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Transition regimes for growing crack populations
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Numerous observational papers on crack populations in the material and geological sciences suggest that
cracks evolve in such a way as to organize in specific patterns. However, very little is known about how and
why the self-organization comes about. We use a model of tensilelike cracks with friction in order to study the
time and space evolution of normal faults. The premise of this spring-block analog is that one could model
crustal deformation for long time scales assuming a brittle layer coupled to a ductile substrate. The long
time-scale physics incorporated into the model are slip-weakening friction, strain-hardening rheology for
coupling the two layers, and randomly distributed yield strength of the brittle layer. We investigate how the
evolution of populations of cracks depends on these three effects, using linear stability analysis to calculate the
stable regimes for the friction as well as numerical simulations to model the nonlinear interactions of the
cracks. We find that we can scale the problem to reduce the relevant parameters to a single one, the slip
weakening. We show that the distribution of lengths of active cracks makes a transition from an exponential at
very low strains, where crack nucleation prevails, to a power law at low to intermediate strains, where crack
growth prevails, to an exponential distribution of the largest cracks at higher strains, where coalescence
dominates. There is evidence of these different length distributions in continental and oceanic nhormal faults.
For continental deformation the strain is low, and the faults have power-law frequency-size distributions. For
mid-ocean ridge flanks the strain is greater, up to an order of magnitude higher than the continental strain, and
faults have exponential-like frequency-size distributions. No theory has been offered to explain this difference
in the distributions of continental and mid-ocean faults. In this paper we argue that they are indicative of
different stages of evolution. The former faults are at an early stage of relatively small deformation, while the
latter are at a later stage of the evolution. For high strain the faults reach a saturation regime with system size
cracks evenly spaced in proportion to the brittle layer thickness. We asymptotically approximate the time space
evolution of faults as a long time-scale phenomenon, thereby avoiding modeling the short time-scale earth-
quakes. We show that this assumption is valid, which implies that the faults that creep and faults with
earthquakes display the same time and space evolutions.
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I. INTRODUCTION Richter relation[4,5]. Such power laws are characteristic of
self-organized critical systeni§—10], sometimes considered
Geologists have known for over 40 years and materialSuniversal” states of the system. However, exponential fault
scientists for somewhat less that if a brittle layer on a plastisize distributions have also been obsery&tl]. This opens
substrate is stretched, a state will eventually be reached ithe possibility that these two populations are transition re-
which the layer contains system sized cracks that are evenlyimes between the end-member states described above. If
spaced, with a spacing proportional to the layer thicknessthis is true then, for these systems, power law distributions
The explanation for this saturated case is trivial: each crackccupy only a portion of the phase space.
is spaced to avoid the stress relaxation zone of its neighbor, Geological faults grow episodically by frictional stick-slip
the width of which scales with layer thickne$&]. The instabilities, resulting in earthquakes. Here, however, we are
deeper question, addressed here, is how does the systémterested in the long time-scale phenomena. Let us consider
evolve from its initial uncracked state to this saturated statethe case of a region of the lithosphere undergoing tension
Geologists have recently observed that the populations giroducing deformation of the upper brittle layer, the schizo-
faults (shear cracksoften exhibit power-law length distribu- sphere. The schizosphere behaves as a brittle material, and
tions[2,3]. It has been suggested that this fault size distribuocalization of strain causes faults to grow. For time scales of
tion is what gives rise to the same kind of distribution longhundreds of thousands of years or longer, the faults nucleate,
observed for earthquakes and known as the Gutenbergropagate, and coalesce, organizing themselves in a particu-
lar manner. Field data of faults can only serve scientists as
snapshots of what state a system is in today. However, a
*Now at Exxon-Mobil Upstream Research, Houston, TX; Elec-more detailed theory of how systems of faults evolve and
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In that spirit we propose a model that explores the differ-geneous systems and at low strain, slip localizes mostly on
ent distributions observed during the evolution of a populalarge evenly spaced cracks, while for more heterogeneous
tion of cracks as a function of strain. Introducing certainSystems at the same strain, slip gets distributed over a range
simplifications and assumptions to the problem effectivelyof Sizes of cracks.
determines which mechanisms we consider important in pro- Given these parameters, we found that the growth of
ducing such behaviors. We assume there are only a few k pulations of cracks is characterized by three regimes as a

