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[1] We introduce a new model which both generates a self-
organizing complex segmented fault system which then
accommodates finite strain, and generates sequences of
elastodynamic events on that complex fault system. This
opens up a new realm of study of populations of cascading
elastodynamic ruptures on complex fault systems. We
examine the distribution of sizes of events in the model,
and its dependence on fault geometry. We see an evolution
from a more Gutenberg-Richter like distribution of events at
smaller strains to a more characteristic like distribution at
larger strains. We see relative insensitivity of the
distribution of sizes of events to the friction used.
Examining the distributions of sizes of events on fault
segments of different lengths, we find support for a
modified segmentation hypothesis whereby segments both
break in power law small events and occasionally
participate in cascading multisegment larger ruptures, but
also predominantly break as a unit. INDEX TERMS: 7209

Seismology: Earthquake dynamics and mechanics; 7230

Seismology: Seismicity and seismotectonics; 7260 Seismology:

Theory and modeling; 8010 Structural Geology: Fractures and
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1. Introduction

[2] The Gutenberg-Richter law for the distribution of
sizes of events, stating that earthquakes follow a power
law distribution of sizes of events, is one of the most
important and ubiquitous observations in seismology. If
one looks in detail at it, however, interesting issues emerge.
While the law describes the complete population of events,
the distributions of events on the individual faults which
make up the whole fault system remains an open question.
One extreme posits that each fault segment breaks with
some characteristic size event, and it is the distribution of
sizes of faults which then leads to the distribution of sizes of
events. An alternative extreme posits that each fault itself
produces a power law distribution of sizes of events, and it
is the dynamics of individual faults which underlie the
distribution of sizes of events. Other positions link these
extremes, e.g., through the evolution of fault properties over
geological timescales, with faults evolving from young
rough faults with power law distributions towards more
mature smooth faults with more characteristic distributions

[Stirling et al., 1996]. To get at these issues from a
theoretical point of view, we need to tackle both the issue
of fault system geometry, and event dynamics, over many
earthquake cycles.
[3] Here, we present a new model which both generates

self-consistent complex fault geometries, and generates self-
consistent elastodynamic events on those geometries.
Further, because of the numerical efficiency of the model,
we can generate long sequences of events, and study the
statistics of the populations. With this model, we can thus
begin to address the fundamental questions of the interac-
tion of geometry and dynamics. In this letter, we present this
new model, and its application to the issue of fault geometry
and the distribution of sizes of events.
[4] Previous work has examined the evolution of pop-

ulations of events on complex fault systems; these
approaches have, however, neglected the dynamics on the
rupture timescale, simplifying the interactions to be quasi-
static [Lyakhovsky et al., 2001]. Other models have treated
elastodynamic event populations, but only with simple fault
geometries [Carlson and Langer, 1989; Myers et al., 1996].
Other models have examined individual elastodynamic
events on nonplanar fault geometries, but not populations
of events [Harris et al., 1991; Kame and Yamashita, 1997;
Bouchon and Streiff, 1997]. One modeling approach has
looked at event sequences on an individual complex fault
[Mora and Place, 1999]. With our new model, we open up a
new regime of study, of elastodynamic event sequences on
complex fault systems.

2. The Model

[5] Our model involves the integration of two separate
parallel modeling efforts. In one effort, we have studied
sequences of elastodynamic ruptures on simple planar
faults. This work, in both two dimensions and three dimen-
sions, has shown that a rich complex population of events
can arise from the dynamics alone, a population with many
earthquake like properties. [Myers et al., 1996; Shaw, 1998;
Shaw and Rice, 2000; Shaw and Scholz, 2001].
[6] The fault systems work modeled the growth of faults

in an extensional setting, with the stretching of a brittle layer
overlying a ductile layer. The simplified two dimensional
scalar model produced a growing population of normal
faults, with fault systems which evolved with increasing
strain. Figure 1 shows an example of the fault systems
which develop [Spyropoulos et al., 2002]. The self-
organizing faults keep the accumulating stresses finite and
self-consistent even with finite deformations.
[7] Combining these two lines of research, we are now

able to simulate sequences of elastodynamic events on these
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complex fault systems. Crucially, we are able to simulate
long sequences of events. This is essential, because the size
of an individual event depends not only on the geometry of
the fault and the frictional properties on the fault, but the
stress field an event propagates through [Harris et al., 1991;
Harris and Day, 1999]. Because this stress field arises from
the stress field left over by previous events, we therefore
need to evolve the system for a long enough time so it can
reach the dynamical attractor, where the geometry and the
friction and the stress field are all then self-consistent.
[8] The model equations for the bulk consist of a

