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Transition regimes for growing crack populations
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Numerous observational papers on crack populations in the material and geological sciences suggest that
cracks evolve in such a way as to organize in specific patterns. However, very little is known about how and
why the self-organization comes about. We use a model of tensilelike cracks with friction in order to study the
time and space evolution of normal faults. The premise of this spring-block analog is that one could model
crustal deformation for long time scales assuming a brittle layer coupled to a ductile substrate. The long
time-scale physics incorporated into the model are slip-weakening friction, strain-hardening rheology for
coupling the two layers, and randomly distributed yield strength of the brittle layer. We investigate how the
evolution of populations of cracks depends on these three effects, using linear stability analysis to calculate the
stable regimes for the friction as well as numerical simulations to model the nonlinear interactions of the
cracks. We find that we can scale the problem to reduce the relevant parameters to a single one, the slip
weakening. We show that the distribution of lengths of active cracks makes a transition from an exponential at
very low strains, where crack nucleation prevails, to a power law at low to intermediate strains, where crack
growth prevails, to an exponential distribution of the largest cracks at higher strains, where coalescence
dominates. There is evidence of these different length distributions in continental and oceanic normal faults.
For continental deformation the strain is low, and the faults have power-law frequency-size distributions. For
mid-ocean ridge flanks the strain is greater, up to an order of magnitude higher than the continental strain, and
faults have exponential-like frequency-size distributions. No theory has been offered to explain this difference
in the distributions of continental and mid-ocean faults. In this paper we argue that they are indicative of
different stages of evolution. The former faults are at an early stage of relatively small deformation, while the
latter are at a later stage of the evolution. For high strain the faults reach a saturation regime with system size
cracks evenly spaced in proportion to the brittle layer thickness. We asymptotically approximate the time space
evolution of faults as a long time-scale phenomenon, thereby avoiding modeling the short time-scale earth-
quakes. We show that this assumption is valid, which implies that the faults that creep and faults with
earthquakes display the same time and space evolutions.
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I. INTRODUCTION

Geologists have known for over 40 years and mater
scientists for somewhat less that if a brittle layer on a pla
substrate is stretched, a state will eventually be reache
which the layer contains system sized cracks that are ev
spaced, with a spacing proportional to the layer thickne
The explanation for this saturated case is trivial: each cr
is spaced to avoid the stress relaxation zone of its neigh
the width of which scales with layer thickness@1#. The
deeper question, addressed here, is how does the sy
evolve from its initial uncracked state to this saturated st

Geologists have recently observed that the population
faults ~shear cracks! often exhibit power-law length distribu
tions @2,3#. It has been suggested that this fault size distri
tion is what gives rise to the same kind of distribution lo
observed for earthquakes and known as the Gutenb
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Richter relation@4,5#. Such power laws are characteristic
self-organized critical systems@6–10#, sometimes considere
‘‘universal’’ states of the system. However, exponential fa
size distributions have also been observed@11#. This opens
the possibility that these two populations are transition
gimes between the end-member states described abov
this is true then, for these systems, power law distributio
occupy only a portion of the phase space.

Geological faults grow episodically by frictional stick-sli
instabilities, resulting in earthquakes. Here, however, we
interested in the long time-scale phenomena. Let us cons
the case of a region of the lithosphere undergoing tens
producing deformation of the upper brittle layer, the schiz
sphere. The schizosphere behaves as a brittle material,
localization of strain causes faults to grow. For time scales
hundreds of thousands of years or longer, the faults nucle
propagate, and coalesce, organizing themselves in a par
lar manner. Field data of faults can only serve scientists
snapshots of what state a system is in today. Howeve
more detailed theory of how systems of faults evolve a
why they organize themselves in such states may be pos
by studying models that can be set up as simplified case
geological systems.