; : . . . nction of strain, which have three distinct crack size distri-
ways in which the nonlinear interaction of cracks takes placebutions Initially, as the system is strained, we observe an

Agreement of our results with observations makes the casgcreasing number of new cracks. This regime is dominated
for their importance. The model we introduce in this paperpy the heterogeneities, and leads to an exponential distribu-
simulates an upper brittle layer coupled to a ductile substratgjon. This is the nucleation regime. With further stain, when
We describe a two-dimensional quasistatic system wherghe slip weakening effects become comparable to the disor-
cracks nucleate and evolve in the brittle layer in response tger, the cracks begin to grow, and the distribution approaches
the deformation of the ductile layer. The displacement field isa power law. This is the growth regime. As strain continues,
given as a scalar field in the direction of stretching. Themore cracks are coalescing to form longer cracks than there
scalar displacement field models tensile cracks. The underlare cracks nucleating, and therefore the number of active
ing assumption is that the stress interactions of tensile crackgacks begins to decrease. The power law becomes distorted,
are similar to those of normal faults. This can be argued byvith the largest cracks approaching an exponential distribu-
noting that in the planar view the stress field around the tipgion. This is the coalescence regime. Finally, for even higher
of a normal fault(mode Ill shear cragkare exactly sym- Strains the system organizes into the maximum number of
metrical to those of tension cracks. Although the stress in théracks it can hold for any additional strain. This is the satu-
case of normal faults is due to shearing, whereas in the cad@tion regime. At this stage the cracks have grown into a
of tension cracks it is due to tension, the interaction of thes@attern of long arrays that are spaced apart proportionally to
symmetrical fields around cracks is what we are interested iff'€ depth of the brittle layer, with the largest cracks having
capturing. The physics determining the behavior of the sys&" exponential distribution. Figure 1 is a simulation using the
tem studied here may be summarized as follows. above model, which shows a snapshot of a network of cracks

(a) The friction law of the cracksThis model mimics in the planar view at increasing strain. In the sections to
faulting on the crust. In order to get localization of strain anfollow we study these populations and explain their interac-

. . N : . tion mechanisms.
important physical mechanism is slip weakening, which ren- . .
P phy b 9 We have organized the sections as follows. In Sec. Il we

ders an already cracked surface weaker than before and thys """ ) ;
more likely to slip again as more strain is loaded into the escribe the model. Section Il has the numerical results and

system. The crack tips have a much higher stress concentr[st‘—e stability analys_ls with Sec. IV br_lefly comparing these
tion than the area around them and the crack propagates agegults to observations. The last section contains our conclu-
response to further extension of the bottom layer. The inp—S'ons'
weakening function used in this paper is modeled as an ini- Il. THE MODEL
tially linear decay of yield strength of the brittle material. We '
use linear stability analysis to study the parameter space of We want to study the problem of the crack population
slip weakening, and we find a wide range of values for whichformation and its evolution on a brittle layer that is driven on
the system is stable. This parameter space has a second vahe bottom by an extending layer. First, the lower plastic
able, the rheology of the ductile layer, which is the nextlayer is extended by a small amount. That in turn strains the
physical parameter in the problem. top layer whose equilibrium requirement is satisfied when
(b) The constitutive law of the two layer interfade the  the total stresses applied to it are lower than its yield
case of this model we study two-dimensiof2D) growth of  strength. If at any point on the brittle layer the yield strength
cracks that are as deep as the top layer. The ductile substrateexceeded, a crack is allowed to form with slip opening
is simulated as a plastic layer with strain hardening. How-The crack accumulates slip until the stress on it satisfies the
ever, as we will see, we will be able to scale this part of theboundary condition, in other words the stress is less than its
problem out. yield strength. Once that condition is satisfied, the system
(c) The heterogeneity of the brittle lay@the crust can be has reached quasistatic equilibrium. It gets driven by addi-
thought of as a brittle layer of variable yield strength due totional extension applied to the bottom layer, and the process
imperfections or variations such as inclusions, prior rupturestepeats itself.
variable material composition, etc. This disorder is modeled Figure 2 shows a schematic representation of the dis-
here as a randomly distributed initial yield strength thresholccretized model. It is a two-dimensional system of spring
of the brittle layer. This aspect of the model resembles preblocks with thex andy dimensions scaled by the thickness of
vious work done by Colina, de Arcangelis, and Rdd®2] the top layer. The resolution in the plane can be effectively
using an electric analog of a layer of fuses coupled by resischanged by varying the spring constarks and k. All
tors to a bottom layer where a uniform electric field waslengths in the problem scale with the width of the brittle
imposed. They varied the heterogeneity introduced in thdayer. We therefore approximate the 3D problem as a 2D
system and looked at the effects it produced to their systenproblem. It is reasonable to expect that the in-depth slip pro-
Similarly we also observe that the number of cracks obtainedile of cracks is important in examining their growth rates
for a given strain depends on the disorder. For very homoand their shapes. The representation of the vertical stress by
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FIG. 2. Schematic representation of the model. Looking from
=—) the top, there are coil springs in tlyedirection and coil springs in

