Intercomparison of methods of coupling between convection and large-scale circulation. 2: Comparison over non-uniform surface conditions

C. L. Daleu1, R. S. Plant1, S. J. Woolnough2, S. Sessions3, M. J. Herman3,

A. Sobel4, S. Wang5, D. Kim6, A. Cheng7, G. Bellon8, P. Peyrille9, F. Ferry9,

P. Siebesma10,11, and L. van Ulf10

Correspondence to: C. L. Daleu, c.daleu@reading.ac.uk

1Department of Meteorology, University
Abstract. As part of an international intercomparison project, the two-way interaction between convection and large-scale dynamics is studied in a set of single column models (SCMs) and cloud-resolving models (CRMs) using two large-scale parameterization methods: the weak temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. In Part 1 of this study, the simulated column has the same sea surface temperature (SST) as the reference state. In this paper, the reference state is held fixed while the SST in the simulated column is varied. For each value of SST, we performed two sets of systematic comparisons: a comparison of the WTG and DGW methods with a consistent implementation in models with different physics and numerics, and a comparison of the behavior of those models using the same large-scale parameterization method.

The sensitivity of precipitation rate to the SST differs from model to model and also depends on whether the WTG or DGW method is used to parameterize the large scale circulation. In general, SCMs display a wider range of behaviors than CRMs. CRMs show a fairly linear relationship between precipitation and circulation strength, but a few SCMs deviate from this linear relationship. All CRMs using either the WTG or DGW method show a nonlinear increase of mean precipitation rate with SST. In contrast, SCMs of Reading, Reading, UK,
show sensitivities of the mean precipitation rate to the SST which are not always monotonic. Within an individual SCM, a WTG simulation and a corresponding DGW simulation can produce different signs of the circulation. In general, DGW simulations produce large-scale pressure velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations.

Consistent with observations and other numerical model studies, precipitation rate increases with column-relative humidity. A large proportion of the models show a rapid increase of mean precipitation rate when column-relative humidity increases pass a threshold value. CRMs using either the WTG or DGW method show very similar relationships between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors.

2National Centre for Atmospheric Science,
1. Introduction

A key issue in understanding the tropical climate and its variability is the understanding of the two-way interaction between tropical deep convection and large-scale tropical circulations. Numerical models which simultaneously simulate convection and large-scale circulations are computationally expensive due to the large range of spatial scales between individual convective cells and large-scale tropical circulations. Some examples include large-domain, high-resolution simulations as those conducted in projects such as Cascade [e.g. Holloway et al., 2012].

In the past decade, various forms of parameterized large-scale dynamics have been developed to study the two-way interaction between deep convection and large-scale dynamics at a reasonable computational cost in both single column models (SCMs) and cloud-resolving models (CRMs). Parameterized large-scale dynamics is a set of methods developed to capture the feedbacks of large-scale dynamics on convection and vice versa, in a way broadly consistent with our physical understanding of the large-scale tropical atmosphere. This study compares two methods of parameterized the large-scale dynamics—the weak-temperature gradient (WTG) method and the damped gravity wave (DGW) method—in a set of CRMs and SCMs.

The WTG method relies on the physical principle that gravity waves act to redistribute local buoyancy anomalies in the free troposphere [Bretherton and Smolarkiewcz, 1989; Mapes and Houze, 1995; Yano and Bonazzola, 2009] and thus, maintain nearly uniform horizontal temperature gradients near the equator where the action of the Coriolis force...
is small. The WTG method has been applied to parameterize large-scale tropical circulations that either consume the simulated heating and accordingly maintain zero horizontal temperature gradient [Sobel and Bretherton, 2000] or remove the horizontal temperature gradient over a short but nonzero time-scale [e.g., Raymond and Zeng, 2005; Sessions et al., 2010; Daleu et al., 2012; Sessions et al., 2015]. A recent innovation of the WTG method involves spectral decomposition of heating in the vertical dimension [Herman and Raymond, 2014].

The DGW method derives the large-scale vertical velocity directly from the approximated momentum equations. This large-scale parameterization method has been applied in several studies that simulate the two-way coupling between convection and large-scale dynamics, with the latter being simplified to a linear gravity wave of a single horizontal wavenumber [Kuang, 2008, 2011; Wang et al., 2013; Romps, 2012a, b; Edman and Romps, 2015].

The implementation of the WTG and DGW methods has always required a reference state that is coupled to the simulated column [e.g., Raymond and Zeng, 2005; Sobel et al., 2007; Sessions et al., 2010; Wang and Sobel, 2011; Kuang, 2008, 2011; Wang and Sobel, 2012; Wang et al., 2013; Romps, 2012a, b]. Recently, however, Daleu et al. [2012] developed a new configuration that couples two simulated columns via a WTG-derived large-scale circulation to study the influence on local convection due to changes in remote convection [Daleu et al., 2014]. Much insight has been learned from these efforts. Unfortunately, many aspects of the large-scale parameterization methods remain uncertain since results using these two large-scale parameterization methods show both sim-
ilarities and discrepancies in model behavior. In order to understand the different be-
haviors of these large-scale parameterization methods, this international intercomparison
project—the GASS-WTG project—was developed by the Global Energy and Water Ex-
changes (GEWEX) Global Atmospheric Systems Modelling Panel (GASS). The goals of
this project are to develop community understanding of the WTG and DGW methods, to
identify differences in behavior of SCMs compared to CRMs to inform parameterization
development, and to assess the usefulness of these approaches as tools for parameterization
development.

In Part 1 of this study [Daleu et al., 2015], the aim was to understand what causes
discrepancies in model behavior when surface conditions in the simulated column are
identical to those of the reference state. We implemented the WTG and DGW methods
in a set of CRMs and SCMs. For each model, the reference state was defined from
profiles obtained in the radiative-convective equilibrium (RCE) simulation of that model.
WTG and DGW simulations were performed with the same SST as in the reference state
and were initialized with profiles from the reference state. Some models produced an
equilibrium state which was almost identical to the corresponding RCE reference state.
In contrast, other models developed a large-scale circulation which resulted in either
substantially higher or lower precipitation rates in the simulated column compared to
the implied value for the RCE reference column. We also explored the sensitivity of
the final equilibrium state to the initial moisture conditions. We found that while some
models are not sensitive to the initial moisture conditions (independent of the method

3Department of Physics, New Mexico
used to parameterize the large-scale circulation), other models may support two distinct
precipitating equilibrium states using either the DGW or WTG method. We also found

Tech, Socorro, New Mexico, USA,

4Department of Environmental Sciences,
Columbia University, New York, New York, USA,

5Department of Applied Physics and
Applied Mathematics, Columbia University,
New York, New York, USA,

6Department of Atmospheric Sciences,
University of Washington, Seattle,
Washington, USA,

7Climate Science Branch, NASA Langley
Research Centre, Hampton, Virginia, USA,

8The Department of Physics, University
of Auckland, Auckland, New Zealand,

9Meteo France, Toulouse, France,

10Royal Netherlands Meteorological
Institute, De Bilt, Netherlands.

11Delft University of Technology, Delft,
Netherlands
that some models using the WTG method (but not using the DGW method) can support either an equilibrium state with persistent, precipitating convection or an equilibrium state with zero precipitation.

Daleu et al. [2015] revealed some weaknesses of the WTG method. For instance, over uniform SST, the existence of the nonprecipitating equilibrium state in some models was sensitive to the choice of the parameters used in the WTG calculations (e.g., the nominal boundary layer depth). In addition, DGW simulations over uniform SST and with uniform radiative forcing were more likely to reproduce the RCE reference conditions and produced large-scale pressure velocities which were smoother compared to those produced by the WTG simulations. Aside from the choice of the large-scale parameterization method and the details of its implementation, various other factors in the convective models were important for the evolution of convection and its interactions with parameterized large-scale dynamics. For instance, we found that CRMs using either the WTG or DGW method produced broadly similar results, while SCMs produced a much wider range of behaviors.

