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ABSTRACT

A new probabilistic clustering technique, based on a regression mixture model, is used to describe tropical
cyclone trajectories in the western North Pacific. Each component of the mixture model consists of a
quadratic regression curve of cyclone position against time. The best-track 1950–2002 dataset is described
by seven distinct clusters. These clusters are then analyzed in terms of genesis location, trajectory, landfall,
intensity, and seasonality.

Both genesis location and trajectory play important roles in defining the clusters. Several distinct types
of straight-moving, as well as recurving, trajectories are identified, thus enriching this main distinction found
in previous studies. Intensity and seasonality of cyclones, though not used by the clustering algorithm, are
both highly stratified from cluster to cluster. Three straight-moving trajectory types have very small within-
cluster spread, while the recurving types are more diffuse. Tropical cyclone landfalls over East and South-
east Asia are found to be strongly cluster dependent, both in terms of frequency and region of impact.

The relationships of each cluster type with the large-scale circulation, sea surface temperatures, and the
phase of the El Niño–Southern Oscillation are studied in a companion paper.

1. Introduction

Typhoons have a large socioeconomic impact in
many Asian countries. The risk of landfall of a typhoon
or tropical storm depends on its trajectory. These tra-
jectories, in turn, vary strongly with the season (Gray
1979; Harr and Elsberry 1991), as well as on interannual
(Chan 1985) and interdecadal time scales (Ho et al.
2004). However, current knowledge is largely qualita-

tive, and the probabilistic behavior of tropical cyclone
trajectories needs to be better understood in order to
isolate potentially predictable aspects of landfall. Well-
calibrated probabilistic seasonal predictions of landfall
risk could form an important tool in risk management.

Tropical cyclogenesis over the tropical northwest
(NW) Pacific takes place in a broad region west of the
date line, between about 8° and 25°N. South of 15°N,
most of these tropical cyclones (TCs) follow rather
straight west-northwestward tracks. About one-third of
them continue in this direction and make landfall in
southeast Asia and southern China. Most of the re-
mainder “recurve,” that is, slow down, turn northward,
and then accelerate eastward as they enter the midlati-
tude westerlies (e.g., Harr and Elsberry 1995). Another
fraction of TCs track northward over the ocean, posing
no threat to land.

The large-scale circulation of the atmosphere has a
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predominant role in determining a TC’s motion through
the steering by the surrounding large-scale flow (e.g.,
Chan and Gray 1982; Franklin et al. 1996; Chan 2005).
The cyclone and the environment interact to modify the
surrounding flow (Wu and Emanuel 1995), and the vor-
tex is then advected (steered) by the modified flow.
One important dynamical factor is the beta drift, in-
volving the interaction of the cyclone, the planetary
vorticity gradient, and the environmental flow. This
leads TCs to move northwestward even in a resting
environment in the Northern Hemisphere (Adem 1956;
Holland 1983; Wu and Wang 2004). Other effects can
also be important: the interaction of tropical cyclones
with mountain ranges leads to significant variations in
tracks, as often occurs in Taiwan (Wu and Kuo 1999).

This two-part study explores the hypothesis that the
large observed spread of TC tracks over the tropical
NW Pacific can be described well by a small number of
clusters of tracks, or TC “regimes.” The observed TC
variability on seasonal and interannual time scales is
then interpreted in terms of changes in the frequency of
occurrence of these TC regimes. In this paper, we ex-
plore the basic attributes of the underlying clusters by
applying a new clustering technique to the best-track
dataset of the Joint Typhoon Warning Center (JTWC).
The technique employs a mixture of polynomial regres-
sion models (i.e., curves) to fit the geographical
“shape” of the trajectories (Gaffney and Smyth 1999,
2005; Gaffney 2004). Camargo et al. (2007, hereafter
Part II) examine relationships between the clusters we
describe in the present paper and the large-scale atmo-
spheric circulation, as well as the El Niño–Southern
Oscillation (ENSO).

