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ABSTRACT

Spectral characterization of urban reflectance is necessary for discrimination of human
settlements from other types of land cover.  The 10 to 20 m scale of urban land cover elements
results in a preponderance of spectrally mixed pixels when imaged with moderate resolution
optical sensors like Landsat.  The overall reflectance of the urban mosaic is determined by the
spectral reflectance of surface materials and shadows and their spatial distribution. Building
materials dominate net reflectance in most cities but in many cases vegetation also has a very
strong influence on urban reflectance. A comparative analysis of Landsat imagery for a set of 28
cities worldwide provides a basis for a general spectral characterization of urban reflectance. The
results of the analysis indicate that the reflectance of these cities can be described as linear
combinations of high albedo, low albedo and vegetation spectral endmembers within a 2
dimensional mixing space. The primary two dimensions of the full six dimensional mixing space
consistently contain over 90% of observed variance. The relative proportions of the endmembers
vary considerably among different cities and within individual cities. The most consistent
characteristic of the urban mosaic is spectral heterogeneity. At scales of 10 to 30 meters, urban
areas are considerably more heterogeneous than other land cover types investigated. Spectral
characterization of urban land cover on the basis of heterogeneity could provide a basis for
mapping the spatial extent of human settlements with satellite imagery collected over the past 30
years.

1    Introduction

Moderate resolution optical sensors provide a 30 year record of urban evolution worldwide.
Although urban areas occupy a relatively small fraction of Earth's surface area, their extent,
distribution and evolution have enormous impact on environmental and socioeconomic dynamics
world wide. Despite its fundamental importance, urban land cover has not been characterized to
the same extent that other land cover types have. In order to quantify the extent and evolution of
urban areas with optical sensors it is necessary to understand the physical characteristics that
distinguish developed urban areas from other types of human modified land surfaces and from
undeveloped land surfaces. A systematic physical characterization of optical reflectance
properties of urban areas would facilitate global mapping of urban extent. Such a characterization
of urban land cover would also benefit understanding of energy flux and micro and mesoscale
meteorological processes controlling urban environmental conditions.

One of the primary obstacles to urban land cover classification is the diversity and spectral
heterogeneity of urban reflectance. Unlike many other land cover types, urban reflectance is
extremely variable at a variety of spatial scales. Spectral heterogeneity at scales comparable to the
Ground Instantaneous Field Of View (GIFOV) of an optical sensor results in a preponderance of
spectrally mixed pixels. Mixed pixels are problematic for conventional classification methods
because most algorithms are predicated on the assumption of spectral homogeneity within a
particular type of land cover. The diversity of land cover types at different spatial scales in the
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urban mosaic therefore results in high rates of misclassification between urban and other land
cover classes.

The objective of this study is to develop a quantitative physical characterization of the reflectance
properties of the urban mosaic. This task is complicated by two distinct types of variability in
urban reflectance. Intraurban spatial variabitlity is a result of the diversity of building materials
and land covers present in the urban mosaic at different spatial scales. Characterizing scale
dependent reflectance properties requires higher spatial resolution than is provided by moderate
resolution sensors like Landsat. Interurban variations in urban reflectance are a result of
socioeconomic, cultural, historical and environmental differences among cities. Factors such as
building materials, physical environment, urban planning constraints and historical evolution
influence differences in overall reflectance patterns observed in cities worldwide. This study uses
the concepts of spectral mixture analysis to provide self consistent physical descriptions of a
variety of cities in order to determine what, if any, reflectance characteristics can be used to
distinguish urban land cover in moderate resolution optical imagery.

2    Reflectance Scale and Spectral Mixing

The characteristic spatial scale of surface reflectance patterns in the built environment is
comparable to the GIFOV of most operational multispectral sensors in use today. Two
dimensional spatial autocorrelation of 1 m Ikonos imagery in 14 cities of varying size and setting
indicates that the characteristic spatial scale on which Visible/Near Infrared reflectance
decorrelates is 10 to 20 meters (Small, 2002). This explains the preponderance of mixed pixels
observed in Landsat imagery of urban areas. This spectral mixing within the urban mosaic is what
prevents hard classification algorithms from producing accurate results. In order to characterize
urban reflectance in a physically meaningful and sufficiently robust way, it is necessary to
accommodate the fact that moderate resolution sensors will generally image a combination of
discrete surface reflectances and represent the upwelling radiance field in the form of a mixed
pixel.

