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Abstract

Characterization of urban radiance and reflectance is important for understanding the effects
of solar energy flux on the urban environment as well as for satellite mapping of urban
settlement patterns.  Spectral mixture analyses of Landsat and Ikonos imagery suggest that
the urban radiance field can very often be described with combinations of three or four
spectral endmembers.  Dimensionality estimates of AVIRIS radiance measurements of
urban areas reveal the existence of 30 to 60 spectral dimensions.  The extent to which
broadband imagery collected by operational satellites can represent the higher dimensional
mixing space is a function of both the spatial and spectral resolution of the sensor.  AVIRIS
imagery offers the spatial and spectral resolution necessary to investigate the scale
dependence of the spectral dimensionality.   Dimensionality estimates derived from
Minimum Noise Fraction (MNF) eigenvalue distributions show a distinct scale dependence
for AVIRIS radiance measurements of Milpitas, California.  Apparent dimensionality
diminishes from almost 40 to less than 10 spectral dimensions between scales of 8000 m
and 300 m.  The 10 to 30 m scale of most features in urban mosaics results in substantial
spectral mixing at the ~20 m scale of high altitude AVIRIS pixels.  Much of the variance at
pixel scales is therefore likely to result from actual differences in surface reflectance at pixel
scales.     Spatial smoothing and spectral subsampling of AVIRIS spectra both result in
substantial loss of information and reduction of apparent dimensionality but the primary
spectral endmembers in all cases are analogous to those found in global analyses of Landsat
and Ikonos imagery of other urban areas.

Introduction

Recent estimates indicate that over 45% of the world's human population now lives in
urban areas with over 60% projected by 2030 (United Nations, 1999).   As the size and
number of urban agglomerations increases, so does the relative importance of the urban
environment to the global population.  Remote sensing can serve (at least) two important
roles in the study of the urban environment.  Moderate resolution, broadband optical
sensors on the Landsat and Spot satellites provide a 30 year time series with which to
quantify urban growth and settlement patterns worldwide.  In order to map urban growth
with optical sensors, it is necessary to distinguish the reflectance properties of the urban
surfaces from those of other landcover types.  This is an inherently difficult task because
urban areas incorporate spectrally identical land covers from other environments and
because built urban surfaces are often composed of materials extracted from nearby
surroundings.  The scale and texture of urban reflectance is, however, often distinct from
other landcovers so the combination of reflectance and textural properties is more
informative.   This requires a robust characterization of urban reflectance properties at
different scales.  The synoptic view of  the urban mosaic provided by satellite and airborne
sensors is also an important complement to in situ measurements of physical characteristics
of the urban environment.  The spectral reflectance properties of the urban mosaic have a
strong influence on energy flux through the urban environment and the microclimatic
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variations that result (Landsberg, 1981).   Since much of the reflectance of the built
environment is subject to human modification, understanding scale dependent optical
properties of existing urban settlements may influence future design decisions.
Characterization of urban spectral reflectance serves both of these objectives.

Analysis of reflectance properties in different urban environments may provide a basis
for a general characterization of urban reflectance.   Comparative analyses of Landsat and
Ikonos imagery for a variety of cities worldwide indicates that spectral heterogeneity at
scales of tens of meters is the most consistent characteristic of broadband spectral
reflectance of urban areas (Small, 2001b).  In spite of the lack of a single characteristic
urban reflectance spectrum, almost all of the urban areas considered could be described as
spectral mixtures of three or four endmembers as resolved by the Ikonos,  Landsat TM and
ETM+ sensors (Small, 2001a).   In contrast, many of the areas surrounding these cities are
characterized by more complex mixing spaces with larger numbers of spectral endmembers.
Representation of urban reflectance with a simple spectral mixing model  (e.g. Adams et al,
1986, 1989; Smith et al, 1990; Gillespie et al, 1990) would be desirable because it could
accommodate the spectral heterogeneity with a physically based description consistent with
the variety of reflectances observed in urban environments.  This requires a more thorough
understanding of the relationship between the true spectral dimensionality of the urban
mosaic and the low dimensional projection of this mixing space that is resolved by
broadband sensors like Landsat.  The representation of the mixing space provided by
broadband imagery is incomplete because these operational sensors lack the spectral
resolution necessary to distinguish among materials with narrow absorption bands
resolvable by imaging spectrometers like AVIRIS.