22.5 A —

c ———— e p—— —_— thex direction. The blocks can move in tialirection only. A crack
o 20 —r—— — T is shown as an opening of a certain distahgein the middle of
T 175 = — _ block (i,j). Looking from the side, there are leaf springs in the
ol 15 T = — direction such that the spring coefficient ratiggk, andk, /k, set
T 125 —— e — i the resolution scale. The lower ductile layer is stretched and drives
c —— Syl _—— . the upper brittle layer through the leaf springShe extension di-
g 10 T= — —— ——] rectionx is rotated 90° in this figure with respect to Fig. 1
c 15— — ==
-;3 5 1= i — through the slip weakening friction law. The slip weakening
® 25 "_—.E—'_—_'—;:—,E-'_—__ e law drives much of the localization of strain on the surface
0 P e and that, in turn, leads to avalanches of cracking events
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 [13,14). The effects of this friction law will be further ana-
lyzed in the following section. Another feature of this model
distance along faults is the coupling of the top layer to a bottom layer through the

_ ) _ propagation resistance stress. While we have posed the prob-
FIG. 1. Snapshot of model simulation shows plan view of ajem so that we can study different rheologies, we will focus
network of cracks at different strain values. The axes are scaled b)are on the small disorder limit where the different rheolo-
the brittle layer thickness. The cracks propagate along the axis ”ofjies can be effectively scaled out of the problem.
mal to the direction of extension. Crack evolution with straitia) The dynamic 2D scalar model for the brittle layer we
€=0.064,(b) €=0.072,(c) €=0.08. examine is given by the Klein-Gordon equation

SN

2u %u du (u—U)

Tt W

of a crack growing in three dimensions. Of course, this func- 5
at>  axt gy

tion oversimplifies the rheological behavior of real material
interfaces, which is much more complicated but has no
known analytical form. whereu is the displacement, is the time,x andy are the
Another simplification in the model is the use of a scalarperpendicular directiond) is the displacement of the lower
displacement in the direction parallel to that of the loading.ductile layer,c is the wave speed, andis the brittle layer
This is an acceptable first-order approximation to the disdepth. The first three terms are from the wave equation, our
placement field for the case of uniform extension. An impor-scalar approximation of the linear elasticity of the stress in
tant ingredient of this model is the dynamics introducedthe horizontal direction. The last term is a linearized approxi-

the leaf springs is an approximation of the fracture en&gy 1
2

056105-3



SPYROPOULQOS, SCHOLZ, AND SHAW PHYSICAL REVIEW BE5 056105

mation of the stress in the vertical direction that couples thehe values ofu are relevant to the dynamics of the system.
two layers. The bottom layer has a constédmmogeneoys The parametem determines an effective rheology in the

strain boundary condition, coupling of the two layers. For smailwe can simplify the
5 equation of the yield strength by incorporating the strain
ﬂ_ @) hardening rheology if&. Therefore, we can study a collec-
axat tive effect in the slip weakening parameter by definimg
=a—m,
We use periodic boundary conditions in theandy direc-
tions. ah
We want to study the problem of crack growth, which has ¢=0o— 7, h=0, (6)

a much larger time scale than that of wave propagation,

earthquakes will not be treated in this papdiherefore, we  an approximation of Eq(4) valid to the linear order. For
hypothesize that the propagation and organization of faultgmall h, we could drop the denominator altogether, but we
are long time-scale phenomena, which can be approximategkep it here in Eq(6) so as to keep the strength formulation
by letting the wave speed, i.e., the speed of earthquakghysical for all values oh. Thus, we can write the boundary

propagation, approach infinity. Separation of these two timgondition along a cracked interface in static equilibrium as
scales, where— o, gives the following Poisson problem:

02 (92 ( U) 1 ( ou ou () ah (7)
u u (u- 51 9% X " 1+ah’
&_XZ + W_ —LZ— =0. (3) 2 9x x=crack™ x=crack" 1+ah

where the stresses on that point have to be equal to or less
éhan the yield strength. If the stresses at any point exceed the

top layer with brittle properties. This will be very simply yield threshold, then the crack slips more until the boundary

described by introducing a yield strength threshold boundar .OndItIOI’I is satisfied. In this paper we show that thesg effec-
condition. The yield strength is constructed as ive parameters alone can capture many of the most interest-

ing features of crack networks. The next point we have to

In order to study the originally proposed model of a brittle
layer driven by an elastic bottom layer, we must construct th

d,, h=0, address is hovih gets updated. We assumed that the cracks
- relax to a quasistatic steady state faster than the loading rate,
®= ®o+mh— a_E h>0, (4) v and thatoh/dt does not affect the way the cracks will
1+ah’ develop and their organization. We test this hypothesis nu-

_ , ) merically, and in the following section we show that it holds
where >0 and m>0. We defineh to be the integrated e

strain across a discontinuous boundary, which is given as the 14 giscretize the model. it is convenient to make a change

following limit: of coordinates. We consider the variabig = u;; —U;; rep-
X+ e dU resenting the displacement of the upper layer relative to the
h(x)=lim f —dx. (5) lower layer evaluated at each node; a crack, when it forms, is
es0dx X taken to reside at the center of the node and has the opening

hj; at that node. Thus, the displacement just to the right of a
In the case where there is no crack, the yield threshold is jugrack of width h; is uﬁzwi,— +h;;/2+Uj; while the dis-
given by®,(x,y) as a random distribution of strength. In the p5cement just on the other sideui§ =w;; —h;j/2+U;; . In
case where there is a crack, the yield strength includes a slijp,age variables, the equation of the model is
weakening friction law with no time healing whedey(x,y)
is the stochastic part (_)f the func_tion give_ntato. Kae(Wi 4 1= 2W3j Wi _ 1) + Ky (W 4+ 1 — 2Wi + W)

Our choice of the slip weakening function for the strength
of the material is meant to capture the essential physics,
though it is a huge simplification of all that occurs in mate-
rial failure. The biggest simplification is that here we con-
sider fracture energies associated only with interfaces, whilgith i=1—N, andj=1—N,; N, andN, are the number of
there are bulk effects associated with process z§Bgb|  grid points in thex andy directions. This is the discrete
and plastic deformatiofil6], which may be important as version of Eq.(3) with k,=1/AX?, ky= 1AY?, k=1/L,.
well. Our main justifications for our simplification is that the The square lattice used here for the scalar field of the dis-
slip weakening is generally considered a central componerilacement introduces an inherent anisotropy to the model.
of the breakdown process, and that it makes the problerrlowever, this effect is rather inconsequential in the realm of
much more tractable and computationally efficient, and capthis study since we have tensile straining of the material,
tures well the observations, as we will see. Moreover, it iswhich is in itself anisotropic, leading to surface cracks that
only a linearization of the slip weakening that dominates thgropagate mostly in the direction normal to that of the ex-
model behavior we examine here. tensional force.