In midlatitude meteorology, the concept of planetary
circulation regimes (Legras and Ghil 1985), sometimes
called weather regimes (Reinhold and Pierrehumbert
1982), has been introduced in attempting to connect the
observations of persistent and recurring midlatitude
flow patterns with large-scale atmospheric dynamics.
These midlatitude circulation regimes have intrinsic
time scales of several days to a week or more and exert
a control on local weather (e.g., Robertson and Ghil
1999). Longer time-scale variability of weather statistics
(TCs in our case) is a result of changes over time in the
frequency-of-occurrence of circulation regimes. This
paradigm of climate variability provides a counterpart
to wave-like decompositions of atmospheric variability,
allowing the connection to be made with oscillatory
phenomena (Ghil and Robertson 2002), such as the
Madden–Julian oscillation.

Circulation regimes have most often been defined in
terms of clustering, whether fuzzy (Mo and Ghil 1987)
or hierarchical (Cheng and Wallace 1993), in terms of

maxima in the probability density function (PDF) of
the large-scale, low-frequency flow (Molteni et al. 1990;
Kimoto and Ghil 1993a,b), as well as in terms of quasi
stationarity (Ghil and Childress 1987; Vautard 1990)
and, more recently, using a probabilistic Gaussian mix-
ture model (Smyth et al. 1999).

In the case of TC trajectories, the K-means method
(MacQueen 1967) has been used to study western
North Pacific (Elsner and Liu 2003) and North Atlantic
(Elsner 2003) TCs. In those studies, the grouping
was done according to the positions of maximum and
final hurricane intensity (i.e., the last position at which
the TC had hurricane intensity). In both basins, three
clusters were chosen to describe the trajectories. The
K-means approach has also been used to cluster
North Atlantic extratropical cyclone trajectories, where
6-hourly latitude–longitude positions over 3 days were
converted into 24-dimensional vectors suitable for clus-
tering (Blender et al. 1997).

The K-means method is a straightforward and widely
used partitioning method that seeks to assign each track
to one of K groups such that the total variance among
the groups is minimized. However, K-means cannot ac-
commodate tracks of different lengths, and we show
this to be a serious shortcoming for TCs. On a different
approach, Harr and Elsberry (1995) used fuzzy cluster
analysis and empirical orthogonal functions to describe
the spatial patterns associated with different typhoon
characteristics.

The finite mixture model used in this paper to fit the
geographical shape of the trajectories allows the clus-
tering to be posed in a rigorous probabilistic framework
and accommodates tropical cyclone tracks of different
lengths. These characteristics provide advantages over
the K-means method used in previous studies. The
main novelty here is to use an objective method to
classify the typhoon tracks based not only on a few
points of the trajectory, but on trajectory shape and
location.

The clustering methodology is briefly described in
section 2 and applied to the JTWC best-track dataset in
section 3. The two main trajectory types identified by
the cluster analysis correspond to straight movers and
recurvers; additional clusters correspond to more de-
tailed differences among these two main types, based
on location and track type. We study several character-
istics of the TCs in each cluster, including first position,
mean track, landfall, intensity, and lifetime, and com-
pare them with previous works in section 4. Discussion
and conclusions follow in section 5. In Part II, we study
how the large-scale circulation and ENSO affect each
cluster.
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2. Data and methodology

a. Data and definitions

The TC data used in this paper were based on the
JTWC best-track dataset available at 6-hourly sampling
frequency over the time interval 1950–2002 (Joint Ty-
phoon Warning Center 2005). The tracks were studied
over the western North Pacific, defined such that the
latitude–longitude of the TCs are inside the “rectangle”
(0°–60°N and 100°E–180°) during at least part of their
lifetimes. The clustering technique and the resulting
analysis were applied to a total of 1393 cyclone tracks.
We included only TCs with tropical storm intensity or
higher: tropical storms (TSs), both category 1 and 2
typhoons (TYs) as defined by the Saffir–Simpson scale
(Saffir 1977; Simpson and Riehl 1981), and intense ty-
phoons (ITYs; categories 3–5). Tropical depressions are
not included in the analysis.

