
Experimental Dynamical Seasonal Forecasts of Tropical Cyclone Activity at IRI

SUZANA J. CAMARGO AND ANTHONY G. BARNSTON

International Research Institute for Climate and Society, The Earth Institute at Columbia University, Palisades, New York

(Manuscript received 7 December 2007, in final form 15 September 2008)

ABSTRACT

The International Research Institute for Climate and Society (IRI) has been issuing experimental seasonal

tropical cyclone activity forecasts for several ocean basins since early 2003. In this paper the method used to

obtain these forecasts is described and the forecast performance is evaluated. The forecasts are based on

tropical cyclone–like features detected and tracked in a low-resolution climate model, namely ECHAM4.5.

The simulation skill of the model using historical observed sea surface temperatures (SSTs) over several

decades, as well as with SST anomalies persisted from the previous month’s observations, is discussed. These

simulation skills are compared with skills of purely statistically based hindcasts using as predictors recently

observed SSTs. For the recent 6-yr period during which real-time forecasts have been made, the skill of the

raw model output is compared with that of the subjectively modified probabilistic forecasts actually issued.

Despite variations from one basin to another, the levels of hindcast skill for the dynamical and statistical

forecast approaches are found, overall, to be approximately equivalent at fairly modest but statistically

significant levels. The dynamical forecasts require statistical postprossessing (calibration) to be competitive

with, and in some circumstances superior to, the statistical models. Skill levels decrease only slowly with

increasing lead time up to 2–3 months. During the recent period of real-time forecasts, the issued forecasts

have had higher probabilistic skill than the raw model output, due to the forecasters’ subjective elimination of

the ‘‘overconfidence’’ bias in the model’s forecasts. Prospects for the future improvement of dynamical

tropical cyclone prediction are considered.

1. Introduction

Tropical cyclones (TCs; see the appendix for a list of

the acronyms used in this paper) are one of the most

devastating types of natural disasters. Seasonal forecasts

of TC activity could help the preparedness of coastal

populations for an upcoming TC season and reduce

economical and human losses.

Currently, many institutions issue operational seasonal

TC forecasts for various regions. In most cases, these are

statistical forecasts, such as the Atlantic hurricane out-

looks produced by NOAA (information online at http://

www.cpc.noaa.gov/products/outlooks/hurricane.shtml),

and Colorado State University (Gray et al. 1993; Klotzbach

2007a), the typhoon activity forecasts of the City Univer-

sity of Hong Kong (Chan et al. 1998, 2001), and Tropical

Storm Risk (Saunders and Lea 2004). A review of TC

seasonal forecasts is found in Camargo et al. (2007a),

and the skill levels of some of them were discussed in

Owens and Landsea (2003).

Since April 2003 the International Research Institute

for Climate and Society (IRI) has been issuing experi-

mental dynamical seasonal forecasts for five ocean ba-

sins (information online at http://portal.iri.columbia.

edu/forecasts). In this paper, we describe how these fore-

casts are produced and discuss their skills when the at-

mospheric general circulation model (AGCM) is forced

by predicted sea surface temperature (SST) in a two-

tiered prediction system.

The possible use of dynamical climate models for

forecasting seasonal TC activity has been explored by

various authors (e.g., Bengtsson et al. 1982). Although

the low horizontal resolution of climate general circu-

lation models of the early 2000s is not adequate to re-

alistically reproduce the structure and behavior of in-

dividual cyclones, such models are capable of forecast-

ing with some skill several aspects of the general level of

TC activity over the course of a season (Bengtsson 2001;

Camargo et al. 2005). Dynamical TC forecasts can serve
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specific applications, for example, TC landfall activity

over Mozambique (Vitart et al. 2003). The level of per-

formance of dynamical TC forecasts depends on many

factors, including the model used (Camargo et al. 2005),

the model resolution (Bengtsson et al. 1995), and the

inherent predictability of the large-scale circulation re-

gimes (Vitart and Anderson 2001), including those re-

lated to El Niño–Southern Oscillation (ENSO) (Wu

and Lau 1992; Vitart et al. 1999).

In addition to IRI’s dynamically based experimental

TC forecasts, such forecasts are also produced by the

European Centre for Medium-Range Weather Fore-

casts (ECMWF) (Vitart 2006), the Met Office, and the

European Seasonal to Interannual Prediction (EUROSIP)

superensemble of ECMWF, Met Office, and Météo-

France coupled models (Vitart et al. 2007). An impor-

tant consideration is the dynamical design used to pro-

duce the forecasts. The European dynamical TC fore-

casts are produced using fully coupled atmosphere–

ocean models (Vitart and Stockdale 2001; Vitart 2006).

At IRI, a two-tiered (Bengtsson et al. 1993), multimodel

(Rajagopalan et al. 2002; Robertson et al. 2004) pro-

cedure is used to produce temperature and precipitation

forecasts once an SST forecast (or set of them) is first

established (Mason et al. 1999; Goddard et al. 2003;

Barnston et al. 2003, 2005). The IRI experimental TC

forecasts use a subset of the IRI two-tier forecast sys-

tem, in that only a single AGCM is used, compared with

several AGCMs for surface climate. As described be-

low, more than one SST forcing scenario is used.

TCs in low-resolution models have many character-

istics comparable to those observed, but at much lower

intensity and larger spatial scale (Bengtsson et al. 1995;

Vitart et al. 1997). The climatology, structure, and in-

terannual variability of model TCs have been examined

(Bengtsson et al. 1982, 1995; Vitart et al. 1997; Camargo

and Sobel 2004). A successful aspect of this work has

been that, over the course of a TC season in a statistical

sense, the spatial and temporal distributions, as well as the

interannual anomalies of the number and total energy

content, of model TCs roughly follow those of observed

TCs (Vitart et al. 1997; Camargo et al. 2005). There have

been two general methods in which climate models are

used to forecast TC activity. One method is to analyze

large-scale variables known to affect TC activity (Ryan

et al. 1992; Thorncroft and Pytharoulis 2001; Camargo

et al. 2007c). Another approach, and the one used here,

is to detect and track the cyclonelike structures in cli-

mate models (Manabe et al. 1970; Broccoli and Manabe

1990; Wu and Lau 1992), coupled ocean–atmosphere

models (Matsuura et al. 2003; Vitart and Stockdale 2001),

and regional climate models (Landman et al. 2005;

Knutson et al. 2007). These methods have also been used

in studies of possible changes in TC intensity due to

global climate change using AGCMs (Bengtsson et al.

1996; Royer et al. 1998; Bengtsson et al. 2007a,b) and

regional climate models (Walsh and Ryan 2000; Walsh

et al. 2004).

In section 2 we describe how the real-time seasonal

tropical forecasts are produced at IRI. The model’s

performance over a multidecadal hindcast period and

over the recent 6-yr period of real-time forecasting is

discussed in section 3. A comparison of the AGCM

performance result with that of simple SST-based sta-

tistical forecasts is shown in section 4. The conclusions

are given in section 5.

2. Description of the real-time forecasts

The IRI climate forecast system (Mason et al. 1999) is

two-tiered: SSTs are first forecasted, and then each of a

set of atmospheric models is forced with several tropical

SST forecast scenarios. Many ensemble members of at-

mospheric response are produced from each model forced

with the SST scenarios. For the TC seasonal forecasts, just

one atmospheric model is used: ECHAM4.5, which is

run on a monthly basis. Six-hourly output data are used,

as this fine temporal resolution makes possible the de-

tection of the needed TC characteristics. The ECHAM4.5

was developed at the Max Planck Institute for Meteo-

rology in Hamburg, Germany (Roeckner et al. 1996),

and has been studied extensively for various aspects of

seasonal TC activity (Camargo and Zebiak 2002; Camargo

et al. 2005, 2007c).

The integrations of the ECHAM4.5 model are subject

to differing tropical SST forcing scenarios (Table 1).

