. Han-
sbo and collaborators [22,24,6] have demonstrated coercivity of
(A.11) and therefore optimal convergence rates given large enough
penalty parameters.

To adjust this variational form for rupture simulation as speci-
fied in Section 2, appropriate penalty terms for the various compo-
nents of the interfacial conditions are introduced. The resulting
minimization formulation corresponding to Eqs. (4)–(10) is given
by:

J ½w- &
Z

X
!ðwÞ : rðwÞ $

Z

C
ðswtC ' n̂ÞrnðwÞ þ bI

h

Z

C
jswtC ' n̂j2

$
Z

CD
ðswtCD ' t̂ÞsðwÞ þ bD

h

Z

CD
jswtCD ' t̂j2 $

Z

@X
w ' rðwÞ ' n̂

þ b@X

h

Z

@X
jwj2 þ jw ' n̂j2 ðA:13Þ

and

J ½w- &
Z

X
qw ' @

2w
@t2

þ
Z

X
!ðwÞ : rðwÞ $

Z

C
ðswtC ' n̂ÞrnðwÞ

þ bI

h

Z

C
jswtC ' n̂j2 $

Z

CD
ðswtCD ' t̂ÞsðwÞ

þ bD

h

Z

CD
ðswtCD ' t̂jÞj s

@w
@t

tCD ' t̂
! "

$
Z

@X
w ' rðwÞ ' n̂

þ b@X

h

Z

@X
jwj2 þ jw ' n̂j2 ðA:14Þ

for the quasistatic and dynamic problems, respectively. Applying
(A.9) to these bilinear forms result in Eqs. (16)–(20).
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