2D Klein-Gordon equation for the displacement field of
the upper brittle layer coupled to a lower layer stretching
uniformly in one direction [Spyropoulos et al., 2002]. When
stress exceeds the strength at a point, a dislocation occurs,
adding slip to a fault if slip has occurred there previously or
creating a new fault if there was no prior slip there. For
numerical simplicity, we restrict the faults to form perpen-
dicular to the stretching direction, and discretize the equa-
tions on a rectangular lattice. Our advance here over prior
work [Spyropoulos et al., 2002], is that we consider fully
inertial dynamics in the bulk, and dynamic strength weak-
ening on the faults, so that now brittle deformation occurs
through a self-organizing population of elastodynamic
events.
[9] All of the nonlinearity in the problem is in how the

fault strength evolves. (The linear bulk equations, which
couple to the strength as a boundary condition on a fault, are
reproduced in an electronic supplement1, and implicitly in
Spyropoulos et al. [2002]). This frictional strength of faults
remains a big open question. While there are reasons for
thinking we may have a pretty good handle on what is
happening at slow slip rates [Dieterich, 1994; Heslot et al.,
1994], at high slip rates things are extremely uncertain, and
many potential physical effects may be occurring, with
substantially different implications for friction [Sibson,
1973; Melosh, 1996; Rice, 1999; Tullis and Goldsby,
2003]. With friction at high slip rates being an open
question, we use a friction which has a minimum of
parameters, is computationally efficient, and spans a range
of frictional instabilities, including slip-, time-, and velocity-
weakening [Shaw, 1995; Shaw and Rice, 2000]. Specifically,
we use a F which combines long term geological strength
FS which weakens with accumulated geological slip
[Spyropoulos et al., 2002] and a dynamic strength FQ which
weakens during events [Shaw, 1997]

F ¼ FS þ FQ: ð1Þ

The long term strength is given by

FS ¼ F0 þ x� bS
1þ aS

: ð2Þ

Here F0 is a constant overall strength which is irrelevant to
the problem, x is a random variable of amplitude between 0
and x0, varying in space but fixed in time. This seeds some
initial random strength heterogeneity in the model.
Geological slip weakening occurs with the last term, which

is proportional to slip S with a constant b. b affects the
degree of localization in the problem, and therefore the
resulting fault geometry. For large F0, we can operate in a
regime where the saturating term a is small and irrelevant.
The brittle strain excess e � (nt � F0)/x0 gives the relevant
strain [Spyropoulos et al., 2002]; this shows as well why F0

is irrelevant, since it can be scaled out by the loading nt.
[10] For the dynamic strength weakening, we consider

three terms

FQ ¼ � aQ
1þ aQ

� St � �r2
k
@S

@t
ð3Þ

The first term, which is a function of heat Q, models
frictional weakening from frictional heating; pore fluid

Figure 1. Plan view of faults. Greyscale is proportional to
slip. Only recently active faults are shown. Note association
of small scale faulting with large segment stepovers and
terminations. y direction parallel to stretching, x direction
perpendicular to stretching; lengths scaled to brittle layer
depth.

1Auxiliary material is available at ftp://ftp.agu.org/apend/gl/
2004GL019726.
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effects [Sibson, 1973; Lachenbruch, 1980; Shaw, 1995] and
flash heating of asperities [Rice, 1999] are two potentially
relevant physical mechanisms which this simplified quanti-
fication could represent. The weakening rate constant a is a
critical parameter in many aspects of the dynamics,
although the results we present here are mainly insensitive
to it. Heat accumulates with slip rate, and dissipates over
some timescale 1/g:

@Q

@t
¼ �gQþ @S

@t

����
����: ð4Þ

Slip weakening results from g 	 1, while velocity
weakening results from g 
 1 [Shaw, 1995; Shaw and
Rice, 2000].
[11] The second term in equation (3)