In all of the scenarios, the extratropical SST forecasts

TABLE 1. Tropical Pacific SST forecast types used in this study.

The concurrent, OSST data, for nonforecast simulations (lead time

less than zero), S denotes the Reynolds version 2 data (Reynolds

et al. 2002); the real-time persisted SST (FSSTp) and hindcast

persisted SST (HSSTp) are undamped and then damped with

persisted anomalies initialized from anomalies observed the pre-

vious month. The evolving anomalous SST (FSSTe) is from one or

more of the following models: the NCEP coupled model (Ji et al.

1998), the CFS (Saha et al. 2006), the LDEO-5 (Chen et al. 2004),

and/or the statistical constructed analog (CA) (van den Dool 1994,

2007, chapter 7). More details about the FSSTe are provided in

Camargo and Barnston (2008).

SST type Period Ensembles Lead Pacific SSTs

OSST Jan 1950–Dec 2005 24 S Reynolds

OSSTr Jan 1970–Dec 2005 24 S Reynolds

HSSTp Jan 1968–May 2003 12 4 Persisted

FSSTp Aug 2001–Aug 2007 24 4 Persisted

FSSTe Aug 2001–Aug 2007 24 6 NCEP, CFS,

LDEO-5, CA
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consist simply of the damped persistence of the anom-

alies from the previous month’s observation (added to

the forecast season’s climatology), with an anomaly

e-folding time of 3 months (Mason et al. 1999). In the

tropics, multimodel, mainly dynamical, SST forecasts

are used for the Pacific, while statistical and dynamical

forecasts are combined for the Indian and Atlantic

Oceans. Statistical forecasts play the greatest role in the

tropical Atlantic. The models contributing to the trop-

ical SST forecasts, particularly for the Pacific, have

changed during our study period as forecast-producing

centers have introduced newer, more advanced predic-

tion systems. In the non-Pacific tropical basins during

seasons having near-zero apparent SST forecast pre-

dictive skill, damped persisted SST anomalies are used,

but at a lower damping rate than that used in the ex-

tratropics. (No damping occurs in the first 3 months,

followed by linear damping that reaches zero by month

8.) However, for seasons in which SST predictive skill is

found beyond that of damped persistence, CCA models

are used in the Indian Ocean (Mason et al. 1999) and

the tropical Atlantic Ocean (Repelli and Nobre 2004).

Globally undamped anomalous SST persisted from

the previous month, applied to the climatology of the

months being forecast, is used as an additional SST

forcing scenario (called FSSTp). In this case the 24 en-

semble members of ECHAM4.5 are integrated using

persisted SST anomalies out to 5 months beyond the

previous month. For example, for a mid-January fore-

cast, the model is forced from January to May using

undamped persisted SST anomalies from December

globally.1

In the case of the nonpersisted, evolving forecasted

SST anomalies (denoted by FSSTe), the AGCM is run

out to 7 months beyond the previous month’s observed

SST (e.g., for a mid-January forecast, observed SST

exists for December, and the model is forced from

January to July with evolving SST predictions). Several

versions of the forecasted SST anomalies have been

used since 2001. These are described in detail in Camargo

and Barnston (2008).2

The ECHAM4.5 was also forced with the actual ob-

served SSTs (OSSTs; Reynolds et al. 2002) prescribed

during the period from 1950 to the present. These AMIP-

type runs provide estimates of the upper limit of the skill

of the model in forecasting TC activity, as discussed in

previous studies (Camargo and Zebiak 2002; Camargo

et al. 2005). The skill levels presented below are broken

out into three SST forcing types: 1) FSST (for real-

time forecasts, comprising FSSTp and FSSTe), 2) HSSTp

(long-term hindcast anomally persisted SST), and 3)

OSST (long-term observed SST for AMIP-type AGCM

simulations).

For any type of SST forcing, we analyze the output of

the AGCM for TC activity. To define and track TCs in

the models, we used objective algorithms (Camargo and

Zebiak 2002) based in large part on prior studies (Vitart

et al. 1997; Bengtsson et al. 1995). The algorithm has

two parts: detection and tracking. In the detection part,

storms that meet environmental and duration criteria

are identified. A model TC is identified when chosen

dynamical and thermodynamical variables exceed thresh-

olds calibrated to the observed tropical storm climatol-

ogy.3 Most studies (Bengtsson et al. 1982; Vitart et al.

1997) use a single set of threshold criteria globally.

However, to take into account model biases and defi-

ciencies, we use basin- and model-dependent thresh-

old criteria, based on analyses of the correspondence

between the modeled and observed climatologies

(Camargo and Zebiak 2002). Thus, we use a threshold

exclusive to ECHAM4.5. Once detected, the TC tracks

are obtained from the vorticity centroid, defining the

center of the TC, using relaxed criteria appropriate for

the weak model storms. The detection and tracking al-

gorithms have been applied to regional climate models

(Landman et al. 2005; Camargo et al. 2007b) and to

multiple AGCMs (Camargo and Zebiak 2002; Camargo

et al. 2005).

Following detection and tracking, we count the number

of TCs (NTC) and compute the model accumulated

cyclone energy (ACE) index (Bell et al. 2000) over a TC

season. ACE is defined as the sum of the squares of the

wind speeds in the TCs active in the model at each 6-h

interval. For the observed ACE, only TCs of tropical

storm intensity or greater are included.

The model ACE and NTC results are then corrected

for bias, based on the historical model and observed

distributions of NTC and ACE over the 1971–2000 pe-

riod, on a per basin basis. Corrections yield matching
1 The FSSTp runs have been produced in real time from August

2001 to the present and are available also in hindcast mode

(HSSTp) over the period January 1968–May 2003, with 12 en-

semble members (Table 1).
2 The tropical Pacific SST has been based on one or more of the

following: the NCEP coupled ENSO prediction model (Ji et al.

1998), the NCEP Climate Forecast System (NCEP-CFS) (Saha et al.

2006), the Lamont-Doherty Earth Observatory intermediate model,

version 5 (LDEO-5), (Chen et al. 2004), and the statistical con-

structed analog (CA) model (van den Dool 1994, 2007, chapter 7).

3 A model TC needs to exceed simultaneously thresholds for

low-level vorticity (850 hPa), surface wind speed, and vertically

integrated local temperature anomaly for at least 2 days, and must

also have a relative local minimum of sea level pressure, local

maximum of temperature anomalies in various levels, and mean

wind speed at 850 hPa larger than at 300 hPa.
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values within a percentile reference framework (i.e.,

a correspondence is achieved nonparametrically). Using

1971–2000 as the climatological base period, tercile

boundaries for model and observed NTCs and ACEs

are then defined, since the forecasts are probabilistic

with respect to tercile-based categories of the clima-

tology (below, near, and above normal).4

For each of the SST forcing designs, we count the

number of ensemble members having their NTCs and

ACEs in a given ocean basin in the below normal,

normal, and above normal categories, and divide by the

total number of ensembles. These constitute the ‘‘raw,’’

objective probability forecasts. In a final stage of fore-

cast production, the IRI forecasters examine and discuss

these objective forecasts and develop subjective final

forecasts that are posted on the IRI Web site. The most

typical difference between the raw and the subjective

forecasts is that the latter have weaker probabilistic

deviations from climatology, given the knowledge that

the models are usually too ‘‘confident.’’ The overconfi-

dence of the model may be associated with too narrow

an ensemble spread, too strong a model signal (devia-

tion of ensemble mean from climatology), or both of

these. The subjective modification is intended to increase

the probabilistic reliability of the predictions. The issues

of model overconfidence, calibration to correct it, and

probabilistic reliability will be discussed in more detail

in section 3b. Another consideration in the subjective

modification is the degree of agreement among the

forecasts, in which less agreement would suggest greater

uncertainty and thus more caution with respect to the

amount of deviation from the climatological probabilities.