Whilst *Daleu et al.* [2015] considered the case where the simulated column had the same SST as the RCE reference state, this paper focuses on the sensitivity to the SST in the simulated column, which has been a major focus of previous studies using these approaches [e.g., *Raymond and Zeng*, 2005; *Sobel et al.*, 2007; *Wang and Sobel*, 2011]. In the present study, we use the same set of CRMs and SCMs presented in *Daleu et al.* [2015]. For each model, we fix the reference state and perform a series of WTG and DGW simulations with a range of SSTs in the simulated column. We perform systematic comparisons of the WTG and DGW methods with a consistent implementation in the
models, and also systematic comparisons of the behavior of the models given the same
large-scale parameterization method.

This paper is organized as follows. Section 2 briefly describes the models that have
contributed to this study. Section 3.1 outlines our implementation of the WTG and DGW
methods (full details are available in Daleu et al. [2015]), while Section 3.2 describes the
configurations of our numerical simulations. Section 4 compares the results of the WTG
and DGW simulations over non-uniform SSTs. Finally, the conclusions and implications
of our study are discussed in section 5.

2. Models description

Six groups participating in this intercomparison study performed simulations with the
same set of models presented in Daleu et al. [2015]. There are 12 models, including five
CRMs (two in three-dimensions [3-D] and three in two-dimensions [2-D]) and seven SCMs.
The models are listed in Tables 1 and 2 for CRMs and SCMs, respectively.

2.1. Cloud Resolving Models

WRF is the Weather Research and Forecast model version 3.3 [Skamarock et al., 2008],
MesoNH is the mesoscale, nonhydrostatic atmospheric model [Lafore et al., 1997], LaRC-
CRM is the Langley Research Center Cloud-Resolving Model (LaRC-CRM) [Cheng and
Xu, 2006], NMTCMv3 is the New Mexico Tech cloud model introduced in Raymond and
Zeng [2005], with modifications and enhancements described in Herman and Raymond
[2014], and LEMv2.4 is the Met Office Large Eddy Model at version 2.4 [Shutts and Gray,
1994; Petch and Gray, 2001]. The reader is referred to Daleu et al. [2015] for a more
complete description of these CRMs.
2.2. Single-Column Models

Two pairs of these SCMs are different versions of the same atmospheric model. One of
the pairs, LMDzA and LMDzB, are the SCM versions of the atmospheric components of
IPSL-CM5A and IPSL-CM5B [Dufresne et al., 2013]. The other pair, EC-Earthv1 and
EC-Earthv3, are SCMs based on the atmospheric general circulation model IFS, cycles
31r1 and 36r4 respectively of the European Centre for Medium-Range Weather Forecasts
(ECMWF) [Hazeleger et al., 2010]. ARPv6 is the SCM version of the atmospheric com-
ponent of the CNRM-CM, an updated version from that used in CMIP5 [Voldoire et al.,
2013], GISS-SCM is the SCM version of the National Aeronautics and Space Administra-
tion Goddard Institute for Space Studies, an updated version from that used in CMIP5
[Schmidt et al., 2014], and UMv7.8 is the SCM version of the UK Met Office Unified Model
[Davies et al., 2005]. The reader is referred to Daleu et al. [2015] for a more complete
description of these SCMs.

2.3. Overall approach

The CRMs have horizontal domain sizes ranging between 128 and 256 km and horizontal
resolution ranging between 0.5 and 4 km. For each CRM, the domain is not so large as
to allow spontaneous mesoscale organization of convection [Tompkins, 2000; Bretherton
et al., 2005]. The lateral boundary conditions are periodic for all prognostic variables in
all CRMs. For CRMs in 2-D, the domain-mean wind speeds in the along-domain direction
and in the across-domain direction are relaxed toward vertically uniform values of 0 and
5 m s$^{-1}$, respectively, both with a relaxation time-scale of 6 h. The along-domain wind
is suppressed to avoid the development of along-domain wind shear that may otherwise
occur [Tompkins, 2000; Mapes and Wu, 2001] and encourage the formation of squall lines
For fair comparison of 2-D CRM simulations with 3-D CRM simulations and with SCM simulations, the horizontal domain-mean wind speed components in the 3-D CRMs and SCMs are also relaxed toward vertically uniform values of 0 and 5 m s$^{-1}$. Applying a vertically uniform wind speed of 5 m s$^{-1}$ simply increases the value of surface evaporation compared to the no wind case without affecting the dynamics of convection.

For all of these models, the lower boundary condition is a spatially uniform and time-independent SST, and the Coriolis force is zero. We force each model with the idealized cooling profile defined in Daleu et al. [2015], so that the tendency of temperature due to radiative cooling ($\frac{\partial T}{\partial t}$)$_{RC}$ is defined as

$$
\left(\frac{\partial T}{\partial t} \right)_{RC} = \begin{cases}
-1.5 & \text{if } p \geq 200 \\
-1.5 \left(\frac{p-100}{100} \right) - \alpha_T \left(\frac{200-p}{100} \right) \left(T - 200 \right) & \text{if } 100 < p < 200, \\
-\alpha_T (T - 200) & \text{if } p \leq 100
\end{cases}
$$

where the overbar denotes a horizontal domain-average, p is the pressure in hPa and $\alpha_T^{-1} = 1$ day is the relaxation time-scale of the temperature T toward a fixed value of 200 K at levels with $p < 100$ hPa. Equations similar to equation 1 have been used in previous studies [Pauluis and Garner, 2006; Wang and Sobel, 2011]. It produces radiative cooling which is homogeneous and non-interactive throughout most of the troposphere and depends on temperature above 200 hPa.

3. Parameterization of the large-scale dynamics and experiment setup

3.1. Parameterization of the large-scale dynamics

In the present study, the large-scale circulation is parameterized using two methods: the WTG and DGW methods. As in Daleu et al. [2015], the implementation of the WTG or DGW method involves a reference state that is coupled to an interactive column.
To implement the WTG method we generally followed the procedures used in Raymond and Zeng [2005], Sobel et al. [2007], and Daleu et al. [2012]. We diagnose the large-scale pressure velocity, ω in the free troposphere that acts to reduce the difference in the domain-mean virtual potential temperature between the simulated column and the reference state, $\theta_v - \theta_v^{\text{Ref}}$, over a specified time-scale, τ. Thus,

$$\omega \frac{\partial \theta_v^{\text{Ref}}}{\partial p} = \frac{\theta_v - \theta_v^{\text{Ref}}}{\tau}.$$ \hspace{1cm} (2)

In the boundary layer, the WTG approximation is not valid because strong surface fluxes create temperature gradients more efficiently than gravity waves damp them [Sobel and Bretherton, 2000]. As in Daleu et al. [2015], we choose a nominal boundary layer top, p_b, arbitrarily at 850 hPa. We apply equation 2 from the first model level above p_b to 100 hPa, and below p_b we calculate the values of ω by linear interpolation in pressure from the value diagnosed at the first model level above p_b to zero at the surface. Experiments to assess sensitivities of the final equilibrium state to the depth of the boundary layer are presented in Daleu et al. [2015]. A full description of the implementation of the WTG method used in this study is given in Daleu et al. [2015].