-
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In that spirit we propose a model that explores the diff
ent distributions observed during the evolution of a popu
tion of cracks as a function of strain. Introducing certa
simplifications and assumptions to the problem effectiv
determines which mechanisms we consider important in p
ducing such behaviors. We assume there are only a few
ways in which the nonlinear interaction of cracks takes pla
Agreement of our results with observations makes the c
for their importance. The model we introduce in this pap
simulates an upper brittle layer coupled to a ductile substr
We describe a two-dimensional quasistatic system wh
cracks nucleate and evolve in the brittle layer in respons
the deformation of the ductile layer. The displacement field
given as a scalar field in the direction of stretching. T
scalar displacement field models tensile cracks. The unde
ing assumption is that the stress interactions of tensile cra
are similar to those of normal faults. This can be argued
noting that in the planar view the stress field around the
of a normal fault~mode III shear crack! are exactly sym-
metrical to those of tension cracks. Although the stress in
case of normal faults is due to shearing, whereas in the
of tension cracks it is due to tension, the interaction of th
symmetrical fields around cracks is what we are intereste
capturing. The physics determining the behavior of the s
tem studied here may be summarized as follows.

(a) The friction law of the cracks. This model mimics
faulting on the crust. In order to get localization of strain
important physical mechanism is slip weakening, which r
ders an already cracked surface weaker than before and
more likely to slip again as more strain is loaded into t
system. The crack tips have a much higher stress conce
tion than the area around them and the crack propagates
response to further extension of the bottom layer. The s
weakening function used in this paper is modeled as an
tially linear decay of yield strength of the brittle material. W
use linear stability analysis to study the parameter spac
slip weakening, and we find a wide range of values for wh
the system is stable. This parameter space has a second
able, the rheology of the ductile layer, which is the ne
physical parameter in the problem.

(b) The constitutive law of the two layer interface. In the
case of this model we study two-dimensional~2D! growth of
cracks that are as deep as the top layer. The ductile subs
is simulated as a plastic layer with strain hardening. Ho
ever, as we will see, we will be able to scale this part of
problem out.

(c) The heterogeneity of the brittle layer. The crust can be
thought of as a brittle layer of variable yield strength due
imperfections or variations such as inclusions, prior ruptu
variable material composition, etc. This disorder is mode
here as a randomly distributed initial yield strength thresh
of the brittle layer. This aspect of the model resembles p
vious work done by Colina, de Arcangelis, and Roux@12#
using an electric analog of a layer of fuses coupled by re
tors to a bottom layer where a uniform electric field w
imposed. They varied the heterogeneity introduced in
system and looked at the effects it produced to their syst
Similarly we also observe that the number of cracks obtai
for a given strain depends on the disorder. For very hom
05610
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geneous systems and at low strain, slip localizes mostly
large evenly spaced cracks, while for more heterogene
systems at the same strain, slip gets distributed over a ra
of sizes of cracks.

Given these parameters, we found that the growth
populations of cracks is characterized by three regimes
function of strain, which have three distinct crack size dis
butions. Initially, as the system is strained, we observe
increasing number of new cracks. This regime is domina
by the heterogeneities, and leads to an exponential distr
tion. This is the nucleation regime. With further stain, wh
the slip weakening effects become comparable to the di
der, the cracks begin to grow, and the distribution approac
a power law. This is the growth regime. As strain continu
more cracks are coalescing to form longer cracks than th
are cracks nucleating, and therefore the number of ac
cracks begins to decrease. The power law becomes disto
with the largest cracks approaching an exponential distri
tion. This is the coalescence regime. Finally, for even hig
strains the system organizes into the maximum numbe
cracks it can hold for any additional strain. This is the sa
ration regime. At this stage the cracks have grown into
pattern of long arrays that are spaced apart proportionall
the depth of the brittle layer, with the largest cracks hav
an exponential distribution. Figure 1 is a simulation using
above model, which shows a snapshot of a network of cra
in the planar view at increasing strain. In the sections
follow we study these populations and explain their inter
tion mechanisms.

We have organized the sections as follows. In Sec. II
describe the model. Section III has the numerical results
the stability analysis with Sec. IV briefly comparing the
results to observations. The last section contains our con
sions.

II. THE MODEL

We want to study the problem of the crack populati
formation and its evolution on a brittle layer that is driven
the bottom by an extending layer. First, the lower plas
layer is extended by a small amount. That in turn strains
top layer whose equilibrium requirement is satisfied wh
the total stresses applied to it are lower than its yi
strength. If at any point on the brittle layer the yield streng
is exceeded, a crack is allowed to form with slip openingh.
The crack accumulates slip until the stress on it satisfies
boundary condition, in other words the stress is less than
yield strength. Once that condition is satisfied, the syst
has reached quasistatic equilibrium. It gets driven by ad
tional extension applied to the bottom layer, and the proc
repeats itself.