The observed data quality is thought to be consider-
ably poorer during presatellite years (pre-1970). We
assume that although some of the TCs may be missing
in the JTWC (2005) database for the presatellite data,
especially those that remain over the ocean, the tracks
for those that do appear in the dataset are reliable, even
if their intensity is not. We repeated the cluster analysis
for the time interval 1970–2002 and found that the types
of tracks obtained in each cluster are essentially the
same. This verification lends credence to the data in the
earlier part of the record and demonstrates the robust-
ness of our results.

b. Clustering methodology

We present here a brief summary of the clustering
methodology (details are given in the appendix). A
more complete discussion is given by Gaffney (2004),
with an application of the clustering method to extra-
tropical cyclones over the North Atlantic (Gaffney et
al. 2007; a Matlab toolbox with the clustering algo-
rithms described in this paper is available online at
http://www.datalab.uci.edu/resources/CCT).

Our curve clustering method is based on the finite
mixture model (e.g., Everitt and Hand 1981), which
represents a data distribution as a convex linear com-
bination of component density functions. A key feature
of the mixture model is its ability to model highly non-
Gaussian (and possibly multimodal) densities using a
small set of basic component densities. Finite mixture
models have been widely used for clustering data in a
variety of areas (e.g., McLachlan and Basford 1988),
including the large-scale atmospheric circulation
(Smyth et al. 1999; Hannachi and O’Neill 2001).

Regression mixture models extend the standard mix-
ture modeling framework by replacing the marginal

component densities with conditional density compo-
nents. The new conditional densities are functions of
the data (i.e., cyclone position) conditioned on an in-
dependent variable (i.e., time). In this paper, the com-
ponent densities model a cyclone’s longitudinal and
latitudinal positions versus time using quadratic poly-
nomial regression functions, as discussed in Gaffney
(2004). The latitude and longitude positions are treated
as conditionally independent given the model, and thus
the complete function for a cyclone track is the product
of these two. Other models, such as higher-order poly-
nomials and splines can also be used within the mixture
framework, but the simple quadratic model appears to
offer the best trade-off between ease of interpretation
and goodness-of-fit.

Each trajectory (i.e., each cyclone track) is assumed
to be generated by one of K different regression mod-
els, each having its own shape parameters. The cluster-
ing problem is to (i) learn the parameters of all K mod-
els given the TC tracks, and (ii) infer which of the K
models are most likely to have generated each TC
track. Each track can be assigned to the mixture com-
ponent (and thus the cluster) that was most likely to
have generated that track given the model. In other
words, the assigned cluster has the highest posterior
probability given the track. An expectation maximiza-
tion (EM) algorithm for learning these model param-
eters can be defined in a manner similar to that for
standard (unconditional) mixtures (DeSarbo and Cron
1988; Gaffney and Smyth 1999; McLachlan and Krish-
nan 1997; McLachlan and Peel 2000). The resulting EM
algorithm is straightforward to implement and use, and
its computational complexity is linear in the number of
observations.

Certain preprocessing steps are typically performed
on the cyclone tracks prior to clustering. For example,
Blender et al. (1997) subtract the coordinates of the
initial points of each extratropical cyclone track so that
they all begin at the latitude–longitude position of 0°,
0°. In addition they also normalize the latitude and lon-
gitude measurements to have the same variance. In our
experiments below we did not use any such preprocess-
ing—clustering the tracks directly produced results that
were easier to interpret and more meaningful than the
clustering of preprocessed tracks.