The DGW method is applied to couple convection and large-scale dynamics with the latter being simplified to a linear gravity wave of a single horizontal wavenumber. To implement the DGW we generally followed the procedures of Kuang [2008], and Kuang [2011]. We derive ω from a wave equation that is obtained by combining the momentum and thermodynamics equations. The second-order derivative of ω is related to the difference in the domain-mean virtual temperature between the simulated column and the
reference state, $T_v - T_v^{\text{Ref}}$, as

$$\frac{\partial}{\partial p} \left(\epsilon \frac{\partial \mathbf{w}}{\partial p} \right) = \frac{k^2 R_d}{P^{\text{Ref}}} (T_v - T_v^{\text{Ref}}), \quad (3)$$

where R_d is the gas constant of dry air. ϵ and k are the mechanical damping coefficient and the horizontal wavenumber, respectively, and P^{Ref} is the domain-mean pressure of the reference state.

The large-scale circulation parameterized using either equation 2 or 3 introduces additional source and sink terms to the heat and moisture budgets. As in Daleu et al. [2015], the effect of the diagnosed large-scale pressure velocity is considered on potential temperature and water vapor only. The prognostic equation for potential temperature includes the tendency due to vertical advection by the parameterized large-scale circulation. That is,

$$\left(\frac{\partial \theta}{\partial t} \right)_{\text{LS}} = -\omega \frac{\partial \theta}{\partial p}. \quad (4)$$

The prognostic equation for specific humidity of water vapor (q_v) also includes the large-scale tendency due to vertical advection, as well as an additional contribution representing the horizontal advection of the reference state air into the simulated domain by the parameterized large-scale circulation. That is,

$$\left(\frac{\partial q_v}{\partial t} \right)_{\text{LS}} = -\omega \frac{\partial q_v}{\partial p} + \max \left(\frac{\partial \mathbf{w}}{\partial p}, 0 \right) (\bar{q}_v^{\text{Ref}} - q_v). \quad (5)$$

where q_v^{Ref} is the specific humidity of the reference state. The second term on the right hand side of equation 5 is described as “lateral entrainment” by Raymond and Zeng [2005].

3.2. Experiment Setup

For each model, a radiative-convective equilibrium (RCE) simulation (no large-scale parameterized dynamics) is first performed over an SST of 300 K. The mean thermody-
namic profiles at equilibrium in that simulation are used to define the reference state of that model. We keep the reference state fixed and investigate the sensitivity of the final equilibrium state to the SST in the simulated column as in Wang and Sobel [2011].

For each of the models listed in Tables 1 and 2, we performed the WTG and DGW simulations of a colder column (using SSTs of 298 and 299.5 K), a warmer column (using SSTs of 300.5, 301, 301.5 and 302 K), and over a uniform SST (using an SST of 300 K; results presented in Daleu et al. [2015]).

The adjustment time-scale used in the WTG calculations is $\tau = 3$ h. In the DGW calculations, we fix the value of ϵ to 1 day$^{-1}$ and solve equation 3 with a single horizontal wavenumber $k = 10^{-6}$ m$^{-1}$. These are typical values used in previous WTG and DGW studies [e.g., Herman and Raymond, 2014; Daleu et al., 2012; Wang and Sobel, 2011; Wang et al., 2013], including Daleu et al. [2015]. They have been chosen such that the WTG simulation and the corresponding DGW simulation produce large-scale circulations that are comparable in strength for similar temperature anomalies. The calculations of $\bar{\omega}$ given by equations 2 and 3 are performed either every 10 min (for models with integration time steps smaller or equal to 10 min) or at every model time step (for models with integration time steps greater than 10 min).

The results presented in Daleu et al. [2015], and in other previous studies [e.g., Sobel et al., 2007; Sessions et al., 2010] show that some SCMs and CRMs using the WTG method can sustain either a dry equilibrium state or a precipitating equilibrium state, given sufficiently different initial moisture conditions (known as multiple equilibria). Therefore, it is possible that some of our WTG simulations that exhibit precipitating equilibrium states would instead result in dry equilibrium states if initialized with very dry moisture condi-
tions. Multiple equilibria and their dependence on parameters in the WTG calculations have already been investigated in Daleu et al. [2015], and they are outside the scope of the present paper.

The WTG and DGW calculations are initialized with profiles from the models RCE reference state at 300 K and are allowed to evolve until a new quasi-equilibrium state with parameterized large-scale circulation is reached. The RCE reference profiles differ from model to model, with large differences obtained among SCMs (see Figure 3 in Daleu et al. [2015]). The value of surface sensible heat flux also differs between models (not shown) but is much smaller than surface latent heat flux, such that the main balance in the RCE state is between the precipitation rate and the column-integrated radiative cooling rate. Due to the dependence of radiative cooling profile on temperature above 200 hPa (see equation 1), the value of column-integrated radiative cooling rate differs from model to model. For example, in Daleu et al. [2015] we found that ARPv6 produces the smallest column-integrated radiative cooling rate and has a significant lower mean precipitation rate compared to all other models. The values of mean precipitation rate obtained in the RCE simulations with an SST of 300 K are summarized in the last rows of Tables 1 and 2 for CRMs and SCMs, respectively.

We conducted a set of WTG and DGW simulations over non-uniform SSTs using each of the models listed in Tables 1 and 2. The simulations are integrated over different periods of time ranging between 50 and 250 days, as the time-scale of adjustment to a quasi-equilibrium state with the parameterized large-scale circulation differs from model to model and also depends on which large-scale parameterization method is used (not shown). The mean states and statistics at equilibrium of the simulations to be discussed
have been obtained by averaging over a period of time such that a statistically steady state can be defined. The averaging periods were the last 20 days in 50-day simulations, 30 days in 100-day simulations, and 100 days in 250-day simulations.

4. Results

In this section, we present the profiles of large-scale pressure velocity and the values of precipitation at equilibrium for different values of SST in the simulated column. We also present the mean values of precipitation, circulation strength, and column-relative humidity in a set of scatter plots to characterize the response of convection to changes in surface conditions.

4.1. Precipitation and parameterized large-scale circulation

Figures 1 and 2 show the profiles of ω obtained at equilibrium in the WTG and DGW simulations, respectively. Results are shown for all models listed in Tables 1 and 2 and for SSTs of 298, 299.5, 300 K (uniform SST; results presented in Daleu et al. [2015]), 300.5, 301, 301.5 and 302 K. For models in height coordinates, we expressed the large-scale vertical velocities in Pa s$^{-1}$ by applying the factor “$-\rho g$,” where ρ is density and g is the gravitational acceleration.

To provide a more quantitative evaluation of the WTG and DGW simulations, we calculated the ratio of mean precipitation rate in the simulated column, P, to the value of the corresponding RCE reference state, P_{Ref}. We also calculated the mass-weighted vertical integral of the large-scale pressure velocities presented in Figures 1 and 2; $\Omega = \int \omega dp/\Delta p$, where Δp is the depth of the troposphere. The numerical values of Ω and P/P_{Ref} are listed in Tables 3 and 4 for CRMs and SCMs, respectively. Figure 3 shows
P/P_{Ref} as a function of the SST in the simulated column, and Figure 4 shows scatter plots of Ω versus P/P_{Ref} for all SSTs.

4.1.1. Variations between models

For a given SST in the simulated column, the characteristic vertical structure of the large-scale circulation at equilibrium differs from model to model, and it also depends on the large-scale parameterization method used. Over an SST of 302 K (red curves in Figures 1 and 2), for example, models using the WTG method exhibit a range of large-scale pressure velocity profiles which vary from unimodal ascent through the column with very top-heavy profiles (e.g., WRF; Figure 1a), to more uniform unimodal profiles (e.g., LaRC-CRM; Figure 1c), to bi-modal profiles (e.g., EC-Earthv1; Figure 1k), to profiles with distinct minima near the freezing level (e.g., UMv7.8; Figure 1j), including some with weak descent near the freezing level (e.g., GISS-SCM; Figure 1h). As seen in Daleu et al. [2015], the DGW method produces large-scale pressure velocity profiles which are smoother than those produced using the WTG method (compare Figures 1 and 2).