Figure 2 shows a schematic representation of the
cretized model. It is a two-dimensional system of spri
blocks with thex andy dimensions scaled by the thickness
the top layer. The resolution in the plane can be effectiv
changed by varying the spring constantskx and ky . All
lengths in the problem scale withL, the width of the brittle
layer. We therefore approximate the 3D problem as a
problem. It is reasonable to expect that the in-depth slip p
file of cracks is important in examining their growth rat
and their shapes. The representation of the vertical stres
5-2
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TRANSITION REGIMES FOR GROWING CRACK . . . PHYSICAL REVIEW E65 056105
the leaf springs is an approximation of the fracture energG
of a crack growing in three dimensions. Of course, this fu
tion oversimplifies the rheological behavior of real mater
interfaces, which is much more complicated but has
known analytical form.

Another simplification in the model is the use of a sca
displacement in the direction parallel to that of the loadin
This is an acceptable first-order approximation to the d
placement field for the case of uniform extension. An imp
tant ingredient of this model is the dynamics introduc

FIG. 1. Snapshot of model simulation shows plan view o
network of cracks at different strain values. The axes are scale
the brittle layer thickness. The cracks propagate along the axis
mal to the direction of extension. Crack evolution with straine. ~a!
e50.064,~b! e50.072,~c! e50.08.
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through the slip weakening friction law. The slip weakeni
law drives much of the localization of strain on the surfa
and that, in turn, leads to avalanches of cracking eve
@13,14#. The effects of this friction law will be further ana
lyzed in the following section. Another feature of this mod
is the coupling of the top layer to a bottom layer through t
propagation resistance stress. While we have posed the p
lem so that we can study different rheologies, we will foc
here on the small disorder limit where the different rheo
gies can be effectively scaled out of the problem.

The dynamic 2D scalar model for the brittle layer w
examine is given by the Klein-Gordon equation

1

c2

]2u

]t2 5
]2u

]x2 1
]2u

]y22
~u2U !

L2 , ~1!

whereu is the displacement,t is the time,x and y are the
perpendicular directions,U is the displacement of the lowe
ductile layer,c is the wave speed, andL is the brittle layer
depth. The first three terms are from the wave equation,
scalar approximation of the linear elasticity of the stress
the horizontal direction. The last term is a linearized appro

by
r-

FIG. 2. Schematic representation of the model. Looking fro
the top, there are coil springs in they direction and coil springs in
thex direction. The blocks can move in thex direction only. A crack
is shown as an opening of a certain distancehi j in the middle of
block ~i,j!. Looking from the side, there are leaf springs in thez
direction such that the spring coefficient ratioskx /kz andky /kz set
the resolution scale. The lower ductile layer is stretched and dr
the upper brittle layer through the leaf springs.~The extension di-
rectionx is rotated 90° in this figure with respect to Fig. 1!.
5-3
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SPYROPOULOS, SCHOLZ, AND SHAW PHYSICAL REVIEW E65 056105
mation of the stress in the vertical direction that couples
two layers. The bottom layer has a constant~homogeneous!
strain boundary condition,

]2U

]x]t
5n. ~2!

We use periodic boundary conditions in thex and y direc-
tions.

We want to study the problem of crack growth, which h
a much larger time scale than that of wave propagation,~i.e.,
earthquakes will not be treated in this paper!. Therefore, we
hypothesize that the propagation and organization of fa
are long time-scale phenomena, which can be approxim
by letting the wave speed, i.e., the speed of earthqu
propagation, approach infinity. Separation of these two t
scales, wherec→`, gives the following Poisson problem:

]2u

]x2 1
]2u

]y22
~u2U !

L2 50. ~3!

In order to study the originally proposed model of a brit
layer driven by an elastic bottom layer, we must construct
top layer with brittle properties. This will be very simpl
described by introducing a yield strength threshold bound
condition. The yield strength is constructed as

F5H F0 , h50,

F01mh2
ãh

11ãh
, h.0,

~4!

where ã.0 and m.0. We defineh to be the integrated
strain across a discontinuous boundary, which is given as
following limit:

h~x!5 lim
e→0

E
x

x1e ]u

]x
dx. ~5!