The equations of motion are symmetric with respect to the The updating of the system occurs as follows. First a
addition of a constant ttJ and®,, so only differences in small strain step/ét is made, then the stresseg are cal-

k
+§X(hi+lj_hi71j)_kzwij:01 €))
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culated for all nodes. If the stresses are above threshold the °7 ' ' ' y y

h gets updated. The slip displacement of the crabkget growth
updated by adding smallh;; increments to it, and recalcu- ~ oer l . 1
lating the stresses on the brittle layer until the equilibrium ‘a/

equation is satisfied. The equation of evolutiorhas 0sF

hi**=hj}+Ahy;, 9)

=
'S
T

saturation

where n is the relaxation step of the time scale of earth-
qguakes. There are various ways of updatingHere we
present two different functions for calculatinggh;; . One
way is to compute it as a percentage of the stress drop an °2
the other is to compute it as a constant step increment.

pﬂ(ﬂ_l>, Gy

fraction of active sites
o
w
T

0.1 1

A h” = kx (I)IJ (I)IJ (10) 00 é ‘; straink(i;isorder é 1I0 s
O'ij
0, (I)_ij<1, FIG. 3. Fraction of active sites evolving with increased strain.
On the horizontal axis, excess strairs (vt—®)/g is normalized
or by disorder. Disordeg=10"4, 10 3, 10 2, with thicker lines cor-
responding to smalleg. Note the overlaying of curves. The three
o different strain regimes are labeled.
Ah, L=1,
I
Ahj;= U__J (11) , o 1
0, (p_”<1' Q==*c a —ky—F . (14

i

p takes a value from @p<1 and is a percentage of the For stability we need() to be imaginary, i-e-,§¥2<k§
stress drop. Naturally the question to ask is: how do thet 1/L%. When cracks nucleate, the wave numkgis very
results depend on the two choices of functions? As we willarge, so the restriction on is easily satisfied, whereas for

see, they do not. very long crackk, approaches zero and in order to keep the
stability we must havex<1/L?. This imposes an upper
lIl. RESULTS AND ANALYSIS OF THE MODEL bound fora. A lower bound is given from the fact that for

the slip weakening to localize strain, it must at least beat the
In this section we shall discuss the linear stability analysisstrain hardening rheology. This means th@at m>0 and
as well as present the results obtained by isolating and comherefore, 8<«<1/L?. In the following simulations we have
bining the parameters, treating first the irrelevant, and thegetL =1, without loss of generality, in which case the bounds

the relevant parameters to the dynamics. on a are O<a<1. We distinguish between two types of
parameters: those that are irrelevant or can be scaled out, and
A. Linear stability analysis those that remain relevant. We look at each in turn.

Let us first consider what happens with the slip-
weakening instability we have introduced in the model. A B. Irrelevant parameters
linear stabili.ty analysis of the_growt_h_ of Eourier mode_s will  Eor large enough systems, the system size is irrelevant.
show for which value_s of the instability will grow. Starting oy the distribution of breaking strengths, we {B(x,Y)
from the wave equation, let us expand aboetU, =dy+gé(x,y) whereé is a random number between 0 and
1. For small disorder, wheg<1, a number of parameters
(120  can be scaled out. First, we will see a number of regimes as
strain is increased, but all of them, fgrsmall, occur when
. h<1. Thus, the earlier approximations of absorbing the rhe-
and now the boundary condition is ology into « is valid, and we only need to consider the one
parameter for the strength evolution. A second scaling can
du ah . . S .
—_ S (13)  be made to removg itself: by dividing the strain increment
2 1+ah above ®, by g, we get the brittle strain excess= (vt
—®dg)/g which then collapses the effective loading for
&, does not appear in the equation since it is a first-orderanging over many orders of magnitude. Figure 3 illustrates
term that satisfies the boundary condition of the mean disthis result through the overlay of a number of curves with
placement. Linearizing the equation of a Fourier mode explifferent values ofg. Figure 3 shows the fraction of active
(—kx+iky+Qt) we get a dispersion relation of sites as a function of, for g ranging from 10° to 10 2.

&2u+(92u u 1
ax2 " agy? L2 2 at?

x=crack
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o7 ' ' ' ' ' most identical. This means that the detailsdbf ot are not
important for relaxing the system to its quasistatic equilib-
o6 ] rium within each loading step. This validates our hypothesis

that we can study the growth of faults in time and space
without necessarily modeling the earthquakes. Faults that
grow by earthquakes and faults that creep, all else being
equal, have indistinguishable spatial properties. Thus, we are
left with one fundamental relevant parameter, the net slip
weakeninga.