Over cold SSTs (298 and 299.5 K), some models produce large-scale pressure velocity profiles which are insensitive to the SST. In such simulations, convection is inhibited completely and the heating due to the diagnosed large-scale circulation balances the prescribed radiative cooling. Some examples are the WTG simulations of LEMv2.4 with SSTs of 298 and 299.5 K which produce zero precipitation rates (see Table 3) and indistinguishable large-scale pressure velocity profiles (see dark blue and light blue curves in Figure 1e).

Over warm SSTs, the large-scale pressure velocity profiles are sensitive to the SST in all the models using either the WTG or DGW method. All CRMs with an SST ≥ 301 K have large-scale pressure velocities increasing upward to around 400 hPa using the
DGW method and to around 250 hPa using the WTG method. The large-scale pressure velocity profiles produced in most SCM simulations vary considerably from the very top-heavy profiles (e.g., GISS-SCM using the DGW method, see Figure 2h) through weakly top-heavy profiles (e.g., LMDzB using the WTG method, see Figure 1g) to the bottom-heavy profiles (e.g., EC-Earthv1 using the WTG method; see Figure 1k), and some of the pressure velocity profiles show very detailed structures in the vertical (e.g., UMv7.8 using the WTG method; see Figure 1j). Similar to the results of Wang et al. [2013], the pressure velocity profiles produced using the DGW method are much smoother and tend to be slightly less top-heavy compared to those produced using the WTG method (compare Figures 1 and 2).

4.1.2. Variations with SST

The impact of the SST is readily seen. At SST = 298 K, all the models using either the WTG or DGW method produce uniform large-scale descent (see the dark blue curves in Figures 1 and 2). In some of these simulations, the large-scale circulation inhibits precipitating convection completely (e.g., NMTCMv3 using the DGW method; see Table 3), while in others an equilibrium state with light precipitation can be achieved (e.g., LMDzB using the WTG method; see Table 4).

At SST = 299.5 K, all CRMs using either the WTG or DGW method produced uniform large-scale descent. With the exception of GISS-SCM using the WTG method, which produces large-scale ascent in the upper troposphere (light blue curve in Figure 1h), the other SCMs produce either a uniform large-scale descent throughout the column (e.g., ARPv6 using the WTG method; light blue curve in Figure 1i) or large-scale descent in the upper troposphere and a very weak circulation in the lower troposphere (e.g., EC-Earthv3
using the WTG method; light blue curve in Figure 1l). The WTG and DGW simulations which produce uniform large-scale descent result in very low precipitation compared to the value of the RCE reference state, consistent with the diminished moisture transport implied by the resulting large-scale circulation (e.g., MesoNH using the WTG method; see Table 3), with some simulations producing zero precipitation at equilibrium (e.g., WRF using the WTG method; see Table 3). The WTG and DGW simulations which produce large-scale descent in the upper troposphere and a very weak circulation in the lower troposphere are dominated by shallow convection and thus, result in smaller reduction in precipitation compared to the value of the RCE reference state (e.g., EC-Earthv3 using the WTG method; see Table 4). However, in the WTG simulation of GISS-SCM with an SST of 299.5 K the mean precipitation rate at equilibrium is slightly increased (with respect to the value of the RCE reference state) to balance the net small cooling produced by the large-scale ascent in the upper troposphere. In contrast, the DGW simulation of GISS-SCM with an SST of 299.5 K produce a different sign of the circulation with a reduction of precipitation (see Table 4).

The results of the WTG and DGW simulations over uniform SST are presented in Daleu et al. [2015]. There, we considered that a WTG or DGW simulation over a uniform SST replicated the corresponding RCE reference state to a good approximation if $0.9 < \frac{P}{P_{\text{Ref}}} < 1.1$ and $-0.4 \times 10^{-2} < \Omega < 0.4 \times 10^{-2}$ Pa s$^{-1}$. The values of Ω and $\frac{P}{P_{\text{Ref}}}$ for such simulations are both bold-faced in Tables 3 and 4. Some models do replicate the RCE reference state to a good approximation but others sustain a large-scale ascent which results in substantially higher precipitation rate in the simulated column compared
to the value of the corresponding RCE reference state, while others sustain a large-scale
descent which results in substantially lower precipitation rate.

Over a uniform SST of 300 K, models which produce a lower precipitation rate will not
produce a mean precipitation rate which is equivalent to the value of the RCE reference
state unless the SST in the simulated column is increased, consistent with the results of
Raymond and Zeng [2005]. An example is UMv7.8 using the WTG method (see P/P_{Ref}
as a function of the SST; green curve in Figure 3b). Similarly, models which produce a
higher precipitation rate will not produce a mean precipitation rate which is equivalent to
the value of the RCE reference state unless the SST in the simulated column is decreased
(e.g., ARPv6 using the WTG method; solid black curve in Figure 3b).

An SST of 300.5 K results in substantially higher precipitation rate ($P/P_{Ref} > 1.1$)
in all the WTG and DGW simulations, except EC-Earthv1. A large proportion of these
simulations produce uniform large-scale ascent (e.g., GISS-SCM using the DGW method,
dark green curve in Figure 2h). However, other simulations produce large-scale circula-
tions with a layer of descent near the freezing layer, but which result in net cooling and
moistening of the simulated column (e.g., ARPv6 using the WTG method, dark green
curve in Figure 1i and $P/P_{Ref} > 1.1$ in Table 4). In contrast, the WTG and DGW
simulations of EC-Earthv1 with an SST of 300.5 K produce large-scale circulations with
ascent in the upper troposphere and descent in the lower troposphere (dark green curves
in Figures 1k and 2k), despite producing ascent in the lower troposphere over a uniform
SST of 300 K (black curves in Figures 1k and 2k). Using the DGW method, the upper
tropospheric cooling and moistening offset the lower tropospheric warming and drying
and the mean precipitation rate in the simulated column is maintained close to the value
of the RCE reference state (see Table 4). In contrast, using the WTG method the upper
tropospheric cooling and moistening do not prevent a reduction in precipitation rate due
to the lower tropospheric warming and drying (see Table 4). A similar result is obtained
in the WTG simulation of EC-Earthv1 with an SST of 301 K (see the light green curve in
Figure 1k and and the value of P/P_{Ref} in Table 4). The WTG and DGW simulations of
EC-Earthv1 with an SST of 301 K produces different signs of the circulation ($\Omega > 0$ and
$P > P_{\text{Ref}}$ using the DGW method, compared to $\Omega < 0$ and $P < P_{\text{Ref}}$ using the WTG
method; see Table 4).

At SSTs > 301 K, the mean precipitation rate is increased compared to the RCE in all
the models using either the WTG or DGW method. These simulations produce uniform
large-scale ascent in the simulated column, with the exceptions of the WTG simulations
of ARPv6 and GISS-SCM, in which a thin layer of descent between 750 and 650 hPa does
not prevent an increase in mean precipitation rate due to lower and upper tropospheric
ascent (see the light green, orange, and red curves in Figures 1i and 1h).