The raw objective forecasts are available starting

from August 2001. The first subjective forecast for the

western North Pacific basin was produced in real time

in April 2003. However, subjective hindcasts were also

produced for August 2001–April 2003 without knowl-

edge of the observed result, making for 6 yr of experi-

mental forecasts.

For each ocean basin, forecasts are produced only for

the peak TC season, from certain initial months prior to

that season (Table 2), and updated monthly until the

first month of the peak season.5 The lead time of this

latest forecast is defined as being zero, and the lead

times of earlier forecasts are defined by the number of

months earlier that they are issued.

The basins in which forecasts are issued are shown in

Fig. 1, and the numbers of years available for each SST

scenario and basin are indicated in Table 3. In the

Southern Hemisphere (South Pacific and Australian

regions), only forecasts for NTC are produced, while in

the Northern Hemisphere basins both NTC and ACE

forecasts are issued. ACE is omitted for the Southern

Hemisphere because ACE is more sensitive to data

quality than NTC, and the observed TC data from the

Southern Hemisphere are known to be of somewhat

questionable quality, particularly in the earlier half of

the study period (e.g., Chu et al. (2002); Buckley et al.

(2003); Landsea et al. (2006); Trewin (2008); Harper

et al. (2008)).

The observed TC data used to correct historical

model biases and for verification of the model forecasts

is the best-track data from the National Hurricane

Center (Atlantic and eastern North Pacific; information

online at http://www.nhc.noaa.gov) and the Joint Typhoon

Warning Center (western North Pacific and Southern

Hemisphere; information online at https://metocph.nmci.

navy.mil/jtwc.php).

3. Performance in hindcasts and real-time forecasts

NTC or ACE historical simulation and real-time pre-

dictive skill results are computed for each ocean basin for

their respective peak TC seasons. Both deterministic and

probabilistic skills are examined.

a. Deterministic skills

Temporal anomaly correlation skills are shown in

Table 4 for NTC by lead time, for each type of SST

forcing, and likewise for ACE in Table 5. The simulation

TABLE 2. Ocean basins in which IRI experimental TC forecasts

are issued: eastern North Pacific (ENP), western North Pacific

(WNP), North Atlantic (ATL), Australia (AUS), and South Pa-

cific (SP). Also shown are the month and year of the first issued

forecast; the seasons for which TC forecasts are issued (JJAS,

ASO, JASO, JFM, and DJFM); months in which the forecasts are

issued; and variables forecasted—NTC and/or ACE.

Basin

First

forecast Season

Months

forecasts

are issued Variables

ENP Mar 2004 JJAS Mar, Apr, May, Jun NTC, ACE

WNP Apr 2003 JASO Apr, May, Jun, Jul NTC, ACE

ATL Jun 2003 ASO Apr, May, Jun, Jul, Aug NTC, ACE

AUS Sep 2003 JFM Sep, Oct, Nov, Dec, Jan NTC

SP Sep 2003 DJFM Sep, Oct, Nov, Dec NTC

4 For the South Pacific, a temporal aspect of bias correction is

used: the TC forecast season is DJFM, but the model output for

NDJF is used to forecast DJFM, including the bias correction. It is

found that hindcast skill levels are appreciably higher with this

1-month offset, which we consider a temporal aspect of the bias

correction.
5 The data available for the forecast released during the first

month of the TC peak season cover only through the end of the

previous month.
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skills are shown both for the full period of 1950–2005

and for 1970–2005, during which time the TC data are

known to be of higher quality. The correlations for the

real-time predictions are uncentered.6 Simulation skills

(OSST) are seen to be at statistically significant levels

for most of the ocean basins. Skills for the longer period

(OSSTr) tend to exceed those for 1970–2005, due both

to better average data quality and the greater ENSO

variability following 1970. Consistent with Camargo et al.

(2005), the highest skill results occur in the Atlantic basin

with correlations of roughly 0.50, with more modest skill

levels in the other basins. Skill levels for zero-lead fore-

casts using SST anomalies persisted from those of the

most recent month (HSSTp, lead 0), as expected, are

usually lower than those of observed simultaneous SSTs.

For the three Northern Hemisphere basins, simulation

skills are higher for ACE than for NTC, as noted also in

Camargo et al. (2005). This may be related to the con-

tinuous nature of ACE as opposed to the discrete, more

nonparametric, character of NTC.

A reference forecast more difficult to beat than a

random or a climatology forecast is that of simple per-

sistence of observed TC observation from the previous

year. The correlation score for such a reference forecast

is just the 1-yr autocorrelation coefficient over the 1971–

2005 base period, and is shown at the bottom of Tables 4

and 5. The persistence correlation scores are lower than

those of the AGCM’s forecast using observed or per-

sisted SST, with the one exception of the NTC forecasts

in the northwestern Pacific.

Real-time predictive verification skill levels (FSST in

Tables 4 and 5) over the basins not only have lower

expected values than those using simultaneous observed

SST due to the imperfection of the predicted SST forc-

ing, but also much greater sampling errors given only six

to seven cases per lead time per basin (Table 3). These

skills range from near or below zero for the western

North Pacific NTC to approximately 0.5 for the three

shortest leads for the eastern North Pacific ACE. For all

basins collectively and for NTC and ACE together, the

skill results approximate those of HSSTp, with individ-

ual differences likely due foremost to sampling vari-

ability. Consistent with the small sample problem, the

correlations for FSST for all of the basin–lead time

combinations are statistically nonsignificant, as nearly

0.8 is required for significance.

A look at the possible impact of differing SST forcing

scenarios and lead times on the real-time forecast skills

is more meaningful when results for all oceans basins

are combined, lessening the sampling problem. Basin-

combined skill results by lead time and SST forcing type

are shown in Table 6 for NTC and ACE. Table 6 shows

NTC results for Northern Hemisphere basins only, al-

lowing a direct comparison between NTCs and ACEs.

The results show higher skill levels for forecasts of ACE

than NTC, and only a very weak tendency for decreasing

skill with increasing lead time. This is summarized fur-

ther in the bottom row of Table 6, showing the results for

NTC and ACE combined.

Skill levels were evaluated using additional determin-

istic verification measures: the Spearman rank correlation,

FIG. 1. Definition of the ocean basin domains used in this study: Australian (AUS), 1058–

1658E; South Pacific (SP), 1658E–1108W; western North Pacific (WNP), 1008E–1608W; eastern

North Pacific (ENP), 1608–1008W; and Atlantic (ATL), 1008W–08. All latitude boundaries are

along the equator and 408N or 408S. Note the unique boundary paralleling Central America

for the ENP and ATL basins.

6 In computing the correlation skill for forecasts for much shorter

periods than the climatological base period, the subperiod means

are not removed and are not used for computing the standard de-

viation terms. Instead, the longer base period means are used. This

is done so that, for example, if in the subperiod the forecasts and

observations have small-amplitude out-of-phase variations but both

are generally on the same side of the longer period mean, a positive

correlation would result, and we believe justifiably.
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the Heidke skill score, and the mean squared error skill

score (MSESS). Table 7 provides an example of the four

scores together, for ACE in the northwestern Pacific

basin. The rank correlation and Heidke skill scores

are roughly consistent with the correlation skill, allow-

ing for expected scaling differences where the Heidke is

roughly one-half of the correlation (Barnston 1992). The

MSESS, however, which uses the 1971–2000 climatol-

ogy as the zero-skill reference forecast, is comparatively

unfavorable: some of the cases having positive correla-

tion and Heidke skills have negative MSESS results.

This outcome is attributable to a marked tendency of

the model forecasts toward too great a departure from

climatological forecasts, given the degree of inherent

uncertainty and thus the relatively modest level of true

predictability. Such ‘‘overconfidence’’ in the model

forecasts, which can be adjusted for statistically, will be

discussed in more detail below within the context of

probabilistic verification, where a detrimental effect on

scores comparable to that seen in MSESS will become

apparent.

b. Probabilistic skills

The TC forecasts were verified probabilistically using

the ranked probability skill score (RPSS), likelihood

skill score, and, for the real-time forecasts, the relative

operating characteristics (ROC) score.