In the case where there is no crack, the yield threshold is
given byF0(x,y) as a random distribution of strength. In th
case where there is a crack, the yield strength includes a
weakening friction law with no time healing whereF0(x,y)
is the stochastic part of the function given att50.

Our choice of the slip weakening function for the streng
of the material is meant to capture the essential phys
though it is a huge simplification of all that occurs in ma
rial failure. The biggest simplification is that here we co
sider fracture energies associated only with interfaces, w
there are bulk effects associated with process zones@3,15#
and plastic deformation@16#, which may be important as
well. Our main justifications for our simplification is that th
slip weakening is generally considered a central compon
of the breakdown process, and that it makes the prob
much more tractable and computationally efficient, and c
tures well the observations, as we will see. Moreover, i
only a linearization of the slip weakening that dominates
model behavior we examine here.

The equations of motion are symmetric with respect to
addition of a constant toU and F0 , so only differences in
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the values ofu are relevant to the dynamics of the syste
The parameterm determines an effective rheology in th
coupling of the two layers. For smallh we can simplify the
equation of the yield strength by incorporating the stra
hardening rheology inã. Therefore, we can study a collec
tive effect in the slip weakening parameter by defininga
5ã2m,

F5F02
ah

11ah
, h>0, ~6!

an approximation of Eq.~4! valid to the linear order. For
small h, we could drop the denominator altogether, but
keep it here in Eq.~6! so as to keep the strength formulatio
physical for all values ofh. Thus, we can write the boundar
condition along a cracked interface in static equilibrium a

1

2 S ]u

]xU
x5crack2

1
]u

]xU
x5crack1

D<F02
ah

11ah
, ~7!

where the stresses on that point have to be equal to or
than the yield strength. If the stresses at any point exceed
yield threshold, then the crack slips more until the bound
condition is satisfied. In this paper we show that these eff
tive parameters alone can capture many of the most inte
ing features of crack networks. The next point we have
address is howh gets updated. We assumed that the cra
relax to a quasistatic steady state faster than the loading
n and that]h/]t does not affect the way the cracks w
develop and their organization. We test this hypothesis
merically, and in the following section we show that it hold
true.

To discretize the model, it is convenient to make a chan
of coordinates. We consider the variablewi j 5ui j 2Ui j rep-
resenting the displacement of the upper layer relative to
lower layer evaluated at each node; a crack, when it forms
taken to reside at the center of the node and has the ope
hi j at that node. Thus, the displacement just to the right o
crack of width hi j is ui j

15wi j 1hi j /21Ui j while the dis-
placement just on the other side isui j

25wi j 2hi j /21Ui j . In
these variables, the equation of the model is

kx~wi 11 j22wi j 1wi 21 j !1ky~wi j 1122wi j 1wi j 21!

1
kx

2
~hi 11 j2hi 21 j !2kzwi j 50, ~8!

with i 51→Nx and j 51→Ny ; Nx andNy are the number of
grid points in thex and y directions. This is the discrete
version of Eq.~3! with kx[1/Dx2, ky[1/Dy2, kz[1/L2 .
The square lattice used here for the scalar field of the
placement introduces an inherent anisotropy to the mo
However, this effect is rather inconsequential in the realm
this study since we have tensile straining of the mater
which is in itself anisotropic, leading to surface cracks th
propagate mostly in the direction normal to that of the e
tensional force.

The updating of the system occurs as follows. Firs
small strain stepndt is made, then the stressess i j are cal-
5-4
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TRANSITION REGIMES FOR GROWING CRACK . . . PHYSICAL REVIEW E65 056105
culated for all nodes. If the stresses are above threshold
h gets updated. The slip displacement of the cracks,h, get
updated by adding smallDhi j increments to it, and recalcu
lating the stresses on the brittle layer until the equilibriu
equation is satisfied. The equation of evolution ofh is

hi j
n115hi j

n 1Dhi j , ~9!

where n is the relaxation step of the time scale of ear
quakes. There are various ways of updatingh. Here we
present two different functions for calculatingDhi j . One
way is to compute it as a percentage of the stress drop
the other is to compute it as a constant step increment.