4 o 4
w 'y @0

fraction of active sites

e
[N

C. Slip weakening

The linear stability analysis above shows that the equation
for the crack evolution has a stable regime fobetween 0
and 1. In the case ak=0, we expect to get no localization
s L y L L m > Of deformation into cracks. The dynamics are controlled
strain/disorder solely by the randomly distributed yield threshold &0, so

FIG. 4. Number of cracks per unit area as a function of stegin, €ach site will crack according to that distribution and the slip
for four different cases of updating the slip displacenteat each  localization on the cracks remains uncorrelated. For the case
strain step. The relaxation is done using slow increments of th@f =1, we have marginal stability where a crack could
displacemenh such that the total stress on the crack is less than itgrow for very small strains. The crack will keep weakening
yield threshold. For the first two cases, we let the increments be the more it slips since its friction is a function of the slip
fraction of the stress above threshold; these cases are shown by tlesplacement. Foa>1, it will be unstable in the sense that
two thick lines, with the solid line having a smaller fractional in- there will be no quasistatic equilibrium solution bfsuch
crement compared to the dashed line. For the other two cases, what the boundary condition is satisfied. We get a runaway
take constansh strain opening steps; here again the solid thin linecrack as the more it slips to satisfy the threshold condition
has a smaller increment relative to the dashed thin line. Observghe more it weakens.
that the curves all basically overlay. Figure 5 shows six simulations done with differenval-

ues. These are snapshots of a part of the grid at given strains.

Active sites are the sites that have broken recently. We conFhe figure is organized in order of decreasifrom 1 to O.
sider sites that have broken recently, as we are interestafle show the particular six values, because they are indica-
here in what part of the network is currently accommodatingive of the different behaviors of the model. Figuré¢a)zand
strain. For all cases we observe the following: at the begin5(b) are shown at lower strains than the rest, because they are
ning the fraction of active sites increases with elastic strainat or near the upper limit and any higher loading causes
This indicates that initially nucleation is the dominant pro- catastrophic failure. It is clear that when— 1.0, all the de-
cess. When the slip displacement on the crack is big enougiormation localizes onto few cracks which soon grow un-
for slip weakening to become comparable to the disorder, thetable. For intermediate values ef Figs. 5c) and 5d) the
slip weakening begins to dominate, and the slip localizes saracks are stable and their number increases while they keep
that the number of active sites starts to decrease; this is ththe separation distance of one depth layer between large
growth regime. The system then transitions to a regime otracks. Asa—0, Figs. %e) and §f), the deformation does
coalescence of cracks where the rate of coalescence dommet localize, and we do not get a full spectrum of sizes of
nates that of the nucleation. Eventually, the fraction of activecracks.
sites asymptotes to the saturated regime where we get cracks Before continuing, we should mention how we define a
that are evenly spaced about one layer thickness apart. Theseack. We take a crack to be the network of all the nodes that
four regimes are central to the behaviors for the general pehave touching neighbors. We can vary the allowed neighbors
rameter space of the model, and we will return to them wheras either the four nearest nodes or only the two collinear
we later examine the distribution of sizes of cracks. nodes in the direction of propagation. So, if two crack tips

Grid resolution does not play a role at the large scalesare offset by one grid point in the diagona.g., (i,j) and
and we find stable distributions of crack sizes for sufficiently(i +1,j+1)], they are not counted as one crack but as two
resolved grids. Event dynamics, through the relieving ofseparate ones. We also keep track of one other feature of
stress via the updating &f is also irrelevant. Figure 4 illus- crack openings, which is when it last opened. In this way, we
trates this with a range of choices of paramefeasdAh in can distinguish between active and inactive sites. This is im-
Egs.(10) and(11). The first two cases shown are with frac- portant, because as strain accumulates, more and more sites
tion updates of stress excess above threshold, froni1®y. are cracked, and we eventually run into a percolationlike
with the fractionp taking the values 0.4 and 0.7. The two behavior if we consider the connectivity of all sites that have
other cases shown are with constant slip increments, froraver cracked. This leads to sensitivity in how we define con-
Eq. (11), where the incremenAh was equal to 10° and  nectedness and cracks. If, instead, we consider only the sites
10°°. The figure shows that, for all the different ways of that have broken recently, we find well behaved distributions
updatingh, the three regimes of evolution of cracks are al-of cracks, which are insensitive to choiggssich as how re-
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FIG. 5. Oblique angle view of simulations for different slip weakening valuess axis is scaled by the brittle layer thickness. Slip
displacement is ploted on theaxis. (a) a=1.0, e=0.02%, andb) «=0.9, e=0.07%; cracks grow unstable for additional strain(c)
a=0.4,6=0.19%. The system evolves in a stable man@ra=0.2,e=0.19%.(e) «=0.1,e=0.19%. Deformation is less localized)
a=0.0,€=0.19%. There is no localization of deformation.