For most models the circulation and precipitation increase monotonically with SST.
For all CRMs using either the WTG or the DGW method the simulated column evolves
toward a new quasi-equilibrium state with mean precipitation rate increasing non-linearly
with SST, consistent with SCM results from Sobel and Bretherton [2000], and Ramsay
and Sobel [2011]. In contrast, the SCMs show sensitivities of the mean precipitation rate
to the SST which are not always monotonic (e.g. EC-Earthv1 using either the WTG or
DGW method; solid red curves in Figures 3b and 3d).

Within an individual model, the sensitivity of precipitation rate to the SST depends
on which large-scale parameterization method is used. An example is WRF which shows
a stronger sensitivity under the DGW method than under the WTG method (compared to the dashed curves in Figures 3a and 3c). On the other hand, given one of the large-scale parameterization methods (either the WTG or DGW), the sensitivity of precipitation rate to the SST differs from model to model, and LMDzA using either the WTG or the DGW method is the model which produces the weakest sensitivity compared to all other models (solid blue curves in Figures 3b and 3d).

Despite the differences in the pressure velocity profiles, the mass-weighted vertically-integrated large-scale pressure velocity, Ω shows a fairly linear relationship with the mean precipitation rate (see Figure 4). However, a few SCMs show deviations from this linear relationship, particularly for simulations with warm SST (e.g., GISS-SCM using the WTG method; circles in Figure 4b).

4.2. Precipitation and Column relative humidity

In this section, we examine the relationship between precipitation and the column relative humidity (after here CRH) in our WTG and DGW simulations. CRH is calculated as the ratio of column-integrated water vapor to its saturation value. Figure 5 shows scatter plots of P versus CRH. To account for the variations in CRH of the RCE reference state, we consider Figure 6, which shows scatter plots of the ratios P/P_{Ref} versus CRH/CRH_{Ref}, where CRH_{Ref} is the column-integrated relative humidity of the RCE reference state. The values of P and CRH are those obtained at equilibrium in the WTG and DGW simulations of each of the models listed in Tables 1 and 2 with the values of SST ranging between 298 and 302 K.

Generally, the mean precipitation rate increases as CRH increases, except in the DGW simulations of LMDzA with SSTs ≤ 300.5 K in which CRH decreases while precipitation
rate increases (see left facing triangles in Figure 5d). The decrease of CRH with mean precipitation rate is unusual, but we do not investigate this further in this study.

In a large proportion of the models, there is a threshold value of CRH below which there is virtually no precipitation or strongly reduced precipitation rate (with respect to the value of the RCE reference state) and above which precipitation rate rapidly increases with CRH. Below this threshold, the WTG and DGW simulations show changes in mean precipitation rate that are relatively small for large changes in CRH. Above this threshold, a significant increase in precipitation rate is obtained, followed by a sharp pickup of mean precipitation rate as CRH increases further. The value of this threshold varies from one model to another and it also varies depending on the large-scale parameterization method used.

These relationships between CRH and mean precipitation rate are qualitatively similar to that seen in observations [e.g., Bretherton et al., 2004; Holloway and Neelin, 2009] and in other idealized models [e.g., Raymond and Zeng, 2005; Wang and Sobel, 2011], but there are significant quantitative differences. For instance, the transition from near zero precipitation to rapid increase in precipitation with CRH is sharper in some models compared to others (e.g., compare P versus CRH in the WTG simulations of UMv7.8 and LMDzB; stars and right facing triangles in Figure 5b, respectively). Moreover, CRMs using either the WTG or DGW method produce very similar relationships between P and CRH, while SCMs show a much larger variety of relationships. When P and CRH are scaled by their reference values (see Figure 6), the CRMs produce a relatively tight relationship. The spread among SCMs is also clearly reduced, although considerable scatter remains. In general, P increases more rapidly with CRH in CRMs than in SCMs.
4.3. Budget analysis

We now analyze the budgets in order to clarify the differences among RCE, WTG, and DGW simulations. From the moisture budget equation, the changes in mean precipitation rate with respect to the value of the RCE reference state, ΔP, must be due to changes in surface evaporation with respect to the value of the RCE reference state, ΔE, and/or the moistening rate due to the large-scale circulation M_{LS}. Figures 7 and 8 show scatter plots of ΔP versus M_{LS} and scatter plots of ΔP versus ΔE, respectively.

Both CRMs and SCMs show fairly linear relationships between ΔP and M_{LS}. However, the slope is not one-to-one (dotted oblique line in Figure 7), which implies changes in surface evaporation as shown in Figure 8. ΔE increases with ΔP in a large proportion of the WTG and DGW simulations, and there are only a few simulations which show an enhancement of convective activity associated with a reduction in surface evaporation (e.g., WTG simulation of LaRC-CRM an SST of 300.5 K, dark green solid diamond in Figure 8a) or which show a suppression in convective activity associated with an increase in surface evaporation (e.g., the WTG simulation of EC-Earthv1 with SST of 300.5 K, dark green diamond in Figure 8b).

The sensitivity of surface fluxes (sum of sensible heat and latent heat fluxes) to changes in near-surface perturbation winds due to changes in convective activity has been somewhat constrained in this study by imposing a mean horizontal wind speed in the surface flux calculations. As a result, ΔE is generally much smaller than ΔP, such that changes in precipitation are largely balanced by the large-scale moistening rates. This is readily seen in Figures 7 and 8. For a large proportion of the simulations, the values of M_{LS} are about or more than two third the values of ΔP.
As in Daleu et al. [2015], we examine the relationship between ΔP and the normalized gross moist stability (NGMS), Γ. We followed Raymond et al. [2009] and defined Γ as the dimensionless number which relates the net lateral outflow of moist static energy from a convective region to a measure of the strength of convection in that region. That is

$$\Gamma = -\langle \bar{\omega} \partial h / \partial p \rangle / L \langle \bar{\omega} \partial q / \partial p \rangle,$$

with $\langle \cdot \rangle = \int_{p_s}^{p_{top}} \cdot dp / g$. h is the moist static energy, q is the specific humidity of water vapor, and L is the latent heat of vaporization. From the heat and moisture budget equations, a diagnostic equation for ΔP is

$$\Delta P = \frac{\Gamma + 1}{\Gamma} \Delta E + \frac{\Delta H + \Delta R}{\Gamma},$$

with

$$\Gamma = -(M_{LS} + H_{LS}) / M_{LS},$$

and

$$H_{LS} = C_p \langle \partial T / \partial t \rangle_{LS}, \quad \text{and} \quad M_{LS} = L_v \langle \partial q / \partial t \rangle_{LS}.$$

ΔH and ΔR are respectively the changes in surface sensible heat flux and column-integrated radiative cooling rates with respect to the values of the RCE reference state, and H_{LS} and M_{LS} are the heating and moistening rates due to the diagnosed large-scale circulation respectively. The reader is referred to Daleu et al. [2015] for a derivation of equations 7 and 8.

As discussed above, ΔH is much smaller than ΔP. ΔR is also much smaller than ΔP as a result of imposing a fixed radiative cooling profile throughout most of the troposphere. Also, most of these simulations show that the sum of ΔH and ΔR is much smaller than
\[\Delta E, \text{ such that } (\Gamma + 1)/\Gamma \text{ largely describes the strength of the relationship between } \Delta P \text{ and } \Delta E \text{ (see equation 7).} \]

For the WTG and DGW simulations which reproduce the RCE reference state to a good approximation, \(\Gamma \) is a poor diagnostic since \(M_{LS} + H_{LS} \) and \(M_{LS} \) are both close to zero, consistent with a weak large-scale circulation. Figure 9 shows scatter plots of \(\Delta P \) versus \(\Gamma \) for the WTG and DGW simulations which result in significant large-scale ascent at equilibrium. These are simulations which produce \(P/P_{Ref} > 1.1 \) with \(\Omega > 0.4 \times 10^{-2} \) Pa s\(^{-1}\). The values of \(\Gamma \) for the WTG and DGW simulations which result in significant large-scale descent at equilibrium are not particularly relevant in this study.