Spectral mixture analysis provides a systematic way to quantify spectrally heterogeneous urban
reflectance. Spectral Mixture Analysis (SMA) is based on the observation that, in some situations,
radiances from surfaces with different "endmember" reflectances mix linearly within the IFOV
(Nash and Conel, 1974; Singer and McCord, 1979; Singer, 1981; Johnson et al, 1983). This
observation has made possible the development of a systematic methodology for Spectral Mixture
Analysis (Adams et al, 1986, 1989; Smith et al, 1990; Gillespie et al, 1990) that has proven
successful for a variety of quantitative applications with multispectral imagery (e.g. Adams et al,
1995; Pech et. al., 1986; Smith et al, 1990; Elmore et al, 2000; Roberts et al, 1998). If a limited
number of distinct spectral endmembers are known it is possible to define a "mixing space"
within which mixed pixels can be described by linear mixtures of the endmembers. Given
sufficient spectral resolution, a system of linear mixing equations may be defined and the best
fitting combination of endmember fractions can be estimated for the observed reflectance spectra.
The strength of the SMA approach lies in the fact that it explicitly takes into account the physical
processes responsible for the observed radiances and therefore accommodates the existence of
mixed pixels.

Figure 1 (Next Page) Visible/Infrared false color composites of urban Landsat 7 imagery. ETM+
bands 7, 4 and 2 (RGB)  emphasize contrast between soil, vegetation, high albedo and low albedo
landcovers at 30 m spatial scales. The most heavily built up areas are near the center of each 30
x 30 km subscene. A full resolution color version of this figure is available online at:
www.LDEO.columbia.edu/~small/Urban.html
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This analysis is based on a diverse collection of cities spanning a range of environmental, cultural
and socioeconomic settings. The analyses are conducted on a set of 28 Landsat 7 ETM+ images
acquired between 1999 and 2001. This quasi-random selection was gleaned from the Landsat 7
archive at the University of Maryland's Global Land Cover Facility (glcf.umiacs.umd.edu). The
cities were chosen on the basis of area, diversity and image quality. All analyses were conducted
on calibrated exoatmospheric reflectance. For each city, a 30 x 30 km image was chosen to
represent the urban area and as wide a variety of surrounding land covers as possible. In most
cases, the 900 km2 image contained all of the built up area and varying amounts of surrounding
land covers. In only two cases (New York and Sao Paulo) was the built up area too large to be
contained in the subscene. In these cases, the scene was chosen to cover the city center as well as
some land cover representative of the surrounding areas.

3    Urban Mixing Spaces

The divesity of landcovers present in the urban mosaic determines the spectral dimensionality of
the image collected by a sensor. The limited spatial and spectral resolution of the ETM+ sensor
results in a projection of a high dimensional mixing space onto a lower dimensional
representation constrained by the ability of the sensor to discriminate different surface
reflectances at GIFOV scales. Analyses of AVIRIS hyperspectral imagery suggest that some
urban areas have as many as 30 to 50 spectral dimensions (Green and Boardman, 1999; Small,
2001) but the TM and ETM+ sensors can resolve only 6 of these dimensions at most. A central
question of this analysis is whether these six dimensions provide an adequate basis for a
systematic characterization of urban reflectance. Is the information content provided by the
Landsat sensors sufficient to discriminate between urban areas and other land cover types in a
consistent manner? The fact that an experienced interpreter can recognize urban areas in Landsat
imagery suggests that this is the case but visual interpretation is based on a complex combination
of spectral and textural cues that have proven extremely difficult to simulate with machine-based
algorithms.

The basis of the spectral mixture analysis is the variance partition and mixing space
characterization provided by a principal component transformation of the multispectral imagery.
The eigenvalue distribution provides a quantitative estimate of the variance partition between the
signal and noise dominated principal components of the image. This partition and the number of
signal dominated components forms the basis of the dimensionality estimate of the image. The
multidimensional feature space of the low order principal components represents the spectral
mixing space that can be used to describe the spectral mixtures as combinations of spectral
endmembers (Johnson et al, 1985; Boardman, 1993). In this analysis, a Minimum Noise Fraction
(MNF) principal component transformation is used. The MNF transformation implemented in
ENVI is analogous to the Maximum Noise Transformation described by Green et al (1988) but
differs in ordering of the principal components from high to low signal variance (RSI, 2000).
With Landsat imagery, the MNF transformation usually produces principal components similar to
those resulting from a traditional covariance-based PC rotation but offers the added benefit of
normalizing the eigenvalues relative to the variance of the sensor noise estimate. For this analysis,
all MNF transformations were applied using noise covariance statistics derived from a June 2000
ETM+ image of a large, clear lake at 3400 m elevation in the Peruvian Andes. Normalized
eigenvalue distributions quantify the partition of variance among the principal components
indicating how many spectral dimensions are required to represent the information content in the
image. The larger eigenvalues are associated with the low order principal components
representing the dominant reflectance patterns while the smaller eigenvalues are associated with
the higher order principal components associated with the pixel scale variance commonly
assumed to be noise.
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Figure 2  (Previous Page) Spectral mixing spaces of the 28 urban areas and their surroundings
shown in Figure 1. Each 2D mixing space is represented by a density shaded scatter plot of the
two low order principal components of the corresponding image in Figure 1. The pixels near the
apexes of the scatter plot represent spectral endmembers while the darker interior regions
represent a greater number of mixed pixels. The mixing spaces generally have a triangular form
in the two primary dimensions (except some images w/ clouds). The pixels at the apexes
consistently correspond to High Albedo, Low Albedo and Vegetation endmembers. The small,
dark clusters (generally at right-most apex) correspond to low albedo water and deep shadow.