Dhi j 5H p
F i j

kx
S s i j

F i j
21D ,

s i j

F i j
>1,

0,
s i j

F i j
,1,

~10!

or

Dhi j 5H Dh,
s i j

F i j
>1,

0,
s i j

F i j
,1.

~11!

p takes a value from 0,p,1 and is a percentage of th
stress drop. Naturally the question to ask is: how do
results depend on the two choices of functions? As we
see, they do not.

III. RESULTS AND ANALYSIS OF THE MODEL

In this section we shall discuss the linear stability analy
as well as present the results obtained by isolating and c
bining the parameters, treating first the irrelevant, and t
the relevant parameters to the dynamics.

A. Linear stability analysis

Let us first consider what happens with the sl
weakening instability we have introduced in the model.
linear stability analysis of the growth of Fourier modes w
show for which values ofa the instability will grow. Starting
from the wave equation, let us expand aboutu5U,

]2u

]x2 1
]2u

]y22
u

L2 5
1

c2

]2u

]t2 ~12!

and now the boundary condition is

]u

]xU
x5crack

52
ah

11ah
. ~13!

F0 does not appear in the equation since it is a first-or
term that satisfies the boundary condition of the mean
placement. Linearizing the equation of a Fourier mode e
(2kxx1ikyy1Vt) we get a dispersion relation of
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1

L2D . ~14!

For stability we needV to be imaginary, i.e.,a2,ky
2

11/L2. When cracks nucleate, the wave numberky is very
large, so the restriction ona is easily satisfied, whereas fo
very long cracksky approaches zero and in order to keep t
stability we must havea,1/L2. This imposes an uppe
bound fora. A lower bound is given from the fact that fo
the slip weakening to localize strain, it must at least beat
strain hardening rheology. This means thatã2m.0 and
therefore, 0,a,1/L2. In the following simulations we have
setL[1, without loss of generality, in which case the boun
on a are 0,a,1. We distinguish between two types o
parameters: those that are irrelevant or can be scaled out
those that remain relevant. We look at each in turn.

B. Irrelevant parameters

For large enough systems, the system size is irrelev
For the distribution of breaking strengths, we letF0(x,y)
5F01gj(x,y) wherej is a random number between 0 an
1. For small disorder, wheng!1, a number of parameter
can be scaled out. First, we will see a number of regimes
strain is increased, but all of them, forg small, occur when
h!1. Thus, the earlier approximations of absorbing the r
ology into a is valid, and we only need to consider the o
parametera for the strength evolution. A second scaling c
be made to removeg itself: by dividing the strain incremen
above F0 by g, we get the brittle strain excess«[(nt
2F0)/g which then collapses the effective loading forg
ranging over many orders of magnitude. Figure 3 illustra
this result through the overlay of a number of curves w
different values ofg. Figure 3 shows the fraction of activ
sites as a function of«, for g ranging from 1025 to 1022.

FIG. 3. Fraction of active sites evolving with increased stra
On the horizontal axis, excess strain«[(nt2F0)/g is normalized
by disorder. Disorderg51024, 1023, 1022, with thicker lines cor-
responding to smallerg. Note the overlaying of curves. The thre
different strain regimes are labeled.
5-5



o
st
in
in
in

o-
u
th
s
t
o

o
iv
a
h
p
e

le
tly
o

-

c-

o
ro

of
al

ib-
sis
ce

that
ing
are
lip

tion

n
ed

lip
ase
ld

ng
ip
t

ay
ion

ains.

ica-

are
ses

n-

eep
rge

of

a
that
ors
ear
ps

wo
e of
we
im-
sites
ike
ve
on-
sites
ns

,

th
i
e
y

n-
,

ine
er

SPYROPOULOS, SCHOLZ, AND SHAW PHYSICAL REVIEW E65 056105
Active sites are the sites that have broken recently. We c
sider sites that have broken recently, as we are intere
here in what part of the network is currently accommodat
strain. For all cases we observe the following: at the beg
ning the fraction of active sites increases with elastic stra
This indicates that initially nucleation is the dominant pr
cess. When the slip displacement on the crack is big eno
for slip weakening to become comparable to the disorder,
slip weakening begins to dominate, and the slip localizes
that the number of active sites starts to decrease; this is
growth regime. The system then transitions to a regime
coalescence of cracks where the rate of coalescence d
nates that of the nucleation. Eventually, the fraction of act
sites asymptotes to the saturated regime where we get cr
that are evenly spaced about one layer thickness apart. T
four regimes are central to the behaviors for the general
rameter space of the model, and we will return to them wh
we later examine the distribution of sizes of cracks.