Most CRM simulations which result in significant large-scale ascent have positive values of \(\Gamma \) and the WTG and DGW simulations of LaRC-CRM with an SST of 300.5 K are the only CRM simulations which have negative values of \(\Gamma \) (dark green solid diamond in Figures 9a and 9c). In those simulations, \(M_{LS} \) is positive, so the negative value of \(\Gamma \) is a result of a deficit of cooling over moistening rates (not shown). Among SCMs, simulations with warm SSTs which produce significant large-scale ascent have positive values of \(\Gamma \). Negative values of \(\Gamma \) in some SCMs are the results of either large-scale ascent over a cold SST (e.g., the WTG of GISS-SCM with an SST of 299.5 K; light blue circle in Figure 9b) or large-scale ascent over a uniform SST (e.g., the DGW simulations of EC-Earthv1 over a uniform SST of 300 K; black diamond in Figure 9d).

Most simulations which result in significant large-scale ascent have values of \(\Gamma \) ranging between 0 and 1, with the exception of the few simulations with have negative values of \(\Gamma \) (e.g., LaRC-CRM using the WTG method with an SST of 300.5 K; dark green solid
diamond in Figures 9a) and the few simulations which have $\Gamma > 1$ (e.g., LMDzA using the DGW with an SST of 300.5 K; dark green left facing triangle in Figure 9d).

Wang and Sobel [2011] and Sessions et al. [2015] found that Γ is a predictor of ΔP in the precipitating regime. In this study, only two models exhibit positive values of Γ which are a monotonically decreasing function of P or of the SST as in Wang and Sobel [2011]. These models are WRF and LEMv2.4 using either the WTG or the DGW method with SSTs > 300 K; see dark green, light green, orange, and red solid circles and solid inverted triangles in Figures 9a and 9c. In contrast, all other models exhibit positive or negative values of Γ which are not directly related to P or SST.

5. Conclusions

In this international intercomparison project, we systematically compared the interactions between convection and large-scale circulations in various CRMs and SCMs using the WTG and DGW methods. The WTG method derives the large-scale circulation from buoyancy anomalies with a given relaxation time-scale [Raymond and Zeng, 2005; Sobel et al., 2007; Sessions et al., 2010; Daleu et al., 2012] while the DGW method derives the large-scale circulation from the momentum equations [Kuang, 2008, 2011; Romps, 2012a, b]. The derived large-scale circulation couples a model to a reference state defined with profiles generated from previous RCE simulations of the same model. In Daleu et al. [2015], we analysed WTG and DGW simulations over a uniform SST. In this paper, we kept the reference state fixed and conducted WTG and DGW simulations with different values of SST in the simulated column. In both cases, we compared the results from various CRMs and SCMs using each large-scale parameterization method.
The WTG and DGW simulations with a cold (or a warm) SST result in lower (or higher) precipitation rates (compared to the value of the RCE reference state) in all CRMs and in a large proportion of the SCMs. In a few SCMs, a WTG simulation over a warm SST and a corresponding DGW simulation produce different signs of the circulation. In those SCMs, different signs of the circulation occur because the WTG simulation produces large-scale ascent over a cold SST or large-scale descent over a warm SST. The strength and the vertical structure of the large-scale pressure velocities that develop over non-uniform SSTs differs from model to model, with the largest inter-model variability obtained among SCMs. The large-scale pressure velocities also depend on which large-scale parameterization approach is used. In general, DGW simulations produce large-scale pressure velocity profiles which are smoother than those produced by WTG simulations, and consistent with the results of Wang et al. [2013], DGW simulations generally produce large-scale pressure velocity profiles which are less top-heavy compared to those produced by WTG simulations.

In comparing model behavior for a given method of the large-scale parameterization (either WTG or DGW), we found that the sensitivity of precipitation rate to the SST differs from model to model. Within an individual model, the sensitivity also differs depending on which large-scale parameterization method is used. All CRMs and five out of the seven SCMs show a monotonic increase of mean precipitation rate with SST using either the WTG or DGW method. A similar relationship between precipitation rate and SST was produced in Sobel and Bretherton [2000] and Ramsay and Sobel [2011]. The other two SCMs show sensitivity of the mean precipitation rate with SST which is not always monotonic. CRMs show a fairly linear relationship between mean precipitation
rate and the amplitude of the diagnosed vertically-integrated large-scale circulation, while a few SCMs show deviations from this linear relationship, particularly for simulations with warm SST.

Precipitation is an increasing function of the column relative humidity, with the former increasing rapidly as the latter passes a threshold. A similar relationship is found in other numerical modeling studies [Wang and Sobel, 2011; Raymond and Zeng, 2005], and is consistent with observations [Bretherton et al., 2004; Holloway and Neelin, 2009]. All CRMs using either the WTG or DGW method show very similar relationships between mean precipitation rate and column-relative humidity. SCMs show a much wider range of relationships between precipitation rate and column-relative humidity, although this spread is reduced when values are normalized by their RCE values.

In our WTG and DGW simulations, the change in precipitation with respect to the value of the RCE reference column is largely balanced by the moistening rate due to the large-scale circulation. We estimated the NGMS for simulations with significant large-scale ascent. A large proportion of the simulations exhibited positive values of NGMS, ranging between 0 and 1, and only few simulations exhibit negative values of NGMS or values of NGMS that approach 1.5. Although two of the CRMs exhibited positive values of NGMS which are decreasing functions of the mean precipitation rate (or decreasing function of the SST), consistent with the results of Wang and Sobel [2011], the other CRMs and all of the SCMs exhibited negative or positive values of NGMS, with no direct relation to the mean precipitation rate or the SST.

The results from this intercomparison project are important for understanding the two-way interaction between convection and large-scale tropical dynamics and also for inter-
preting discrepancies between the results reported in the literature. Our results suggested that the discrepancies between the published results can be related to the choice of the large-scale parameterization method and the details of its implementation. For instance, we found that an individual model can produce different equilibrium states depending on the large-scale parameterization method used, and we also showed that the results using the WTG method are very sensitive to the details of the implementation of the WTG method. Moreover, our results also suggested that the discrepancies between the published results can be related to the differences in the physics of the convection models, since the exact implementation of either the WTG or DGW method in different CRMs and SCMs has resulted in different model behaviors at equilibrium. However, noting that different CRMs under parameterized large-scale circulation behave broadly in the similar way while SCMs produce a much larger variation of behaviors, comparison between CRMs and SCMs behavior under parameterized large-scale circulation may be a useful tool for trying to reduce biases or improve the SCMs or a useful tool when developing and testing parameterization schemes. Further study may compare models and large-scale parameterization methods with interactive radiation and/or interactive surface.