An analysis of high resolution AVIRIS imagery by Green and Boardman, (2000) found
that a flight line collected of San Diego California had higher spectral dimensionality than
datasets collected in other environments.  This prompts the question of whether urban areas
can really be characterized with simple linear mixing models or whether the true high
spectral dimensionality of the urban mosaic will preclude development of a general
characterization of urban reflectance.  In order to resolve this question, it is necessary to
consider the spatial scale of the observations.   The objective of this analysis is to investigate
the relationship between spatial scale and spectral dimensionality in an urban environment.
The focus of the analysis in on the use of eigenvalue decomposition for multiscale
estimation of spectral dimensionality.

Data and Analysis

This analysis used AVIRIS radiance and reflectance data collected over Milpitas
California on 20 June1997.  These data are available as AVIRIS standard data products
from popo.jpl.nasa.gov.  The study area, shown in Figure 1, consists of undeveloped land,
suburban residential areas and urban industrial areas.  The primary spectral endmembers,
derived from the analyses described below, are shown in Figure 2.  These endmembers were
selected using the methodology described by Boardman (1993) and Boardman and Kruse
(1994).   Endmember spectra are shown in scaled reflectance for ease of interpretation but
all dimensionality estimates were made using calibrated radiance data so the information
content is determined by both the surface reflectance characteristics and the atmospheric
interactions.
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Spectral dimensionality estimates are based on eigenvalue distributions obtained from
principal component analyses as described by Boardman and Green (2000) and Green and
Boardman (2000).  The Minimum Noise Fraction (MNF) transformation (Green et al,
1988; RSI, 2000) is used because it accommodates band to band differences in signal and
noise amplitude and because the resulting eigenvalues provide an indication of the
information and noise content of the data.   All analyses shown here were done with ENVI
image processing software.  The MNF implemented in ENVI is similar to that Maximum
Noise Fraction transformation described by Green et al (1988) but differs in the scaling of
the resulting eigenvalues.  The eigenvalues produced by ENVI's MNF are scaled in sigma
noise units analogous to a signal to noise ratio so the number of eigenvalues greater than
unity gives an estimate of the number of dimensions with variance larger than the amplitude
of the noise estimate. One advantage of the Minimum Noise Fraction transformation is that
it accounts for the fact that the noise in some bands may be larger than the signal in other
bands.  Rather than basing the rotation on variance alone, the ENVI MNF attempts to
"prewhiten" the data by performing an initial rotation to diagonalize the noise covariance
and rescaling the eigenvalues of the second rotation to sigma noise units (RSI, 2000).

In order to compare dimensionality estimates from different areas it is necessary to use a
consistent noise estimate.  For this analysis, the noise estimate is based on a subimage
acquired over the Calaveras reservoir in the same AVIRIS scene as the study area.  By using
the same noise covariance for all MNF rotations, differences in the resulting eigenvalue
distributions should more accurately reflect differences in the signal content of each
subscene.  The noise covariance estimate is derived from differences in spectra of adjacent
pixels so a dark, uniform target provides a crude approximation of a dark current noise
source.  The approximation is imperfect, however, because it includes actual differences in
radiance related to spatial variations in surface reflectance and path radiance at scales of ~20
meters.

The relationship between spatial scale and spectral dimensionality was quantified by
comparison of 40 subscenes within the study area.  Nine adjacent 100x100 pixel subscenes
covering the built up area were used for the first stage of the analysis.  Each of these ~2x2
km areas contained a variety of landcover types.  Within these nine subscenes, ten 30x30
pixel subscenes were chosen in areas of undeveloped hillslopes, suburban residential and
urban industrial development.  An additional twenty 15x15 pixel subscenes allowed each of
these landcover types to be further isolated in smaller areas.

Spatial averaging attenuates both noise and information to varying degrees while spectral
resampling should preferentially attenuate the information content of the signal.  The effects
of spatial averaging and spectral resampling were tested in a 200x170 pixel subscene
containing a combination of industrial and residential landcovers.  Spatial averaging was
done with a series of gaussian kernels ranging from 5x5 to 45x45 pixels.  Spectral
resampling was done using every Nth band of the original AVIRIS radiance dataset for N
ranging from 2 to 16.
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Results

Spectral endmembers bounding the mixing space of the lower order MNF dimensions
are analogous to the endmembers found in analyses of other urban areas.  Figure 2 shows
12 endmembers bounding the six primary dimensions of the mixing space.  The
endmember spectra bounding the lowest three dimensions correspond to vegetation, soil,
high albedo roofing material and low albedo pavement.  The endmembers spanning the low
order dimensions are almost identical to those derived from a standard principal component
analysis, indicating that a simple four component mixing model accounts for the vast
majority of variance (97.5%) in the radiance field.   The endmembers associated with the
higher order dimensions are certainly significant but would not be resolved by broadband
sensors.