Spectral mixing spaces provide a self-consistent basis for comparison of urban reflectance
characteristics. The similarity of the triangular mixing spaces shown in Figure 2 indicates that all
28 of the urban areas in this study show a consistent mixing space topology. Although the
distributions of mixed pixels within the mixing spaces vary considerably, the overall form is
consistent. The apexes of the mixing space corresponding to the spectral endmembers are
generally well defined and the edges between the apexes are generally straight or concave. This
suggests that the mixing among the endmembers is primarily linear. The spectra of the
endmembers (Figure 3) are also remarkably consistent. This suggests that a three component
linear mixing model may provide a consistent and accurate way to represent urban reflectances.

4    Spectral Endmembers and Linear Mixture Models

The consistency in the topology of the urban mixing spaces is reflected in the consistency of the
spectral endmembers. Figure 3 shows exoatmospheric reflectance profiles for the three primary
endmembers associated with the apexes of the triangular two dimensional mixing space. The Low
Albedo and Vegetation endmembers are remarkably consistent. The High Albedo endmember is
variable in amplitude but is generally convex upward with a peak at SWIR wavelengths.

The low albedo endmember generally corresponds to deep shadow or clear water. In many cases,
several different water bodies of differing reflectance can be resolved as distinct clusters near the
low albedo apex of the mixing space. In these cases, the Low Albedo endmember was chosen to
correspond to clear water or deep shadow areas. These Low Albedo reflectances represent the
atmospheric path radiance component that is present in every pixel. The fraction of Low Albedo
provides an indication of the net albedo of a mixed pixel because it represents the complement  of
overall surface reflectance. The fraction of High Albedo endmember does not provide an accurate
estimate of the overall albedo because of the nonlinearity and dispersion of most mixing spaces
near the high albedo apex. The high intra and interurban variability of the High Albedo
endmember suggests that a single endmember could not accurately represent the wide variety (but
low areal abundance) of high albedo reflectances observed. For the same reason, the similarity of
the Low Albedo endmember suggests that it provides a more consistent metric of inverse urban
albedo (darkness). Eigenvalue distributions provide concise estimates of urban spectral
dimensionality. Consistency in the topology of spectral mixing spaces is reflected in the
consistency in variance partition and spectral dimensionality seen in eigenvalue distributions
(Figure 4). Analysis of AVIRIS hyperspectral imagery indicates that urban spectral
dimensionality can be scale dependent as larger areas can contain a wider variety of spectral
endmembers (Small, 2001b). Because surrounding areas may be more spectrally diverse than the
built up area, mixture analyses were also conducted for 5 x 5 km areas around the city centers.
Eigenvalue distributions for these areas also indicate that the mixing space is essentially two
dimensional.

Simple three endmember mixing models are well posed for most of the urban areas investigated
in this study. Some areas could be represented more accurately with four
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endmember models but, in general, the RMS misfits to the three endmember models were quite
small (>0.02 in Figure 5). Small misfit is a necessary but not sufficient verification of the three
endmember model. Large misfits would indicate that the model did not provide an accurate
description of the mixed reflectances but small misfit does not guarantee that the estimates are
accurate. It would be necessary to validate the fraction estimates with independent field
measurements to determine the level of accuracy (e.g. Small, 2001). Nonetheless, the low misfits
do suggest that the three endmember model can account for most of the observed variance.

The most consistent spectral characteristic of urban reflectance at 30 m scale is spectral
heterogeneity.  Despite the consistency of the 2D mixing spaces and the similarity of the
bounding spectral endmembers, a wide variety of endmember fraction abundances characterize
the built up areas of the cities shown in Figure 2.  Non-urban land covers generally correspond to
distinct mixing fractions nearer the apexes of the mixing spaces. This suggests that a measure of
spectral heterogeneity at GIFOV scales may be an effective indicator of urban land cover.
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