Acknowledgments. C.L.D., R.S.P., and S.J.W. thank the UK Met Office for the availability of the LEM at version 2.4 and SCM version 7.8 of the UK Met Office Unified Model. C.L.D. was supported by NERC, grant NE/K004034/1. S.J.W. was supported by the NCAS, a NERC collaborative center. The New Mexico Tech group thanks Carlos Lopez Carrillo, Ana Juračić, and Stipo Sentić for model output analysis and for continual discussions on the tropical atmosphere. We also thank Raúl Morales-Juberías for use of the Pelican beowulf cluster. S.L.S. acknowledges support from U.S. National Sci-
ence Foundation Grants AGS-1056254 and AGS-1342001, and NM EPSCoR. M.J.H. was supported by U. S. National Science Foundation Grant 1342001. A.H.S. and S.W. were partially supported by NSF grant AGS-1062206. The WRF simulations were carried out on the Yeti Shared HPC Cluster at Columbia University. G.B. thanks Isabelle Beau, Antoinette Alias, David Saint-Martin, Jean-Yves Grandpeix, Marie-Pierre Lefebvre and the CNRS/INSU-LEFE project DEPHY and the European Union FP7 project EMBRACE. D.K. appreciates the NASA/GISS modeling group, especially Maxwell Kelley, Mao-Sung Yao, and Anthony Del Genio, for their invaluable and unlimited supports. D.K. and A.H.S. were supported by the NASA grant NNX13AM18G and the Korea Meteorological Administration Research and Development Program under Grant CATER 2013-3142. LaRC CRM-IPHOC was partially supported by DOE Atmospheric System Research Program under Interagency agreements DE-SC0005450 and DE-SC0008779. The computation resources were provided by SSAI Icluster and LaRC Kcluster. P.P., A.P.S. and L.U. were supported by the European Commission’s Seventh Framework Programme, under Grant Agreement number 282672, EMBRACE project. Data used for this research are available upon request from the corresponding author; please send requests via email to c.daleu@reading.ac.uk.

References

Sessions, S. L., M. J. Herman, and S. Sentic (2015), Convective response to changes in the thermodynamic environment in idealized weak temperature gradient simulations, *J.*

<table>
<thead>
<tr>
<th>Model type</th>
<th>Cloud-Resolving Models (CRMs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelling group</td>
<td>Columbia University</td>
</tr>
<tr>
<td>Model ID</td>
<td>WRF</td>
</tr>
<tr>
<td>Symbol</td>
<td>•</td>
</tr>
<tr>
<td>Contributor</td>
<td>S. Wang</td>
</tr>
<tr>
<td>Country</td>
<td>U.S.</td>
</tr>
<tr>
<td>Dimension</td>
<td>3D</td>
</tr>
<tr>
<td>Hor. size (km)</td>
<td>190×190</td>
</tr>
<tr>
<td>Hor. res (km)</td>
<td>2×2</td>
</tr>
<tr>
<td>No of levels in the vertical</td>
<td>49</td>
</tr>
<tr>
<td>P_{Ref} (mm d$^{-1}$)</td>
<td>4.71</td>
</tr>
</tbody>
</table>

Table 1. List of cloud-resolving models (CRMs) that participated in this study. The symbols serve as a legend for results presented in Section 4. P_{Ref} is the mean precipitation rate obtained in the radiative-convective equilibrium simulation of each CRM with an SST of 300 K.
<table>
<thead>
<tr>
<th>Model type</th>
<th>Single-Column Models (SCMs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelling group</td>
<td>LMD/IPSL NASA CNRM-GAME UK Met Koninklijk Nederlands</td>
</tr>
<tr>
<td>Model ID</td>
<td>LMDzA LMDzB GISS-SCM ARPEGEv6 UMv7.8 EC-Earthv1 EC-Earthv3 (ARPv6)</td>
</tr>
<tr>
<td>Symbol</td>
<td>◁ △ ○ ▽ ⋆ ⋄ □</td>
</tr>
<tr>
<td>Country</td>
<td>France France U.S. France UK NL NL</td>
</tr>
<tr>
<td>No of levels</td>
<td>39 39 40 91 63 62 62</td>
</tr>
<tr>
<td>in the vertical</td>
<td></td>
</tr>
<tr>
<td>P_{Ref} (mm d$^{-1}$)</td>
<td>4.38 4.39 4.58 3.71 4.76 4.53 4.15</td>
</tr>
</tbody>
</table>

Table 2. List of single-column models (SCMs) that participated in this study. The symbols serve as a legend for results presented in Section 4. P_{Ref} is the mean precipitation rate obtained in the radiative-convective equilibrium simulation of each SCM with an SST of 300 K.
Figure 1. Large-scale pressure velocities obtained at equilibrium in the WTG simulations with an SST of 298 K (dark blue), 299.5 K (light blue), 300 K (black), 300.5 K (dark green), 301 K (light green), 301.5 K (orange), 302 K (red). Results are shown for the (a, b, c, d and e) CRMs and (f, g, h, i, j, k and l) SCMs. For each model, the reference profiles are their own RCE profiles at 300 K.
Figure 2. As in Figure 1, but for the equilibrium in the DGW simulations.
<table>
<thead>
<tr>
<th>Model-CRMs</th>
<th>WTG or DGW</th>
<th>(P/P_{\text{Ref}}) or (\Omega)</th>
<th>SST = 298 K</th>
<th>SST = 299.5 K</th>
<th>SST = 300 K</th>
<th>SST = 300.5 K</th>
<th>SST = 301 K</th>
<th>SST = 301.5 K</th>
<th>SST = 302 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRF</td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.000</td>
<td>0.000</td>
<td>\textbf{1.020}</td>
<td>1.020</td>
<td>2.370</td>
<td>3.330</td>
<td>4.240</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-4.210</td>
<td>-4.420</td>
<td>\textbf{0.180}</td>
<td>2.990</td>
<td>6.670</td>
<td>11.230</td>
<td>15.520</td>
</tr>
<tr>
<td>MesoNH</td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.002</td>
<td>0.529</td>
<td>0.896</td>
<td>1.303</td>
<td>1.714</td>
<td>2.220</td>
<td>2.857</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-4.079</td>
<td>-1.577</td>
<td>\textbf{-0.290}</td>
<td>1.391</td>
<td>3.176</td>
<td>5.221</td>
<td>7.839</td>
</tr>
<tr>
<td>LaRC-CRM</td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.006</td>
<td>0.276</td>
<td>1.200</td>
<td>1.233</td>
<td>1.908</td>
<td>2.824</td>
<td>3.322</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-3.549</td>
<td>-2.621</td>
<td>0.970</td>
<td>0.887</td>
<td>2.994</td>
<td>6.111</td>
<td>7.856</td>
</tr>
<tr>
<td>NMTCMv3</td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.000</td>
<td>0.084</td>
<td>1.102</td>
<td>1.233</td>
<td>1.757</td>
<td>2.394</td>
<td>3.282</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-3.563</td>
<td>-3.293</td>
<td>0.610</td>
<td>0.794</td>
<td>2.555</td>
<td>4.671</td>
<td>7.558</td>
</tr>
<tr>
<td>LEmv2.4</td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.000</td>
<td>0.001</td>
<td>\textbf{1.028}</td>
<td>1.830</td>
<td>2.679</td>
<td>3.352</td>
<td>3.912</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-4.517</td>
<td>-4.621</td>
<td>\textbf{0.100}</td>
<td>3.303</td>
<td>6.570</td>
<td>9.221</td>
<td>11.317</td>
</tr>
</tbody>
</table>