cently they have brokenThus, when we speak of cracks, we ted on a log-linear scale, for small loading. We see exponen-
speak of connected elements that have broken within the lagtl distributions of lengths for the very smallest loading,
time (equivalently straihinterval Ae. with slopes decreasing as the fraction of active sites in-
Figure 6 shows the fraction of active sites as a function otcreases. Towards the end of this regime, we see crack lengths
the elastic strain as we vagy. Active sites are the sites that exceeding the extrapolated exponential distribution, as the
have broken recently. There are four data sets altogethempward curvature indicates. These distributions approach a
showing different values oft. We see, as described before, power law, as Fig. 8 shows, plotting now on a log-log scale,
four different regimes, the nucleation, the growth, the coafor the full range of loading. Here we see the exponential
lescence, and the saturation. Aslecreases, we observe that distributions for low loading falling off, then the approach to
the maximum fraction of active sites increases while it shiftsa power-law, with slope around 2, indicated by the dashed
towards larger strains. line. At the highest values of strain, the largest sizes appear
Let us now examine the distribution of active crack sizesto asymptote, approaching a bump on this plot, while the
in the different regimes. Here we use a fixed valuexptx smaller sizes remain power-law-like, though somewhat di-
=0.2. Figure 7 shows the distribution of crack lengths, plot-minished in number. Figure 9 probes this largest size distri-

056105-7



SPYROPOULQOS, SCHOLZ, AND SHAW PHYSICAL REVIEW B5 056105

07

06

05

o
»
T

fraction of active sites
e
W
T

02f

0.1

% é ‘It (Ii zls 1Io 12 10104 107 10° 10’ 10° 10°
strain/disorder L
FIG. 6. Fraction of active sites as a function of strainfor four FIG. 8. Log-log plot of distribution of sizes for increased strain.

different values of slip weakening In all four cases shown there is Note the power-law distribution at intermediate strain, indicated by
a nucleation regiméthe number of cracks increases with stjain the thickest line, and the asymptotic distribution at higher strain,
the growth regime(the number of cracks pegksa coalescence indicated by the other thick line. The dashed line shows a slope of
regime (the number of cracks starts to decrgasend a saturation —2 for comparison.

regime (constant density of cracks spaced one layer thickness

apan. As a decreases, the maximum number of cracks per unit ared/. COMPARISON WITH DATA AND A PHYSICAL MODEL
increases while it shifts towards larger strains. Weakemirg).1,

0.2, 0.3, 0.4. Thicker lines correspond to smalier Geologic data from normal faults show the main features