St ¼
s0

t � ts

t0
t � ts < t0;

s0 t � ts � t0:

8<
: ð5Þ

is a nucleation term, which we make a big simplification of
and consider as a time weakening term, which weakens with

time t over a timescale t0 since beginning slipping at ts and
restrengthens when resticking occurs, dropping a maximum
s0. This allows for a huge numerical speedup compared
with more expensive rate and state formulations, and the
study of time weakening friction as well.
[12] The last term �rk

2@S
@t , with � a small constant and rk

2

the fault parallel second derivative, provides stability at the
shortest wavelengths [Langer and Nakanishi, 1993; Shaw
and Rice, 2000].
[13] The numerical scheme proceeds by first evolving

the fault system quasistatically, taking advantage of the
dependence of the fault system evolution on the total slip,
rather than slip increments, on the faults. Once a desired
total strain is reached, the system is switched to elastody-
namic mode. The system is loaded until one point is just at
the point of failure. The event evolves then under fully
inertial dynamics. Once the event has stopped slipping, the
waves are quenched in the system, and the system is then
reloaded until the next point is just at failure.

3. Results

[14] Figure 2 shows one of the central results of this
paper, plotting the distribution of sizes of events for
different fault geometries as well as different frictions.
The two different fault geometries are for the same slip-
weakening localization, at different stages of a fault system
evolution with increasing strain. We see, as has been
suggested by field observations [Stirling et al., 1996] an
evolution from a more Gutenberg-Richter like distribution
at smaller strains to a more characteristic like distribution at
larger strains. We also include in this plot the distributions
of segment lengths for the two geometries, shown with the
dotted lines. Note that the longest events are much longer
than the longest segments, so we are getting events cas-
cading across multiple segments. Note also, interestingly,
that the distribution of lengths of events is not a simple
scaling of the distribution of lengths of segments. One
cannot simply derive the distribution of sizes of events from
the distribution of faults, as has been proposed [Scholz,
1998].
[15] Figure 2 also shows the result of using the same

fault geometry, but different frictions. We show three
different frictions, slip weakening, velocity weakening,
and time weakening in this plot, shown with different
colored lines. Note the only small differences in the
resulting distributions of sizes of events. We have exam-
ined a wide range of frictional parameters and a variety of
model generated fault systems, and found surprisingly little
sensitivity in the distribution of sizes of events to the
frictional instability. This is in marked contrast with the
single planar fault case, in which the frictional parameters
play a dominant role in the resulting distributions, partic-
ularly with respect to the small events [Shaw and Rice,
2000].
[16] How then is geometry impacting the distribution of

sizes of events? One key hypothesis has been that seg-
ments fail as units. This is a central assumption in many
attempts to understand the Gutenberg-Richter law, and a
key ingredient in many hazard estimates. A further ques-
tion, with major implications for hazard estimates, is the
degree to which dynamic events cascade across segments,

Figure 2. Distribution R of lengths L of events for
different fault geometries. Two different geometries are
shown, one at lower strain (e = 0.8) and one at higher strain
(e = 2), shown with the thinner and thicker lines,
respectively. At each strain, we plot the distribution of
lengths of events with solid lines, and the distribution of
lengths of segments with dotted lines. Three different
frictions are shown for the higher strain value, shown with
different color curves, with slip weakening (blue line; a = 3
g = .1), velocity weakening (red line; a/g = 3 g = 3), and
time weakening (green line; a = 0 s0 = 1.3) plotted. Note
the very small difference between the different color thick
curves, in contrast with the significantly larger difference
between the different thickness curves, indicating that the
distributions are relatively insensitive to the frictions used,
but do depend on the strain and thus fault geometry. Note
the more characteristic like distribution of sizes of events at
the larger strain. Note also that the distribution of lengths of
events is not a simple scaling of the distribution of lengths
of segments. The thin black dashed line has a slope of
�2 for comparison.
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giving multisegmented ruptures. Figure 3 plots the distri-
bution of sizes of events grouped by segment length. We
measure the length of each segment, and record at each
point on the segment all the sizes of the events during
which that point broke. We then sum over all the points
for segments with similar lengths, to end up with a
distribution of sizes of events for which segments having
that length participated in. The total summed over all
faults is shown with the thick black line. This curve is
slightly different than previous curves in Figure 2 in that
whereas before we were counting each event of a given
length once, now we are counting each event at each point
where it broke, so events are weighted by their length, and
thus the slope of the curve is reduced by 1 relative to the
previous plots. (This is done to make connection to what
one would see paleoseismically at a trench). The disag-
gregated curves, plotted with a colorscale changing from
red to blue with increasing segment length, show a number
of interesting features. First, the distributions of sizes of
events show peaks at the segments they are occurring on.
Second, while the peaks occur at the segment lengthscales,
we do see events which are much smaller and also much
longer than the segment lengthscale. Thus both partial
segment breakage and multiple segment cascades are occur-
ring. Finally, the distribution of small event on segments
appear to follow the same power law distribution as the
aggregate. Taken together, these features support a modified
form of the segmentation hypothesis, whereby segments both
break in power law small events and occasionally participate