RPSS (Epstein 1969; Goddard et al. 2003) measures

the sum of the squared errors between categorical fore-

cast probabilities and the observed categorical proba-

bilities, cumulative over categories, relative to a reference

(or standard baseline) forecast—here, the climatology

forecast of 1/3 probability for each category. The ob-

served probabilities are 1 for the observed category and

0 for the other categories.

TABLE 3. Number of years for each lead and SST type. Here, S denotes simulations, with a negative lead time.

SST type ENP WNP ATL

Lead 3 2 1 0 S 3 2 1 0 S 4 3 2 1 0 S

FSST 6 6 6 6 — 6 6 6 6 — 6 6 6 6 7 —

HSSTp — — 35 35 — — — 35 35 — — — 35 35 35 —

OSST — — — — 56 — — — — 56 — — — — — 56

OSSTr — — — — 36 — — — — 36 — — — — — 36

SST type

Lead

AUS SP

4 3 2 1 0 S 3 2 1 0 S

FSST 6 6 6 6 6 — 6 6 6 6 —

HSSTp — — 34 34 35 — — — 34 34 —

OSST — — — — — 56 — — — — 55

OSSTr — — — — — 36 — — — — 35

TABLE 4. Correlations (3102) with observations for NTC, per basin, by lead time and SST forecast scenario. An ‘‘S’’ denotes

simulations, whose lead times are negative. ‘‘Pers’’ denotes 1-yr simple persistence, with a lead potentially longer than 4 months, but

shown in the column of the longest lead. Statistically significant skills are shown in boldface.

SST type Eastern Pacific Western Pacific Atlantic

Lead 3 2 1 0 S 3 2 1 0 S 4 3 2 1 0 S

FSST 53 58 58 46 — 284 282 268 2 — 13 48 65 35 11 —

HSSTp — — 32 50 — — — 11 7 — — — 7 33 36 —

OSST — — — — 32 — — — — 21 — 40

OSSTr — — — — 37 — — — — 28 55

Pers 9 — — — — 33 — — — — 14 — — — — —

SST type

Lead

Australia South Pacific

4 3 2 1 0 S 3 2 1 0 S

FSST 52 40 7 21 21 — 44 72 63 34 —

HSSTp — — 24 26 16 — — — 42 42 —

OSST — — — — — 38 — — — — 43

OSSTr — — — — — 40 — — — — 42

Pers 11 — — — — — 226 — — — —
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Verifications using the RPSS are shown for NTC and

ACE in Tables 8 and 9 . These skills are mainly near or

below zero. This poor result can be attributed to the lack

of probabilistic reliability of the model ensemble-based

TC predictions as is seen in many predictions made by

individual AGCMs—not just for TC activity but for

most climate variables (Anderson 1996; Barnston et al.

2003; Wilks 2006). Climate predictions by AGCMs have

model-specific systematic biases, and their uncorrected

probabilities tend to deviate too strongly from climato-

logical probabilities due to too small an ensemble spread

and/or too large a mean shift from climatology. This

problem leads to comparably poor probability forecasts,

despite positive correlation skills for the ensemble means

of the same forecast sets. Positive correlations, but neg-

ative probabilistic verification, are symptomatic of poorly

calibrated probability forecasts—a condition that can

be remedied using objective statistical correction

procedures.

Probabilistic persistence may be a more competitive

simple reference forecast than forecasts of climatologi-

cal probabilities. Based on the weak but generally pos-

itive year-to-year autocorrelations shown in Tables 4

and 5, we designed the persistence probabilistic forecasts

to be 0.4 for the tercile-based category observed the

previous year, and 0.3 for the other two categories. Re-

sulting RPSSs are shown at the bottom of Tables 8 and 9.

These weakly persistent probabilistic forecasts often

have better RPSS scores than those of the AGCM forced

with persisted SSTs (HSSTp), and sometimes as good as

or better than those forced with observed SSTs. Rather

than showing that use of the AGCM with observed or

predicted SSTs is unsuccessful, this outcome again shows

that probabilities that deviate only mildly from climato-

logical probabilities, even if derived from something as

simple as the TC activity of the previous year, fare

better under calibration-sensitive probabilistic verification

TABLE 5. As in Table 4 (correlations) but for ACE.

SST type Eastern Pacific Western Pacific Atlantic

Lead 3 2 1 0 S 3 2 1 0 S 4 3 2 1 0 S

FSST 216 47 48 62 — 69 2 21 36 — 24 25 17 61 14 —

HSSTp — — 20 23 — — — 6 23 — — — 18 43 37 —

OSST — — — — 7 — — — — 26 — — — — — 57
OSSTr — — — — 45 — — — — 33 — — — — — 60

Pers 21 — — — — 20 — — — — 35 — — — — —

TABLE 6. Correlations (3102) for all basins combined, by lead

time and SST forecast scenario. The S denotes simulations, whose

lead times are negative. Statistically significant skills are shown in

boldface. The sample size is doubled for significance evaluations

for all basins combined, and increased by 60% for the Northern

Hemisphere basins combined, relative to the single-basin sample.

Lead 4 3 2 1 0 S

SST type NTC all basins

FSST 38 18 35 28 27 —

HSSTp — — 1 25 27 —

OSST — — — — — 25

OSSTr — — — — — 46

SST type NTC Northern Hemisphere

FSST 13 225 17 23 27 —

HSSTp — — 7 23 28 —

OSST — — — — — 31

OSSTr — — — — — 42

SST type ACE Northern Hemisphere

FSST 24 41 29 46 41 —

HSSTp — — 17 28 29 —

OSST — — — — — 39

OSSTr — — — — — 48

SST type NTC and ACE all basins

FSST 31 29 33 36 33 —

TABLE 7. Comparison of four skill measures (3102) for FSST,

HSSTp, and OSST and OSSTr for ACE in the western North

Pacific basin. Statistically significant skills are shown in boldface.

Western North Pacific ACE Lead

SST type Score 1 0 S

FSST Correlation 11 34 —

FSST Rank correlation 44 26 —

FSST Heidke skill score 3 7 —

FSST MSESS 263 237 —

HSSTp Correlation 6 23 —

HSSTp Rank correlation 25 34 —

HSSTp Heidke skill score 1 12 —

HSSTp MSESS 261 227 —

OSST Correlation — — 26

OSST Rank correlation — — 27

OSST Heidke skill score — — 8

OSST MSESS — — 4

OSSTr Correlation — — 33

OSSTr Rank correlation — — 39

OSSTr Heidke skill score — — 11

OSSTr MSESS — — 10
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measures (here, RPSS) than the higher-amplitude prob-

ability shifts from climatology typically produced by to-

day’s AGCMs without proper statistical calibration.

The probability forecasts actually issued by IRI begin

with the ‘‘raw’’ AGCM probabilities, modified to what

the forecasters judge to have better probabilistic relia-

bility. This nearly universally involves damping the

amplitude of the model’s deviation from climatological

probabilities. A typical adjustment might be to modify

the model’s predicted probabilities of 5%, 10%, and

85% to 20%, 30%, and 50% for the below, near, and

above normal categories, respectively. A less common

adjustment is that of ‘‘rounding out’’ a bimodal proba-

bility forecast such as 35%, 5%, and 60% to a more

Gaussian distribution such as 25%, 30%, and 45%.7

Part of the reason for sharply bimodal distributions is

assumed to be the limited (24 member) ensemble size.

A still less common case for modification, and one that

does not always improve the forecast quality, is that of

the forecasters’ judgment against the model forecasts,

believing there is a model bias. Such doubt can pertain

also to the SST forecast used to force the AGCM.

Tables 8 and 9 indicate that the actually issued fore-

casts have better probabilistic reliability than the fore-

casts of the model output. Likelihood skill scores (not

shown), and especially RPSS, are mainly positive for the

issued forecasts, although modest in magnitude. This

implies that the probability forecasts of the AGCM are

potentially useful, once they are calibrated to correct

for overconfidence or an implausible distribution shape.