The analysis of the 40 subscenes indicates a correspondence between area and
dimensionality.   When  plotted in log-linear space, the eigenvalue distributions in Figure 3
all have a similar shape with a sharp break in slope separating the primary dimensions
associated with higher, but rapidly diminishing, spatial autocorrelation from a long tail of
gradually diminishing signal to noise levels.  The break in slope corresponds to a transition
from spatially coherent to spatially incoherent eigenimages.  Figure 4 shows an example of
this transition for a spectrally diverse subscene containing a variety of landcovers at
different spatial scales.  The transition from spatially coherent to spatially incoherent
eigenimages occurs between dimension 31 and 35 but there are still isolated coherent
features visible in these higher dimension eigenimages.  These isolated features have distinct
spectra and therefore represent useful information about the smaller features in the image.

The number of MNF eigenvalues larger than unity is often used as an indication of the
inherent dimensionality of a hyperspectral image (e.g. Boardman and Green, 2000, Green
and Boardman, 2000, RSI, 2000).  Numerically, the eigenvalues larger than unity are
associated with dimensions having variance greater than that of the noise estimate.  In
Figure 3, the eigenvalue distributions cluster in accordance with the size of the subimage.  If
the unity threshold is adopted, the results imply that the full image contains almost 200
spectral dimensions and that the 100x100 pixel subimages are also of comparable
dimensionality.  The apparent dimensionality drops somewhat for the 30x30 pixel
subimages and more appreciably for the 15x15 pixel subimages.  As pointed out by
Boardman and Green (2000), eigenvalue distributions are, however, merely a statistical
proxy for dimensionality.  In this study, the higher dimensions associated with the tail of the
eigenvalue distribution do generally contain some small, spatially coherent features in the
associated eigenimages that may correspond to distinct spectral features.

 A more conservative criterion of spectral dimensionality would be the break in slope
distinguishing the low order eigenvalues with coherent eigenimages associated with greater
spatial coherence.  This criterion also indicates a similar scale dependence in dimensionality.
The full image and the 100x100 pixel subimages have transitions between 25 and 30 while
the 30x30 pixel subimages have a transitions between 20 and 25.  The 15x15 pixel
subimages are small enough to contain more spectrally homogeneous areas and show a
wide range of transitions between 10 and 25 dimensions.  Using this "breakpoint" criterion,
the hillslope subimages have the lowest dimensionality and the suburban residential
subimages have the highest dimensionality.
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Spatial filtering of a high dimensional subscene results in both suppression of noise and
dilution of spectral dimensionality.  Figure 5 shows the eigenvalue distribution (labelled
Raw) corresponding to the eigenimages shown in Figure 4.  The raw image was smoothed
with a succession of gaussian lowpass filters to investigate the effect of variance attenuation
on the apparent dimensionality.  The same unfiltered noise source was used for each MNF
rotation.  The effects of increased smoothing are 1) a successive reduction of variance
(relative to the noise source) and 2) a shift in the breakpoint between the rapidly diminishing
low-order eigenvalues and the gradually diminishing tail of higher order eigenvalues.  The
successive reduction in the number of eigenvalues greater than unity is a direct consequence
of the reduction of variance (relative to the noise source) resulting from the smoothing
operator.  For the 5x5 and 11x11 gaussian filters, the rightward shift of the breakpoint in
the eigenvalue distributions is accompanied by a corresponding increase in the number of
spatially coherent eigenimages.  For the 23x23 and 45x45 filters the breakpoint shifts back
to lower dimensions and becomes less pronounced.    Spatial smoothing attenuates variance
at higher wavenumbers shifting the transition between the larger, more spatially coherent
spectral features with higher variance and the succession of less spatially coherent features
with lower variance.  To the extent that some of this attenuated variance is noise, this is
analogous to an increase in signal to noise ratio.  Some of the attenuated variance would,
however, be expected to correspond with actual spectral variability at the ~20m pixel scale.
The larger filters may also be attenuating actual spectral endmembers and thereby reducing
the dimensionality of the dataset and causing the breakpoint in the eigenvalue distribution to
shift back to lower dimensions.