in cascading larger events, but also predominantly break
as a unit.

[17] Acknowledgment. This work was supported by NSF grants
EAR-0229834 and EAR-0337226 and by a grant from the Southern
California Earthquake Center.
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Figure 3. Distribution of lengths of events disaggregated
for different segment lengths. Note peaks in the distribu-
tions at lengths corresponding to the logarithmically binned
segments lengths L = .22, .38, .66, 1.2, 2.0, 3.5, 6.1, 10, 18,
shown from red colored to blue colored lines, respectively.
The thick black line shows the total summed over all
segment bin lengths. The dotted line is the distribution of
segment lengths. The thin black dashed line has a slope
of �1.
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Bulk Equations

The equations of motion we are solving are as
follows. Dimensionlesss variables are used through-
out to achieve a minimal parameterization. In the
2D scalar bulk, we have

∂2u

∂t2
= ∇2u + (w − u) − η

∂u

∂t
+ ∇ · M , (1)

whereu is displacement,t is time,∇2 = ∂2

∂x2 + ∂2

∂y2

is the two-dimensional Laplace operator represent-
ing the horizontal elastic coupling of the displace-
ment field, and thew − u term represents the verti-
cal coupling to the lower ductile layer. Lengths are
scaled in the problem so that the brittle layer depth
is set to unity. The ductile layer is slowly stretched,
loading the upper brittle layer and moving as

w = νyt (2)

with ν � 1 the tectonic loading rate. The dissi-
pation constantη damps the waves, and is used to
mimic geometrical spreading effects which are oth-
erwise much weaker in our 2D model as compared
to 3D. The final term is the body forces arising from
the fault dislocation openingsM

M = δu

∣∣∣∣∣
Γ

. (3)

The boundary condition on the faultsΓ are that
the normal strain equals the traction

∇u· ⊥ Γ

∣∣∣∣∣
Γ

= φ . (4)

All of the nonlinearity in the problem is con-
tained in the frictionφ, which has a stick-slip form,
resisting motion up to some threshold value, and
acting against motion when sliding occurs. We rep-
resent the stick-slip by

φ = Φ(
∂S

∂t′
, t′ ≤ t)H(

∂S

∂t
) (5)

whereΦ is a scalar frictional strength,S = |M| is
the slip and∂S/∂t is the slip rate on the fault, and
H is the antisymmetric step function

H =




∂̂S
∂t

∂S
∂t 6= 0;

|H| < 1 ∂S
∂t = 0 .

(6)

which represents the stick-slip nature of the fric-
tion, being multivalued at zero slip rate, and oppos-

ing motion in the∂̂S
∂t unit direction when slipping.

What remains a big open question for earth-
quakes, is what is the frictional strengthφ. The
main text discusses this frictional strength in fur-
ther detail.

For numerical simplicity, we restrict the faults
segmentsΓ to be perpendicular to the stretching di-
rectiony. We also discretize the equations onto a
rectangular grid, and use a second order finite dif-
ference approximation of the continuum equations.
Parameters used in the simulations shown, unless
otherwise indicated, are: fault parametersβ = 1.3,
ε = 2; domain parametersδx = .125, δy = .125,
Lx = 84, Ly = 12; bulk parameterη = .2; fric-
tion parametersα = 3, γ = .1, σ0 = .3, t0 = .2,
ε = .003 . Periodic boundary conditions in both
directions are used.