Such calibration could be done objectively, based on the

longer hindcast history, rather than subjectively by the

forecasters as done to first order here.

Figure 2 shows the approximately 6-yr record of

AGCM ensemble forecasts of NTC and ACE at all

forecast lead times for each of the ocean basins. The

TABLE 8. Ranked probability skill scores (3102) for NTC, per basin, by lead time and SST forecast scenario. Here, ‘‘S’’ denotes

simulations, whose lead times are negative. ‘‘Pers’’ denotes 1-yr weak probabilistic persistence (see text), with a lead potentially longer

than 4 months, but shown in the column of the longest lead. Statistically significant skills are shown in boldface.

SST type Eastern Pacific Western Pacific Atlantic

Lead 3 2 1 0 S 3 2 1 0 S 4 3 2 1 0 S

FSST 212 8 7 260 — 276 252 263 234 — 251 28 3 213 261 —

HSSTp — — 292 280 — — — 235 236 — — — 2107 270 268 —

OSST — — — — 218 — — — — 25 — — — — — 3

OSSTr — — — — 224 — — — — 3 — — — — — 221

Issued 13 13 9 8 — 8 0 1 15 — 25 6 11 15 24 —

Pers 22 — — — — 22 — — — — 22 — — — — —

SST type

Lead

Australia South Pacific

4 3 2 1 0 S 3 2 1 0 S

FSST 224 236 215 274 268 — 1 227 238 227 —

HSSTp — — 240 234 251 — — — 228 242 —

OSST — — — — — 232 — — — — 293

OSSTr — — — — — 221 — — — — 288

Issued 5 5 15 2 5 — 10 15 10 3 —

Pers 1 — — — — — 21 — — — —

TABLE 9. As in Table 8 but for ACE.

SST type Eastern Pacific Western Pacific Atlantic

Lead 3 2 1 0 S 3 2 1 0 S 4 3 2 1 0 S

FSST 230 9 9 23 — 26 28 21 211 — 245 26 216 26 231 —

HSSTp — — 235 224 — — — 240 29 — — — 233 2 26 —

OSST — — — — 226 — — — — 6 — — — — — 11

OSSTr — — — — 27 — — — — 13 — — — — — 16

Issued 2 0 6 10 — 15 5 5 4 — 27 10 12 15 6 —

Pers 5 — — — — 1 — — — — 2 — — — — —

7 It is expected that NTC and ACE are composed of enough

independent individual TC events over the season that the central

limit theorem would result in a smoother, and usually unimodal,

forecast probability distribution.
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vertical boxes show the interquartile range among the

ensemble members, and the vertical dashed lines (‘‘whis-

kers’’) extend to the ensemble member forecasts outside

of that range. The asterisk indicates the observation value.

Favorable and unfavorable forecast outcomes can be

identified, such as, respectively, the ACE forecasts for

the western North Pacific for 2002 and the ACE fore-

casts for the North Atlantic for 2004.

Figure 3 shows the same forecasts, except probabi-

listically for each of the tercile-based categories, both

for the AGCM’s forecasts (crisscross symbols) and for

the subjectively modified publicly issued forecasts (circle

FIG. 2. Model (raw) forecasts (box-and-whiskers plots) and observations (asterisks) of NTCs and ACE for all basins and leads. The

cross inside the box shows the ensemble mean, and the horizontal line shows the median. Also shown by dotted horizontal lines are the

boundaries between the tercile categories. (a)–(f) The Northern Hemisphere basins, with (left) NTC and (right) ACE for (a), (b) ENP;

(c), (d)ATL; and (e), (f) WNP. The NTCs in the Southern Hemisphere basins: (g) AUS and (h) SP.
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symbols connected by lines). The AGCM’s probability

forecasts often deviate by large amounts from climatol-

ogy, while the issued forecasts remain closer to clima-

tology. Figure 4 shows the RPSSs of these probability

forecasts in the same format. The AGCM’s proba-

bility forecasts result in highly variable skill (including

both strongly negative and positive cases), leading to a

somewhat negative overall skill. The issued forecasts,

FIG. 3. Issued (circles) and modeled (crisscrosses) probability anomalies (difference of probability from 33.3% climatological prob-

ability values, 3100) for all leads and years in each basin. The above (below) normal category probability anomalies are given in red

(blue), and the near-normal anomalies in black. The observed category is shown near the top: below normal (B), near normal (N), and

above normal (A). (a)–(h) Basins are arranged as in Fig. 2.
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while never reaching positive magnitudes as great as

those of some of the AGCM forecasts, also avoid neg-

ative overall skill levels of more than small magnitude.8

Hence, the humanly modified TC forecasts have a

higher average probabilistic skill level using RPSS.

The ‘‘overconfidence’’ of the AGCM forecasts is

shown in more concrete terms in a reliability (or attri-

butes) diagram (Hsu and Murphy 1986) in Fig. 5. Here,

the correspondence of the forecast probabilities with

the observed relative frequency of occurrence is shown

for the above normal and below normal categories.

When the forecast probabilities closely match the ob-

served relative frequencies, as would be desired, the

lines approximate the dotted 458 line. Figures 5a and 5b

show, for the 6-yr period of forecasts, the reliabilities

for the issued forecasts and for the AGCM’s forecasts

prior to subjective modification, respectively. Despite the

‘‘jumpy’’ lines due to the small sample sizes, the lines for

the issued forecasts are seen to have slopes roughly

resembling the 458 line, indicating favorable reliability,

while the lines for the AGCM’s forecasts have a less

obvious upward slope. The AGCM’s forecast proba-

bilities for the above or below normal categories of TC

activity deviate from the climatological probabilities

of 1/3 by much greater amounts than do their corre-

sponding observed relative frequencies (see bottom

inset in the panels of Fig. 5), resulting in low probabi-

listic forecast skill. The issued forecasts’ deviations from

climatological probabilities are limited by the fore-

casters according to the perceived level of uncertainty,

and within the restricted probability ranges an approx-

imate correspondence to the observed relative frequen-

cies is achieved. The more reliable issued forecasts carry

appropriately limited utility as represented by the lack of

forecast sharpness—that is, that the forecast probabilities

rarely deviate appreciably from climatology, and from

one another.

The bottom panels in Fig. 5 show reliabilities for the

longer historical period of AGCM hindcasts using pre-

scribed observed SSTs (OSSTr; Fig. 5c) and the persisted

SST anomaly (HSSTp; Fig. 5d). Here, the lines are

smoother due to the larger sample sizes. Both diagrams

show forecasts having some informational value, as the

lines have positive slopes, but the slopes are considerably

shallower than the 458 line, indicating forecast overcon-

fidence. The slopes for forecasts using observed SSTs are

slightly steeper than those for forecasts using the per-

sisted SST anomaly, as would be expected with the

higher skill realized in forecasts forced by the actually

observed lower boundary conditions.

That the TC activity forecasts of the AGCM have

mainly positive correlation skill is consistent with their

positive slopes in Figs. 5b–d. Additionally, their mainly

negative RPSS (Tables 8 and 9) is expected when the

positive slopes in the reliability diagram (Fig. 5) are

shallower than one-half of the ideal 458 slope 5 1 line

(i.e., slope , 0.5) because then the forecasts’ potential

information value is more than offset by the miscalibra-

tion of the forecast probabilities (Hsu and Murphy 1986;

Mason 2004). This is consistent with the deterministic

TC forecasts having positive correlation skill but nega-

tive MSESSs using climatology as the reference fore-

cast, due to forecast anomalies that are stronger than

warranted for the expected skill level.