Grid resolution does not play a role at the large sca
and we find stable distributions of crack sizes for sufficien
resolved grids. Event dynamics, through the relieving
stress via the updating ofh, is also irrelevant. Figure 4 illus
trates this with a range of choices of parametersp andDh in
Eqs.~10! and ~11!. The first two cases shown are with fra
tion updates of stress excess above threshold, from Eq.~10!,
with the fractionp taking the values 0.4 and 0.7. The tw
other cases shown are with constant slip increments, f
Eq. ~11!, where the incrementDh was equal to 1026 and
1025. The figure shows that, for all the different ways
updatingh, the three regimes of evolution of cracks are

FIG. 4. Number of cracks per unit area as a function of strain«,
for four different cases of updating the slip displacementh at each
strain step. The relaxation is done using slow increments of
displacementh such that the total stress on the crack is less than
yield threshold. For the first two cases, we let the increments b
fraction of the stress above threshold; these cases are shown b
two thick lines, with the solid line having a smaller fractional i
crement compared to the dashed line. For the other two cases
take constantdh strain opening steps; here again the solid thin l
has a smaller increment relative to the dashed thin line. Obs
that the curves all basically overlay.
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most identical. This means that the details of]h/]t are not
important for relaxing the system to its quasistatic equil
rium within each loading step. This validates our hypothe
that we can study the growth of faults in time and spa
without necessarily modeling the earthquakes. Faults
grow by earthquakes and faults that creep, all else be
equal, have indistinguishable spatial properties. Thus, we
left with one fundamental relevant parameter, the net s
weakeninga.

C. Slip weakening

The linear stability analysis above shows that the equa
for the crack evolution has a stable regime fora between 0
and 1. In the case ofa50, we expect to get no localizatio
of deformation into cracks. The dynamics are controll
solely by the randomly distributed yield threshold att50, so
each site will crack according to that distribution and the s
localization on the cracks remains uncorrelated. For the c
of a51, we have marginal stability where a crack cou
grow for very small strains. The crack will keep weakeni
the more it slips since its friction is a function of the sl
displacement. Fora.1, it will be unstable in the sense tha
there will be no quasistatic equilibrium solution ofh such
that the boundary condition is satisfied. We get a runaw
crack as the more it slips to satisfy the threshold condit
the more it weakens.

Figure 5 shows six simulations done with differenta val-
ues. These are snapshots of a part of the grid at given str
The figure is organized in order of decreasinga from 1 to 0.
We show the particular six values, because they are ind
tive of the different behaviors of the model. Figures 5~a! and
5~b! are shown at lower strains than the rest, because they
at or near the upper limit and any higher loading cau
catastrophic failure. It is clear that whena→1.0, all the de-
formation localizes onto few cracks which soon grow u
stable. For intermediate values ofa, Figs. 5~c! and 5~d! the
cracks are stable and their number increases while they k
the separation distance of one depth layer between la
cracks. Asa→0, Figs. 5~e! and 5~f!, the deformation does
not localize, and we do not get a full spectrum of sizes
cracks.