Spectral resampling results in appreciable loss of spectral dimensionality.  The maximum
dimensionality of the image is constrained by the number of spectral bands it contains.  As
would be expected, reducing the number of bands results in a direct loss of dimensionality
without changing the signal to noise ratio in the remaining bands.  Figure 6 indicates that
subsampling by a factor of two significantly reduces the number of dimensions with
variance greater than the noise estimate but  does not change the breakpoint between the
spatially coherent and spatially incoherent eigenimages.  Subsampling the specra by a factor
of four further reduces the spatially incoherent dimensions but also causes the breakpoint in
the eigenvalue distribution to shift to a lower dimension.  Resampling the spectra by factors
of 8 and 16 has a pronounced effect on the dimensionality of the image - effectively
eliminating some of the spectral dimensions and all but one or two spatially incoherent
eigenimages.  This reduces the number of spectral endmembers that can be represented
uniquely.  The loss of dimensionality occurs because many of the higher order spectral
endmembers are characterized by subtle features that cannot be distinguished from one
another without the fine spectral resolution provided by AVIRIS narrow spectral
bandwidths.

Implications

The eigenvalue distributions have a consistent form for all of the subimages.  They are all
characterized by rapidly diminishing amplitude in the low order dimensions and a longer tail
of gradually diminishing amplitude in the higher dimensions.  When plotted in log-linear
space, a distinct break in slope separates the two parts of the eigenvalue distribution.  This
transition between distinct log-linear eigenvalue distributions is analogous to that commonly
observed in physical processes characterized by scaling relationships in the presence of
noise processes.  In this case, the low order eigenvalues are associated with spatially
coherent eigenimages and the high order eigenvalues are associated with spatially incoherent
eigenimages.  Within the Milpitas study area, the spatially coherent eigenimages span
approximately 30 spectral dimensions.  The spectral endmembers associated with the
extrema of the low order dimensions represent soil, vegetation, and a variety of high and low
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albedo anthropogenic endmembers.   Despite the high spectral dimensionality of the urban
mosaic, the low order dimensions with the highest spatial autocorrelations are associated
with the hyperspectral equivalents of the spectral endmembers that characterize broadband
imagery of Milpitas and many other urban environments observed with Landsat and Ikonos
imagery.

Variance at pixel scale represents a combination of noise and signal.  The characteristic
scale of urban reflectance is generally between 10 and 30 meters (Small, 2001b) so many of
the 20 m AVIRIS pixels in the study area are likely to be spectral mixtures of at least two
endmembers.  This results in appreciable spectral variability at pixel scales and contributes
to the higher order principal components whose eigenimages are not spatially coherent.
Successive smoothing of the image suggests that apparent dimensionality increases
somewhat as noise related variance is attenuated.  More severe smoothing reduces apparent
dimensionality as isolated spectral endmembers are attenuated.  The first rotation applied by
the MNF is based on the assumption that signal is strongly correlated among adjacent
pixels and that noise is spatially uncorrelated at pixel scales.  In urban environments where
significant variations in reflectance occur at pixel scales, much of the pixel scale variance is
not noise.  Pre-rotation to diagonalize the noise covariance matrix therefore accommodates
the spatially uncorrelated variance associated with the noise estimate but does not account
for actual spectral variability at pixel scales.  By ordering the resulting eigenimages by
decreasing spatial autocorrelation, the MNF rotation emphasizes the spectral endmembers
occurring at larger spatial scales and relegates the isolated and mixed spectra to the higher
order dimensions.  The scaling of eigenvalues in sigma noise units is convenient because it
provides a benchmark for the amplitude of the instrument noise relative to pixel scale
variance in the radiance field.

The apparent reduction in dimensionality with spatial scale is a consequence of the
characteristic scales of the urban mosaic.  The larger subimages generally contain a greater
diversity of spectral endmembers and thus have higher dimensionality.  The smaller
subimages have higher dimensionality in residential suburbs and transitional areas and
lower dimensionality in more spectrally homogeneous areas.   In spite of the high spectral
dimensionality of the urban mosaic, the majority of variance (97.5%) can be described with
a four endmember mixing model spanning the three low order dimensions of the mixing
space.  The consistency of endmembers suggests that the low dimensional projections of
the mixing space resolved by broadband sensors does represent the true dominant
endmembers even if they cannot represent the true spectral diversity of the urban mosaic.
The scale analysis indicates that relatively high dimensionality is retained at least down to
scales of 300 meters for high altitude AVIRIS in this area.  Higher spatial resolution
AVIRIS imagery may reveal higher spectral dimensionality at the same scales however.
This method could also be used to quantify the spectral scaling properties of other
environments.  For instance, spatial scaling of reflectance spectral in forest canopies may
provide insights into species diversity and forest succession dynamics.
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