c. Number of clusters

To select the most appropriate number of clusters,
we looked at both the in-sample and out-of-sample log-
likelihood values. The log-likelihood is defined as the
log-probability of the observed data under the model,
which can be seen as a goodness-of-fit metric for proba-
bilistic models. Used as an objective measure, one se-
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lects the number of clusters for which the log-likelihood
is largest across a candidate set of values. Our resulting
in-sample score curve is shown in Fig. 1 (the out-of-
sample curve is similar and is not shown). The observed
log-likelihood values increased in direct relation to the
number of clusters, and thus did not directly provide an
optimal number of chosen clusters. In addition the
within-cluster spread is plotted in Fig. 2 and can be used
as an additional measure for goodness of fit. The curves
in Figs. 1 and 2 mirror each other, showing obvious
diminishing returns of improvement in fit beyond K �
6–8, suggesting a reasonable stopping point somewhere
in-between.

To evaluate the values K � 6–8 as candidates for the
number of clusters, we also carried out a qualitative
analysis based on how much the track types differ from
one cluster to another as the number of clusters in-
creases. Preliminary results carried out with six clusters
(Camargo et al. 2004) are very similar to those pre-
sented here. The main difference is that one of the K �
6 track types splits in two when K is set to 7, with
slightly different characteristics. Most of the results pre-
sented here and in Camargo et al. (2007) are not sen-
sitive to the choices between K � 6–8. As described by
Camargo et al. (2007), the choice of K � 7 is found to
produce particularly interpretable results with respect
to ENSO and was thus taken to be our final choice.

Figure 3 illustrates how the choice for the number of
clusters from K � 2–9 affects the final regression
curves. To emphasize differences in shape, the mean

regression trajectories are plotted with their initial po-
sitions collocated at the origin. The two main types of
TC behavior found in previous studies (Harr and Els-
berry 1991, 1995) are evident in these plots, namely,
“straight movers” and “recurvers.” The differentiation
between the two types is achieved for K � 3. For each
of these two broad types, additional clusters yield dif-
ferences in compass bearing for the straight movers and
differences in the recurving portion for the recurvers.
This remark is particularly valid for odd values of K
(Figs. 3b,c,f,h). Although some of the regression curves
look very similar in Fig. 3, their initial positions differ in
several cases and there are also differences in trajectory
length. Since the regression curves are plotted with the
same number of points, the distances between plotted
points are smaller or larger based on average speed
over such a period. It is interesting to note that along
the recurving trajectories, the points are very close to
each other within the recurving portion, showing that
TCs slow down before changing direction. The recurv-
ing usually occurs when the storms move from a region
of easterlies to a region of westerlies, with the wind
speed decreasing near the recurve point. It is important
to note, however, that the clustering technique has no
access to the wind fields.

The regression trajectories for the six, seven, and
eight clusters are shown in Fig. 4; in this case, the initial
positions were retained. Note that the odd (even) clus-
ters share greater similarity than adjacent values of K.
For the chosen number of clusters (K � 7), shown in

FIG. 1. Log-likelihood values for different number of TC track
clusters. The log-likehood values shown are the maximum of 16
runs, obtained by a random permutation of the tropical cyclones
given to the cluster model.

FIG. 2. Within cluster error for different number of TC track
clusters. The cluster error values shown are the minimum of 16
runs, obtained by a random permutation of the tropical cyclones
given to the cluster model.
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Fig. 4c there are four clusters of straight movers and
three of recurvers. Notice the strong separation be-
tween the clusters in terms of their genesis location: five
clusters have genesis positions near 10°N in latitude,
but spread in longitude from near the Philippines to just
west of the date line. The other two clusters (both re-
curvers) start near 20°N.