The skills of the real-time probabilistic forecasts over

the approximately 6-yr period are summarized in full

aggregation (over basins and TC variables) in Table 10

using the RPSS, likelihood [based on the concept of

maximum likelihood estimation; Aldrich (1997)], and

ROC (Mason 1982) verification measures. The com-

parisons between the objective AGCM forecast output

and the actually issued forecasts again underscore the

need for the calibration of AGCM forecasts that greatly

underestimates the real-world forecast uncertainty. The

AGCM’s nontrivially positive scaled ROC areas for

both above and below normal observed outcomes reveal

their ability to provide useful information, as the ROC

lacks sensitivity to calibration in a manner analogous to

correlation for deterministic, continuous forecasts. In

this particular set of forecasts, greater capability to

discriminate the above from the below normal TC ac-

tivity is suggested by the ROC skill.

c. A favorable and an unfavorable real-time forecast

Identification of ‘‘favorable’’ or ‘‘unfavorable’’ fore-

casts, while straightforward when considered deter-

ministically, is less clear when comparing an observed

outcome with its corresponding probability forecast.

Probabilistic forecasts implicitly contain expressions of

uncertainty. The position of an observed outcome within

the forecast distribution is expected to vary across cases,

and many cases are required to confirm that this varia-

tion is well described by the forecast probability distri-

butions. When an observation lies on a tail of the fore-

cast distribution, it is impossible to determine whether

this represents an unfavorable forecast or is an expected

8 Because the RPSS is computed as a sum of squares of cumu-

lative (over tercile categories) differences between forecast and

observed probabilities, the lower limit of RPSS (23.5) is farther

below zero than the upper limit (11.0) is above zero. Thus, high

probabilities forecasted for an incorrect category outweigh high

probabilities forecast for the correct category, and ‘‘overconfi-

dent’’ forecasts result in severe penalties even when the forecasts

have some positive level of informational value.
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rare case, without examining a large set of forecasts. The

forecast distribution may be fully appropriate given the

known forcing signals (Barnston et al. 2005). Here, we

identify favorable and unfavorable cases in terms of

the difference between the deterministic forecast (the

model ensemble mean, which usually also approximates

the central tendency of the forecast probability distri-

bution) and the corresponding observation.

A critical aspect of the SST forcing to be forecast is

the ENSO state during the peak season. Figure 6 shows

the IRI’s forecasts of the seasonal Niño-3.4 index at

2-month lead time (e.g., a forecast for ASO SST issued

FIG. 4. RPSSs for the issued (circles) and modeled (crisscrosses) forecasts for all leads and years in each basin. (a)–(h) Basins are

arranged as in Fig. 2.
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in mid-June, with observed data through May) during the

period of issued TC forecasts, with the corresponding

observed seasonal SST. A moderate El Niño (EN) oc-

curred during 2002–03, with weak ENs in 2004–05 and

late 2006. A weak, brief La Niña (LN) condition was

observed in late 2005 and early 2006, and a stronger

LN developed during mid-2007. The average of the ob-

served Niño-3.4 SST anomalies over the approximately

5-yr period is 0.45, compared with an average 2-month

lead forecast anomaly of 0.37, indicating a small forecast

bias. The uncentered correlation coefficient for the pe-

riod is in the range of 0.70–0.79 for forecasts for the

Northern Hemisphere peak seasons, and in the range of

0.80–0.89 for forecasts for the Southern Hemisphere peak

season, suggesting somewhat skillful forecasts of tropical

Pacific SST fluctuations for these peak TC seasons.

A favorable forecast for ACE in the western North

Pacific took place in 2002. Figure 2d shows that the

FIG. 5. Reliability diagrams for above (circles) and below (diamonds) normal categories: (a) issued forecasts, (b)

FSST, (c) OSSTr, and (d) HSSTp. The histograms [below normal (black bars); above normal (white bars)] below

each plot show the percentage frequency with which each category of probability was forecast. The circle (criss-

cross) indicates the overall mean of the forecast probabilities for the above (below) normal categories, and the

diamond (asterisk) indicates the overall mean but for observed relative frequencies. The vertical and horizontal

lines indicate the climatologically expected foreast probability and observed relative frequency, respectively. The

ideal reliability is shown by the dotted 458 diagonal line. The dotted line with the shallower slope is the slope above

which positive skill would be realized in RPSS, and below which (for positive slope) RPSS would be negative but

correlation skill for corresponding deterministic forecasts would usually be positive, suggesting informational value.

484 W E A T H E R A N D F O R E C A S T I N G VOLUME 24



observation was in the above-normal category, and that

the AGCM forecasts were not far from this number for

the four lead times. For ACE in the western North

Pacific, the ENSO condition is key, with EN (LN) as-

sociated with higher (lower) ACE. Between April and

June of 2002 it became clear that an EN was developing,

although the SST predictions contained a weaker EN

than was observed (Fig. 7). Nonetheless, the SST pre-

dictions contained ENSO-related anomaly patterns of

sufficient amplitude to force an above normal ACE pre-

diction that verified positively. The favorable AGCM

forecasts are shown probabilistically in Fig. 3d, with a

positive RPSS verification shown in Fig. 4d.

An unfavorable forecast outcome occurred for ASO

2004, when the North Atlantic ACE was observed to be

2.41 3 106 kt2, the highest on record after 1970 for this

season, but the AGCM forecasts from all five lead times

were for between 0.5 and 1.0 3 106 kt2, only in the near-

normal category. A weak EN developed just prior to the

peak season, which, while somewhat underpredicted,

was present in the SST forecasts. But despite weak EN

conditions during the 2004 peak season, NTC and es-

pecially ACE were well above normal (Figs. 2e and 2f).

A feature of the EN that likely weakened its inhibiting

effect on Atlantic TC development was its manifesta-

tion mainly in the central part of the tropical Pacific,

rather than in the Niño-3 region that appears more

critical. Coupling of the warmed SSTs to the overlying

atmosphere was also modest in ASO. However, aspects

of the SST that were not well predicted were those that

mattered more critically in this case: the North and

tropical Atlantic SSTs (Goldenberg et al. 2001; Vimont

and Kossin 2007), including the main development region

(Goldenberg and Shapiro 1996). These regions developed

markedly stronger positive anomalies than had been ob-

served in April and May or forecast for the forthcoming

peak season months, and are believed to have been a

major cause of the high 2004 Atlantic TC activity level.

Both examples described above highlight the impor-

tance of the quality of the SST forecast for the peak TC

season in the relevant tropical and subtropical ocean

regions. ENSO-related Pacific SST is known to have

some predictability, but there is room for improvement

in capturing it, and the seasonal prediction of SST in the

tropical Atlantic is a yet more serious challenge.

4. Comparison with simple statistical predictions

One reasonably might ask whether the skill levels of

the AGCM simulations and predictions are obtainable

using statistical models derived purely from the histor-

ically observed TC data and the immediately preceding

environmental data such as sea level pressure or SST

conditions. How much does the dynamical approach to

TC prediction offer that is not obtainable using empir-

ical approaches? Here, we explore this for deterministic

skill, using observed predictors in multiple regressions.

To minimize the artificial skill associated with ‘‘fishing’’

for accidentally skillful predictors, four restrictions are

imposed: a maximum of two predictors is used for each

basin, the same predictors are used for NTC as for ACE

for each basin, all predictors are SSTs averaged over

rectangular index regions,9 and all predictors must have

a plausible physical relevance to the TC activity. ‘‘Leave

out one’’ cross validation is applied to assess the expected

real-time predictive skill of the statistical models. We use

mainly SST because of the well-documented influence of

SST anomaly patterns, including in particular the state

and direction of the evolution of ENSO, on the inter-

annual variability of TC activity in most ocean basins.