Before continuing, we should mention how we define
crack. We take a crack to be the network of all the nodes
have touching neighbors. We can vary the allowed neighb
as either the four nearest nodes or only the two collin
nodes in the direction of propagation. So, if two crack ti
are offset by one grid point in the diagonal@e.g., ~i,j! and
( i 11,j 11)#, they are not counted as one crack but as t
separate ones. We also keep track of one other featur
crack openings, which is when it last opened. In this way,
can distinguish between active and inactive sites. This is
portant, because as strain accumulates, more and more
are cracked, and we eventually run into a percolationl
behavior if we consider the connectivity of all sites that ha
ever cracked. This leads to sensitivity in how we define c
nectedness and cracks. If, instead, we consider only the
that have broken recently, we find well behaved distributio
of cracks, which are insensitive to choices~such as how re-
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FIG. 5. Oblique angle view of simulations for different slip weakening values,a. x axis is scaled by the brittle layer thickness. Sl
displacement is ploted on thez axis. ~a! a51.0, e50.02%, and~b! a50.9, e50.07%; cracks grow unstable for additional strain,e. ~c!
a50.4,e50.19%. The system evolves in a stable manner.~d! a50.2,e50.19%.~e! a50.1,e50.19%. Deformation is less localized.~f!
a50.0, e50.19%. There is no localization of deformation.
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cently they have broken!. Thus, when we speak of cracks, w
speak of connected elements that have broken within the
time ~equivalently strain! interval D«.

Figure 6 shows the fraction of active sites as a function
the elastic strain as we varya. Active sites are the sites tha
have broken recently. There are four data sets altoge
showing different values ofa. We see, as described befor
four different regimes, the nucleation, the growth, the c
lescence, and the saturation. Asa decreases, we observe th
the maximum fraction of active sites increases while it sh
towards larger strains.

Let us now examine the distribution of active crack siz
in the different regimes. Here we use a fixed value ofa, a
50.2. Figure 7 shows the distribution of crack lengths, pl
05610
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ted on a log-linear scale, for small loading. We see expon
tial distributions of lengths for the very smallest loadin
with slopes decreasing as the fraction of active sites
creases. Towards the end of this regime, we see crack len
exceeding the extrapolated exponential distribution, as
upward curvature indicates. These distributions approac
power law, as Fig. 8 shows, plotting now on a log-log sca
for the full range of loading. Here we see the exponen
distributions for low loading falling off, then the approach
a power-law, with slope around22, indicated by the dashe
line. At the highest values of strain, the largest sizes app
to asymptote, approaching a bump on this plot, while
smaller sizes remain power-law-like, though somewhat
minished in number. Figure 9 probes this largest size dis
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bution, this time plotted on a log-linear scale. We see h
then the clear exponential distribution of these largest cra
in the high strain saturation regime.

This behavior is the same for other values ofa, with only
some quantitative differences. Figure 10 shows the relev
distribution curves fora50.4, indicating a similar power
law slope value for the growth regime, with a slightly steep
but nevertheless exponential distribution for the larg
cracks in the saturation regime.

FIG. 6. Fraction of active sites as a function of strain,«, for four
different values of slip weakeninga. In all four cases shown there i
a nucleation regime~the number of cracks increases with strain!,
the growth regime~the number of cracks peaks!, a coalescence
regime ~the number of cracks starts to decrease!, and a saturation
regime ~constant density of cracks spaced one layer thickn
apart!. As a decreases, the maximum number of cracks per unit a
increases while it shifts towards larger strains. Weakeninga50.1,
0.2, 0.3, 0.4. Thicker lines correspond to smallera.

FIG. 7. Log-linear plot of distribution of sizes for increase
strain, at low strain values in the nucleation regime. Strain increa
from left to right, with the highest strain indicated by the thick lin
Note the initially exponential distribution.
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IV. COMPARISON WITH DATA AND A PHYSICAL MODEL

Geologic data from normal faults show the main featu
we have discussed in the paper. Fig. 11~a! shows data from
the surface of Venus where normal faults were radar ima
during the Magellan mission in 1989@17–19#. SAR mapping
of 1750 faults on the low plains of Venus, which have u
dergone extension, reveals a clear power-law scaling
frequency-size distribution with an exponent of22.02. The
resolution of that image was 70 m per pixel and the scan
area was about 104 km2. The total strain for the Fig. 11~a!
dataset is calculated to be around 1%.