we have discussed in the paper. Fig(adllshows data from
the surface of Venus where normal faults were radar imaged
bution, this time plotted on a log-linear scale. We see hergjuring the Magellan mission in 19§27—-19. SAR mapping
then the clear exponential distribution of these largest crackgf 1750 faults on the low plains of Venus, which have un-
in the high strain saturation regime. dergone extension, reveals a clear power-law scaling of
This behavior is the same for other valuesaofwith only  frequency-size distribution with an exponent 62.02. The
some quantitative differences. Figure 10 shows the relevantsolution of that image was 70 m per pixel and the scanned
distribution curves fora=0.4, indicating a similar power- area was about ftkm?. The total strain for the Fig. 18)
law slope value for the growth regime, with a slightly steepergataset is calculated to be around 1%.
but nevertheless exponential distribution for the largest Figure 11b) is a log-linear plot of the frequency-size dis-
cracks in the saturation regime. tributions of normal faults sonar imaged from the flanks of
mid-ocean ridges. Two different strains are shown, namely,
5% and 10%, the second being an order of magnitude larger
than in Fig. 11a). The distributions observed here are clearly
exponential. This is a distinct regime in the fault growth,
which would correspond to the coalescence regime of our
model. Recently, we have demonstrated the strain transition
from power law to exponential fault distributions in a single
geological site[21]. Finally, Fig. 11c) shows the distance
between tensile cracks as it scales with the thickness of the
bed they are in. The two kinds of points indicate two differ-
E ent rock types, and they both show a linear scaling. This
graph corresponds to the saturation regime where we observe
. that the system size cracks about a thickness layer apart.
Finally, in a physical model in which tensile cracks form
i in a thin clay layer stretched on a rubber sheet, we observed
the same crack population history as Fig. 3, together with the
. . , , , , . corresponding transition from power law to exponential size
0 2 4 & 8 1o 2 “ distributions[22].

FIG. 7. Log-linear plot of distribution of sizes for increased V. CONCLUSIONS
strain, at low strain values in the nucleation regime. Strain increases
from left to right, with the highest strain indicated by the thick line.  In this paper we have shown that a model with only slip-
Note the initially exponential distribution. weakening instability, strain-hardening rheology, and ran-
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FIG. 9. Log-linear plot of distribution of sizes for increased
strain, at large strain values. Note the exponential distribution of b)

largest events at large strains.
the thicker line.
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FIG. 11. Geological evidence of the three evolution regin@s.
Power-law distribution(exponent is—2.02 for normal faults on
Venus. Strain is around 1%. Figure from Scholz, 199[7 (b) Log-
linear plot shows exponential frequency-size distributions for mid-
ocean normal faults at 5% and 10% strains. Figure from Cowie
et al, 1993[11]. (c) Tensile crack spacing scales with the layer

FIG. 10. Distribution of sizes of cracks for larger value of the thickness. The two point types are for two different types of rock.
weakeninga=0.4.(a) Log-log plot; note the similarity with Fig. 8 This saturation regime has system-size cracks, one thickness layer
(b) Log-linear plot; note again the exponential distribution at largeapart. Figure from Price; data from Bogdanov, Kirollova, and No-
strain, as in Fig. 9, but here with a higher slope.

vikova[20].
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domly distributed thresholds of yield strength can be used tdribution. As the cracks grow longer, shadow zones extend
study the evolution of a population of cracks in time andover a distance that scales with the depth of the brittle layer.
space. For very strong slip weakenings 1, cracks above a The system reaches the maximum number of cracks allowed
certain length never relax to a steady state, i.e., catastrophigccording to the stress interactions, i.e., saturation, character-
failure. For strain hardeningy<<0, there is no localization of jzed by evenly spaced system sized cracks. All three regimes
deformation. For intermediate values of slip weakening, Oare observed in natural systems, and in a physical model.
<a<1, a complex population of faults emerges. The model also suggests that, all other things being equal,
The model offers a new way to look at the evolution of fayits that creep and faults that have earthquakes evolve in
populations of cracks. Three regimes are observed with inthe same way. This is because the fault growth interactions
creasing strain. At very low strain, the cracks are short, theyccur with the accumulated strain, not strain increments.
crack population is dilute, there is very little interaction Therefore, we need not model earthquakes in order to study
amongst the stress fields around them, and disorder domfaylt dynamics and fault interactions. Separating the two
nates. The distributions here are exponential, with the scalgme scales of the problem is a valid approximation. Finally,
of the exponential changing with increasing crack densitythe regime characterized by power laws occupies only a por-
With additional extension, the cracks propagate in the direction of the phase space of this system, although this is the
tion normal to the direction of extension. Disorder and Weak'portion most Common|y observed for faults and earthquakesl
ening compete, and the distribution of sizes of cracks is char-
acterized by a power law. Only at the beginning do cracks
grow solely by propagation of their tips, because they soon ACKNOWLEDGMENTS
start to interact with other cracks. The stress field interactions
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