Statistical predictions are made at a lead time of 1 month

(e.g., June SST predicting the Atlantic peak season of

ASO). A similar ‘‘prediction’’ is made for the simulation

of TC activity using predictors simultaneous with the

center month of the peak TC season.10 The simulation

TABLE 10. Comparison of skill (3102) between real-time

probability forecasts for TC activity based directly on the AGCM

(FSST), and those issued by IRI forecasters following subjective

modification. Skills for forecasts for all five ocean basins for both

NTC and ACE over the approximately 6-yr period are aggregated

using RPSS, likelihood, and scaled ROC area for forecasts when

above normal (AN) or below normal (BN) TC activity was ob-

served. The likelihood score is computed as the nth root of the

product of the probabilities given to the tercile category that was

indeed observed, spanning temporally through all n forecasts, and

then linearly scaled as zero for perpetual climatology forecasts and

unity for 100% probability always given to the observed category.

AGCM probabilities of zero for the correct category are set to 0.01

to avert degeneracy in the likelihood score. The ROC score is

scaled as 2 3 (area 2 0.5) for increased comparability to the other

skill measures.

No. of forecasts 48 48 48 50

Lead 3 2 1 0

Skill score Type

RPSS FSST 224 212 222 237

RPSS Issued 9 9 8 6

Likelihood FSST 2 21 21 25

Likelihood Issued 4 5 4 4

ROC (AN) FSST 37 27 28 10

ROC (AN) Issued 50 42 59 47

ROC (BN) FSST 15 14 21 15

ROC (BN) Issued 24 25 21 15

9 The only exception to this is Australia, in which sea level pres-

sure at Darwin is used.
10 The second month is used for both 3- and 4-month peak sea-

sons.
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predictors are usually the same as those used for the

1-month lead prediction.

Selection of the predictor SST indices is based on

previous studies and on examination of the geographi-

cal distribution of the interannual correlation between

SST and the TC variables using 1970–2005 data. For

example, Fig. 7 shows the correlation field for SST in

June versus Atlantic NTC during the ASO peak season,

indicating the well-known inverse relationship with

warm ENSO, and positive association with SSTs in the

North Atlantic, associated with the Atlantic meridional

mode (Vimont and Kossin 2007) and the Atlantic

multidecadal oscillation (Goldenberg et al. 2001). When

September SST is used, simultaneous with the Atlantic

TC activity, these same two key regions remain impor-

tant, but even stronger correlations appear for SST in

the main development region (Goldenberg and Shapiro

1996).

Table 11 identifies the predictors used for each ocean

basin for 1-month lead forecasts and for simultaneous

simulations. In the cases of the Atlantic and western

North Pacific forecasts, the first predictor contains both

FIG. 7. Correlations between June SST and ASO Atlantic NTC, 1970–2006. Contour interval is 0.1. Zero and

positive (negative) contours represented by solid (dotted) lines. The 20.1 contour is not shown.

FIG. 6. Two-month lead IRI forecasts (circles) and observations (diamonds) of Niño-3.4

SST index anomalies. Seasons for which TCs are forecast are shown with filled symbols. The

differences between the forecasts and observations are shown by solid (dotted) gray vertical

lines when the observation was warmer (colder) than the forecast.
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a recent SST level and a recent time derivative for the

same region, to capture the ENSO status and direction

of evolution. Many of the statistical predictors are ENSO

related. The Niño-3 SST in the east-central tropical Pa-

cific is found to be more relevant to Atlantic TC activity

(Gray et al. 1993) than the location more central to

ENSO itself [i.e., Niño-3.4; Barnston et al. (1997)].

Niño-3.4 is used for western North Pacific TC activity,

with the second predictor being SST in the subtropical

northeastern Pacific associated with the North Pacific

atmospheric circulation pattern that is found to be

linked with the TC activity (Barnston and Livezey 1987;

Chan et al. 1998). For northeast Pacific TC activity, the

SST regions highlight an ENSO-related east–west dipole

at northern subtropical latitudes, while for the South

Pacific and Australia the regional TC predictions, also

ENSO governed, are tailored to their Southern Hemi-

sphere locations.

Table 12 indicates the strengths of the relationship

between each of the predictors and the predictand, the

predictors’ correlations with one another, and the re-

sulting multiple correlation coefficients both within the

model development sample and upon using cross vali-

dation. The latter skill is considered to be a less biased

skill estimate with which the AGCM-based skill (shown

in the subsequent column in Table 12) can be compared.

Results for this comparison are mixed. The dynamical

forecasts and simulations are slightly more skillful for

South Pacific NTCs, as well as in the eastern North

Pacific basin in most cases. The statistical model pro-

duces higher skill levels in most cases in the Atlantic and

western North Pacific for forecasts and for simulations

in some cases. Statistical tests indicate that none of the

dynamical–statistical skill differences are significant for

the 36-case sample. Considering this, and the alterna-

tion of skill rank between the approaches over the ba-

sins, there is no clear suggestion that one approach is

generally superior to the other. That the dynamical

approach tended to yield higher skill levels in the South

Pacific, and results that were no lower than the

TABLE 12. Diagnostics for the two-predictor statistical TC forecasts and simulations, 1970–2005. The pr1 (pr2) columns show the

correlations (3102) between the first (second) predictor and the observed TC variable (NTC or ACE) in two-predictor multiple re-

gression predictions at 1-month lead time, per ocean basin. Sim1 (sim2) columns are similar but for simulations in which the SST forcing is

prescribed as that observed during the peak TC season. Correlation between the two predictors is indicated in the ‘‘1vs2’’ column. The

next two columns show the full sample and the one-year-out cross-validated multiple regression coefficients, the latter to be regarded as

the skill estimate for real-time forecasts for comparison with dynamical (AGCM based) skill levels, shown in the subsequent column.

Dynamical predictive skill comes from the HSSTp at 1-month lead, and simulation skill from OSSTr. Statistically significant skills are

shown in boldface.

Forecasts Simulations

pr1 pr2 1vs2 R Rcv Dyn sim1 sim2 1vs2 R Rcv Dyn

ENP NTC 29 230 233 37 14 32 32 228 218 39 20 37

ENP ACE 40 233 233 45 31 20 47 227 218 50 35 45

WNP NTC 19 41 47 41 23 11 23 14 54 23 26 28

WNP ACE 60 53 47 66 58 6 67 56 54 71 66 33
ATL NTC 238 49 219 57 46 33 245 58 22 72 66 55

ATL ACE 227 60 219 62 55 43 234 47 22 57 50 60

AUS NTC 240 230 83 41 23 26 244 253 81 53 42 40

SP NTC 38 228 255 39 20 42 42 237 248 46 30 42

TABLE 11. Predictors for statistical tropical cyclone 1-month lead forecasts and simulations. The month of the two SST predictors is

indicated in parentheses. MDR is the main development region of the Atlantic (108–208N, 828–208W). AMO is the Atlantic multidecadal

oscillation region (here, 408–508N, 758W–08). Darwin is located in northern Australia (12.48S, 130.98E).

Basin Season 1-month lead forecasts Simultaneous simulations

ENP JJAS 1) 208–308N, 1108–1308W (Apr) (north subtropical version of Niño-3) 1) Same as forecasts, but for Jul

2) 208–308N, 1808–1408E (Apr) (north part of outer ENSO horseshoe) 2) Same as forecasts, but for Jul

WNP JASO 1) Niño-3.4 (May) 1 Niño-3.4 change from Feb–Mar to May 1) Niño-3.4 (Aug)

2) 208–308N, 1108–1508W (May) (northeast subtropical Pacific) 2) Same as forecasts, but for Aug

ATL ASO 1) Niño-3 (Jun) 1 Niño-3 change from Mar–Apr to Jun 1) Niño-3 (Sep)

2) MDR (weighted 1/3) 1 AMO (weighted 2/3) 2) MDR (Sep)

AUS JFM 1) Niño-3.4 to Niño-4 (Nov) (58N–58S, 1208W–1608E) 1) Same as forecasts, but for Feb

2) Darwin SLP (SON) 2) Same as forecasts, but for JFM

SP DJFM 1) Niño-3 to Niño-3.4 (Oct) (58N–58S, 908–1708W) 1) Same as forecasts, but for Jan

2) 258–358S, 1708W–1708E (Oct) (south part of outer ENSO horseshoe) 2) Same as forecasts, but for Jan
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statistical method in the Australian region, could be

related to the comparatively lower quality of the SST

predictor data south of the equator, as well as NTC data

in the Southern Hemisphere, particularly in the 1970s. It

is possible that less accurate SST data would degrade

the statistical forecasts more than the AGCM forecasts

forced by the SST because the SST indices used in the

statistical forecasts represent relatively smaller regions

than the aggregate of the SST regions influencing the

behavior of the AGCM. The larger areas of SST influ-

encing the model may allow the opportunity for op-

posing error impacts, leading to smaller net impacts.