Table 3. Table showing the numerical values of \(\Omega \left(\times 10^{-2} \text{ Pa s}^{-1} \right) \) and \(P/P_{\text{Ref}} \) for WTG and DGW simulations with different values of SST in the simulated column. Results in bold correspond to \(|\Omega| < 0.4 \times 10^{-2} \text{ Pa s}^{-1} \) (or \(\omega \approx 0 \)) or \(0.9 < P/P_{\text{Ref}} < 1.1 \). If both \(\Omega \) and \(P/P_{\text{Ref}} \) are bold, the simulation with large-scale parameterization reproduces the RCE state to a good approximation.
<table>
<thead>
<tr>
<th>Model-SCMs</th>
<th>WTG or DGW</th>
<th>(P/P_{\text{Ref}}) or (\Omega)</th>
<th>(\text{SST = 298 K})</th>
<th>(\text{SST = 299.5 K})</th>
<th>(\text{SST = 300 K})</th>
<th>(\text{SST = 300.5 K})</th>
<th>(\text{SST = 301 K})</th>
<th>(\text{SST = 301.5 K})</th>
<th>(\text{SST = 302 K})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMDzA</td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.176</td>
<td>0.790</td>
<td>0.997</td>
<td>1.313</td>
<td>1.520</td>
<td>1.829</td>
<td>2.192</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-4.071</td>
<td>-1.037</td>
<td>-0.015</td>
<td>1.385</td>
<td>2.240</td>
<td>3.387</td>
<td>4.806</td>
</tr>
<tr>
<td></td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.15</td>
<td>0.804</td>
<td>0.982</td>
<td>1.187</td>
<td>1.530</td>
<td>1.874</td>
<td>2.201</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-4.145</td>
<td>-0.972</td>
<td>-0.065</td>
<td>0.931</td>
<td>2.169</td>
<td>3.437</td>
<td>4.652</td>
</tr>
<tr>
<td>LMDzB</td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.362</td>
<td>0.929</td>
<td>1.290</td>
<td>1.694</td>
<td>2.273</td>
<td>2.729</td>
<td>3.127</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-2.670</td>
<td>-0.30</td>
<td>1.180</td>
<td>2.992</td>
<td>5.475</td>
<td>7.470</td>
<td>9.193</td>
</tr>
<tr>
<td>GISS-SCM</td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.044</td>
<td>1.200</td>
<td>0.180</td>
<td>3.325</td>
<td>4.161</td>
<td>2.833</td>
<td>5.605</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-6.888</td>
<td>1.100</td>
<td>-5.700</td>
<td>7.371</td>
<td>24.25</td>
<td>14.760</td>
<td>25.022</td>
</tr>
<tr>
<td>ARPv6</td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.003</td>
<td>0.000</td>
<td>1.530</td>
<td>1.920</td>
<td>2.067</td>
<td>2.132</td>
<td>2.368</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-5.486</td>
<td>-3.852</td>
<td>2.230</td>
<td>5.055</td>
<td>6.132</td>
<td>7.210</td>
<td>8.658</td>
</tr>
<tr>
<td>UMv7.8</td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.000</td>
<td>0.000</td>
<td>1.260</td>
<td>1.442</td>
<td>1.464</td>
<td>2.098</td>
<td>2.223</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-5.853</td>
<td>-1.122</td>
<td>0.972</td>
<td>2.046</td>
<td>2.340</td>
<td>5.025</td>
<td>5.673</td>
</tr>
<tr>
<td>EC-Earthv1</td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.003</td>
<td>0.034</td>
<td>0.700</td>
<td>2.257</td>
<td>3.350</td>
<td>4.534</td>
<td>5.623</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-4.465</td>
<td>-4.395</td>
<td>-2.180</td>
<td>7.566</td>
<td>12.837</td>
<td>17.475</td>
<td>34.335</td>
</tr>
<tr>
<td>EC-Earthv3</td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.011</td>
<td>0.792</td>
<td>1.420</td>
<td>0.529</td>
<td>0.558</td>
<td>3.682</td>
<td>4.101</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-4.060</td>
<td>-1.262</td>
<td>0.990</td>
<td>-0.741</td>
<td>-0.192</td>
<td>9.275</td>
<td>10.855</td>
</tr>
<tr>
<td></td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.002</td>
<td>0.662</td>
<td>1.920</td>
<td>1.024</td>
<td>2.271</td>
<td>2.807</td>
<td>3.170</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-4.117</td>
<td>-1.737</td>
<td>2.990</td>
<td>0.583</td>
<td>4.713</td>
<td>6.736</td>
<td>8.187</td>
</tr>
<tr>
<td></td>
<td>WTG</td>
<td>(P/P_{\text{Ref}})</td>
<td>0.003</td>
<td>0.577</td>
<td>0.940</td>
<td>1.720</td>
<td>2.202</td>
<td>2.648</td>
<td>3.430</td>
</tr>
<tr>
<td></td>
<td>DGW</td>
<td>(\Omega)</td>
<td>-4.209</td>
<td>-1.860</td>
<td>-0.135</td>
<td>2.927</td>
<td>4.611</td>
<td>6.008</td>
<td>8.523</td>
</tr>
</tbody>
</table>

Table 4. Same as Table 3, but lists SCM results.
Figure 3. P/P_{Ref} versus SST. The values of P are those obtained at equilibrium in the (top) WTG and (bottom) DGW simulations. Results are shown for (left) CRMs and (right) SCMs. Symbol definitions are as in Tables 1 and 2.
Figure 4. Scatter plots of Ω versus P/P_{Ref}. Results are those obtained at equilibrium in the (top) WTG and (bottom) DGW simulations with an SST of 298 K (dark blue), 299.5 K (light blue), 300 K (black), 300.5 K (dark green), 301 K (light green), 301.5 K (orange), and 302 K (red). Results are shown for (left) CRMs and (right) SCMs. Symbol definitions are as in Tables 1 and 2.
Figure 5. Scatter plots of P versus CRH (column relative humidity; the column-integrated water vapor divided by its saturation value). The results are those obtained at equilibrium in the (top) WTG and (bottom) DGW simulations with an SST of 298 K (dark blue), 299.5 K (light blue), 300 K (black), 300.5 K (dark green), 301 K (light green), 301.5 K (orange), and 302 K (red). Results are shown for (left) CRMs and (right) SCMs. Symbol definitions are as in Tables 1 and 2.
Figure 6. Scatter plots of P/P_{Ref} versus CRH/CRH_{Ref}, where CRH_{Ref} is the column relative humidity of the corresponding RCE reference state. The results are those obtained at equilibrium in the (top) WTG and (bottom) DGW simulations with an SST of 298 K (dark blue), 299.5 K (light blue), 300 K (black), 300.5 K (dark green), 301 K (light green), 301.5 K (orange), and 302 K (red). Results are shown for (left) CRMs and (right) SCMs. Symbol definitions are as in Tables 1 and 2.
Figure 7. Scatter plots of ΔP versus M_{LS}. The results are those obtained at equilibrium in the (top) WTG and (bottom) DGW simulations with an SST of 298 K (dark blue), 299.5 K (light blue), 300 K (black), 300.5 K (dark green), 301 K (light green), 301.5 K (orange), and 302 K (red). Results are shown for (left) CRMs and (right) SCMs. The dotted oblique line corresponds to $\Delta P = M_{LS}$. Symbol definitions are as in Tables 1 and 2.
Figure 8. Scatter plots of ΔP versus ΔE. Results are those obtained at equilibrium in the (top) WTG and (bottom) DGW simulations over an SST of 298 K (dark blue), 299.5 K (light blue), 300 K (black), 300.5 K (dark green), 301 K (light green), 301.5 K (orange), and 302 K (red). Results are shown for (left) CRMs and (right) SCMs. Symbol definitions are as in Tables 1 and 2.
Figure 9. Scatter plots of ΔP versus Γ. Results are those obtained at equilibrium in the (top) WTG and (bottom) DGW simulations over an SST of 298 K (dark blue), 299.5 K (light blue), 300 K (black), 300.5 K (dark green), 301 K (light green), 301.5 K (orange), and 302 K (red). Results are shown for (left) CRMs and (right) SCMs, and for WTG and DGW simulations which produce significant large-scale ascent only ($P/P_{Ref} > 1.1$ and $\Omega > 0.4 \times 10^{-2}$ Pa s$^{-1}$). Symbol definitions are as in Tables 1 and 2.