Figure 11~b! is a log-linear plot of the frequency-size dis
tributions of normal faults sonar imaged from the flanks
mid-ocean ridges. Two different strains are shown, nam
5% and 10%, the second being an order of magnitude la
than in Fig. 11~a!. The distributions observed here are clea
exponential. This is a distinct regime in the fault growt
which would correspond to the coalescence regime of
model. Recently, we have demonstrated the strain trans
from power law to exponential fault distributions in a sing
geological site@21#. Finally, Fig. 11~c! shows the distance
between tensile cracks as it scales with the thickness of
bed they are in. The two kinds of points indicate two diffe
ent rock types, and they both show a linear scaling. T
graph corresponds to the saturation regime where we obs
that the system size cracks about a thickness layer apar

Finally, in a physical model in which tensile cracks for
in a thin clay layer stretched on a rubber sheet, we obser
the same crack population history as Fig. 3, together with
corresponding transition from power law to exponential s
distributions@22#.

V. CONCLUSIONS

In this paper we have shown that a model with only sl
weakening instability, strain-hardening rheology, and ra

s
a

es

FIG. 8. Log-log plot of distribution of sizes for increased stra
Note the power-law distribution at intermediate strain, indicated
the thickest line, and the asymptotic distribution at higher stra
indicated by the other thick line. The dashed line shows a slop
22 for comparison.
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FIG. 9. Log-linear plot of distribution of sizes for increase
strain, at large strain values. Note the exponential distribution
largest events at large strains. The highest strain is highlighted
the thicker line.

FIG. 10. Distribution of sizes of cracks for larger value of t
weakening,a50.4. ~a! Log-log plot; note the similarity with Fig. 8
~b! Log-linear plot; note again the exponential distribution at lar
strain, as in Fig. 9, but here with a higher slope.
05610
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FIG. 11. Geological evidence of the three evolution regimes.~a!
Power-law distribution~exponent is22.02! for normal faults on
Venus. Strain is around 1%. Figure from Scholz, 1997@4#. ~b! Log-
linear plot shows exponential frequency-size distributions for m
ocean normal faults at 5% and 10% strains. Figure from Co
et al., 1993 @11#. ~c! Tensile crack spacing scales with the lay
thickness. The two point types are for two different types of ro
This saturation regime has system-size cracks, one thickness
apart. Figure from Price; data from Bogdanov, Kirollova, and N
vikova @20#.
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domly distributed thresholds of yield strength can be use
study the evolution of a population of cracks in time a
space. For very strong slip weakening,a.1, cracks above a
certain length never relax to a steady state, i.e., catastro
failure. For strain hardening,a,0, there is no localization o
deformation. For intermediate values of slip weakening
,a,1, a complex population of faults emerges.

The model offers a new way to look at the evolution
populations of cracks. Three regimes are observed with
creasing strain. At very low strain, the cracks are short,
crack population is dilute, there is very little interactio
amongst the stress fields around them, and disorder d
nates. The distributions here are exponential, with the s
of the exponential changing with increasing crack dens
With additional extension, the cracks propagate in the dir
tion normal to the direction of extension. Disorder and we
ening compete, and the distribution of sizes of cracks is c
acterized by a power law. Only at the beginning do cra
grow solely by propagation of their tips, because they so
start to interact with other cracks. The stress field interacti
shield unfavorably positioned cracks, which no longer ac
mulate slip or grow in length, and also inhibit nucleation
new cracks. As the population of cracks self-organiz
cracks begin to coalesce, shifting the main process of gro
from propagation to coalescence. Their stress fields merg
form larger stress-free zones of trapped, dead cracks.
coalescence of the cracks as a result of the higher s
signifies a transition in the organization of the cracks to
regime in which the largest cracks have an exponential
A.
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tribution. As the cracks grow longer, shadow zones exte
over a distance that scales with the depth of the brittle la
The system reaches the maximum number of cracks allo
according to the stress interactions, i.e., saturation, chara
ized by evenly spaced system sized cracks. All three regi
are observed in natural systems, and in a physical mode

The model also suggests that, all other things being eq
faults that creep and faults that have earthquakes evolv
the same way. This is because the fault growth interacti
occur with the accumulated strain, not strain incremen
Therefore, we need not model earthquakes in order to st
fault dynamics and fault interactions. Separating the t
time scales of the problem is a valid approximation. Fina
the regime characterized by power laws occupies only a p
tion of the phase space of this system, although this is
portion most commonly observed for faults and earthquak
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