Some notable features of this methodological com-

parison are (i) the statistical models used here were

restricted to be fairly simple, and may not be near op-

timum; (ii) despite the use of cross validation, some

‘‘fishing’’ may still have occurred in selecting the pre-

dictor SST indices, and there may be some artificial skill;

and (iii) the one-year-out cross validation design has a

negative skill bias in truly low predictability situations

(Barnston and van den Dool 1993). Such caveats of

opposing implications suggest that the skill comparisons

should be considered as rough estimates, intended to

detect obvious skill differences—and such differences

are not revealed here. One might expect that much of

the skill of a near-perfect dynamical model would be

realizable by a sophisticated (e.g., containing nonline-

arities) statistical model if accurate observed data were

available, since the observations should occur because

of, and be consistent with, the dynamics of the ocean–

atmosphere system with noise added. Seasonal climate

has been shown to be statistically modeled fairly well

using only linear relationships (Peng et al. 2000). How-

ever, linearity may compromise statistical skill in fore-

casting seasonal phenomena such as TC activity, with its

highly nonlinear hydrodynamics in individual storms that

may not reduce to linear behavior even upon aggregating

over a TC peak season.

5. Conclusions

The IRI has been issuing experimental TC activity

forecasts for several ocean basins since early 2003. The

forecasts are based on TC-like features detected and

tracked in a climate model at low horizontal resolution.

The model is forced at its lower boundary by SSTs that

are predicted first, using several other dynamical and

statistical models. The skill of the model’s TC predic-

tions using historical observed SSTs are discussed as

references against which skill levels using several types

of predicted SSTs (including persisted SST anomalies)

are compared. The skill of the raw model output is also

compared with that of subjective probabilistic forecasts

actually developed since mid-2001, where the subjective

forecasts attempt to correct the ‘‘overconfident’’ prob-

abilistic forecasts from the AGCM. The skill levels of

the AGCM-based forecasts are also compared with

those from simple statistical forecasts based on ob-

served SSTs preceding the period being forecast.

Results show that low-resolution uncoupled climate

models deliver statistically significant, but fairly modest,

skill in predicting the interannual variability of TC ac-

tivity. The levels of correlation skill are comparable to the

levels obtained with simple empirical forecast models—

here, models employing two-predictor multiple regres-

sion using preceding area-average SST anomalies and

their recent time derivative. In ocean basins where ob-

served SST predictor data are of questionable quality,

statistical prediction is less effective. Despite that this

same SST is used as the boundary forcing for the climate

model, the dynamical predictions tend to slightly out-

perform the statistical predictions in this circumstance.

In a two-tiered dynamical prediction system such as

that used in this study, the effect of imperfect SST

prediction is noticeable in the skill levels of TC activity

compared with skill levels when the model is forced with

historically observed SSTs.

Similar to climate forecasts made by AGCMs, the

probabilistic reliability of the AGCM’s forecasts for

TC activity forecasts is not favorable in that the model

ensemble forecasts usually deviate too strongly from

the climatological distribution, due to too narrow an

ensemble spread or to too large a shift in the ensemble

mean from climatology. This overconfidence of the

AGCM forecasts is partly due to their being based on

specific representations of the physics, through param-

eterizations, and their own hindcast performances are

not taken into account in forming ensemble forecasts.

Upon subjective human intervention, the forecasts are

made more probabilistically conservative and reliability

is improved, leading to higher probabilistic verification

scores than for the uncalibrated AGCM forecasts.

The potential skill levels (i.e., discriminating infor-

mation, but needing calibration) seen in the approxi-

mately 6-yr-period real-time AGCM TC predictions are

tentative and nonrobust due to the small sample size.

However, these skill levels are not inconsistent with

those of longer-period AGCM-based hindcasts forced

by SST anomalies persisted from the previous month, as

seen in comparing the correlation skills for leads of 0

and 1 of FSST and HSSTp in Tables 4 and 5. Thus, as-

suming a calibration step, real-time skill levels are ex-

pected to be fairly modest but contain useful informa-

tional value (e.g., most short-lead HSSTp correlations

are 0.2–0.5) with the highest skill potential appearing

in the Atlantic, eastern Pacific, and South Pacific, and
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somewhat lower levels of skill potential found in the

western Pacific and Australia regions. Skill levels are

generally seen to decrease slowly with increasing lead

time, such that forecasts issued several months prior to

the peak season onset are also expected to have some

informational value.

We plan to examine the skill of other models in hopes

of being able to add more information, and hopefully

skill, to our seasonal TC forecasts. The problem of over-

confidence in AGCMs is relieved to some extent by the

use of multimodel ensembles (Kharin and Zwiers 2002;

Vitart 2006; Tippett et al. 2007): adding additional models

should help restrain the probabilistic amplitude exhibited

by a single model. The merging of TC forecasts made by

AGCMs and by statistical methods may also prove ben-

eficial. Another possibility that could be explored in the

future is to combine dynamical forecasts using the direct

method (tracking of model storms) and the indirect

method (using only the large-scale fields of the model).

Issues not examined here are the role of AGCM

spatial resolution in governing predictive skill, and the

impact of using a fully coupled dynamical system rather

than a two-tiered system as is employed here. Although

the prospects for the future improvement of dynamical

TC prediction are uncertain, it appears likely that ad-

ditional improvements in dynamical systems will make

possible better TC predictions. As is the case for dy-

namical approaches to ENSO and near-surface climate

prediction, future improvements will depend on a better

understanding of the underlying physics, more direct

physical representation through higher spatial resolu-

tion, and substantial increases in computer capacity.

Hence, improved TC prediction should be a natural by-

product of the improved prediction of ENSO, global

tropical SST, and climate across various spatial scales.
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APPENDIX

Acronyms and Their Definitions

ACE accumulated cyclone energy

AGCM atmospheric general circulation model

AMIP Atmospheric Model Intercomparison

Project (AGCM is forced using observed

SST)

CCA canonical correlation analysis

CFS Climate Forecast System (global coupled

model of NOAA/NCEP)

DJFM December–January–February–March (and

similarly for other multimonth periods)

ECHAM4.5 ECMWF–Hamburg, Germany, AGCM,

version 4.5

ECMWF European Centre for Medium-Range

Weather Forecasts

EN El Niño

ENSO El Niño–Southern Oscillation

EUROSIP European Seasonal to Interannual Pre-

diction superensemble

FSST forecasted SST used for real-time

AGCM forecasts, 2001 onward

FSSTe FSST using evolving (predicted) SST

anomalies

FSSTp

FSST using persisted SST anomalies observed

from previous month

HSSTp hindcasted SST, covering a long past his-

tory, using persisted anomalies observed

from the previous month

IRI International Research Institute for Cli-

mate and Society

LDEO Lamont-Doherty Earth Observatory (a

campus of Columbia University)

LN La Niña

MSESS mean squared error skill score

NCEP National Centers for Environmental Pre-

diction

NOAA National Oceanic and Atmospheric Ad-

ministration

NTC number of tropical cyclones

OSST observed SST used for a long past history

of AGCM hindcasts, starting in 1950

OSSTr OSST for a relatively more recent period,

starting in 1970

ROC relative operating characteristics

RPSS ranked probability skill score

SST sea surface temperature

TC tropical cyclone
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