Looking at the population of each cluster in Table 1,
we see that there are three dominant clusters (A, B, and
C), each accounting for approximately 20% of the
tracks. Clusters D and E occur less often (13%), while
clusters F and G (each containing about 100 cyclones)
are relatively rare (8%). When only considering the last
33 yr, 1970–2002, the number and characteristics of the
clusters did not change (see section 2a), but their rela-
tive sizes did change somewhat (not shown), with the
dominant clusters (such as A and C) decreasing and the
least populated ones (E, F, and G) increasing. This sig-
nificant change in relative cluster sizes could be due to

either a decadal shift in the occurrence of tracks (Ho et
al. 2004), or to data issues, with fewer TCs being de-
tected over open waters before the satellite era.

3. Tropical cyclone clusters

a. Trajectories

The TC tracks in clusters A–G from the time interval
1983–2002 are shown in Fig. 5, along with the mean
regression curves for each cluster. For comparison, the
tracks of all TCs in the same time interval are also
shown (Fig. 5h). The figure illustrates the high degree
of geographic localization achieved by the cluster
analysis, mainly due to the fact that the tracks were not
reduced to a common origin before performing the
clustering. The spread about the mean track for the
straight-moving clusters B, D, and F is particularly
small. Although the mean regression trajectories of

FIG. 3. Mean regression trajectories of the western North Pacific TCs with (a) two, (b) three,
(c) four, (d) five, (e) six, (f) seven, (g) eight, and (h) nine clusters. The mean trajectories start
at 0° lat and lon, for plotting purposes only.
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FIG. 4. Mean regression trajectories of the TCs over the western North Pacific, with (a) six,
(b) seven, and (c) eight clusters. The origin of the trajectories are marked with an asterisk (*).
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clusters D and F are very similar, many of their char-
acteristics are very different, as will be further explored.
The recurving clusters A, C, and E are more diffuse,
though A and C are still quite geographically limited.

The typical track in cluster A is a recurved trajectory,
as shown by the mean regression curve of the cluster.
Most of the TC activity in cluster A occurs between
Japan and the Philippines. The cyclones in cluster B
typically follow straight tracks across the Philippines
and the South China Sea. The typical recurving track in
cluster C stays mostly over the ocean.

The cyclone tracks in cluster D are typically straight
and usually cross the Philippines. The TC activity in
cluster D is restricted to a long narrow region that ex-
tends from east of the Philippines to the south China
coast. The first-position patterns of clusters D and E are
somewhat similar, with the mean track of the latter
originating about 10° farther east (see Fig. 4). The typi-
cal track of cluster E, though, is recurving, and leads to
a much larger area of TC activity over the Pacific
Ocean and land.

The typical tracks in cluster F are very similar to
those in cluster D, but the former are typically longer
and localized farther to the south. The TC activity for
cluster F is also limited to a long narrow strip, as for
cluster D. The cyclones that cross from the western
North Pacific to the Indian Ocean belong to cluster F.
Frequently the remnants of these TCs traveling west-
ward into the Indian Ocean are responsible for mon-
soon disturbances and cyclones in the Bay of Bengal
(e.g., Krishnamurti et al. 1977; Saha et al. 1981; Kumar
and Krishnan 2005). The typical track in cluster G is
straight, with a more northward trending compass angle
than in the case of clusters D and F; still, this cluster
contains a fair number of cyclones that recurve. The TC
activity in cluster G extends, therefore, over a much
wider region than for clusters D and F, with a maximum
over the southeastern corner of the basin. The most

plausible reason for some recurving tracks to belong to
cluster G is that before reaching more northern lati-
tudes, these tracks follow the mean regression track.

To quantify the differences in track direction be-
tween the clusters, we plot kernel distributions of tan-
gential direction in Fig. 6. These distributions are based
on all neighboring pairs of points along each trajectory
and were produced using an 11.25° resolution. Each
compass point marked on the plot—E, NE, N, NW, W,
SW, S, and SE—corresponds to a range of 45°; thus a
westward direction is associated with a vector from one
point on a track to the next one, 6 h later, when the
angle this vector makes with the east lies between
157.5° and 202.5° (i.e., 180° � 22.5°).

As expected, when all TCs are considered, the peak
direction occurs for western and northwestern trends,
with a second peak smaller to the north and northeast
associated with recurving trajectories. The TC move-
ment in each cluster is in agreement with the mean
regression trajectory. Thus, the recurving clusters A
and C exhibit flatter distributions with small peaks to
the NW and NE. The straight-moving clusters B, D, and
F exhibit a single, fairly sharp peak between NW and
W. Clusters E and G have two peaks: a larger one at
NW and W, and a second smaller one at NE. The tracks
in both of these clusters are a mix of straight moving
and recurving, more similar to the distribution of all
TCs, with more (fewer) recurving tracks occurring in
cluster E (G), and therefore justifying their classifica-
tion as recurving (straight). Note that the kernel distri-
butions for clusters B, D, and F are much sharper than
that of all TCs.

b. Genesis position

The tracks presented in the previous subsection are
strongly localized. Here we examine the extent to
which this geographic localization can be accounted for
by differences in genesis position. The numbers of cy-
clones originating in each 2° latitude � 2° longitude
“square,” for each cluster, and for all TCs are given in
Fig. 7. The median latitude and longitude of first posi-
tions for all TCs are given in Table 2, grouped by clus-
ter.

Taking all TCs together, there is a large spread in
genesis position, with highest density west of 160°E and
south of 20°N. This corresponds roughly to the density
of the tracks themselves, though the latter extends far-
ther northwestward. The individual clusters partition
genesis position even more clearly than in track density,
resulting in relatively little overlap between clusters.
Clearly, the genesis position plays a large role in defin-
ing the clusters, although it is not given any particular
weight in the clustering algorithm itself.

TABLE 1. Main TC statistics. The seven clusters are labeled
from A to G, in decreasing order of NTCs in each. The subse-
quent columns indicate percentage of TCs (PTC), number of land-
falls (NLF), and percentage of landfall (PLF) in each cluster. The
last row (ALL) summarizes the data for the seven clusters.

Cluster NTC PTC NLF PLF

A 306 22% 188 61%
B 280 20% 238 85%
C 235 17% 17 7%
D 178 13% 129 72%
E 176 13% 56 32%
F 112 8% 71 63%
G 106 8% 16 15%
ALL 1393 100% 715 51%
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Typically, cluster A formation occurs east of the Phil-
ippines and Taiwan. Cluster B first positions lie mainly
in the South China Sea and to the east and northeast of
the Philippines, but staying south of Taiwan. The gen-
esis of the cyclones in cluster C occurs more diffusely in
the central part of the western North Pacific basin.
These three clusters are the most highly populated ones
and together make up 59% of the TCs in the basin (see
Table 1). Cyclones in cluster D form east of the Phil-
ippines, while cluster E genesis also occurs east of the
Philippines, but shifted farther to the east compared to
cluster D, and to the south of cluster C.

The two least populated clusters are F and G, and
their genesis occurs around 10°N. The cyclones in clus-
ter F form within a narrow, long strip that extends from
the Gulf of Thailand to the east of the Philippines, until
near the date line. The TCs in G originate the farthest
east of all the clusters, in close proximity to the date

line, and closer to the equator than the other clusters
(except F).

c. Intensity and lifetime

The percentage of cyclones with tropical storm, ty-
phoon (categories 1–2), and intense typhoon (catego-
ries 3–5) strength is given in Fig. 8, cluster by cluster, as
well as for all TCs. On a climatological basis, about
one-third of all TCs fall into each intensity category. In
contrast, all the clusters except D and F—the long-
track, straight movers crossing the Philippines—show
large deviations in intensity percentage from the all-TC
climatology. The two recurving clusters with large den-
sity between Japan and the Philippines (A and E) ex-
hibit highly skewed intensity distributions: cluster E to-
ward intense typhoons (60%), and cluster A toward
tropical storms (43%) while only 22% of TCs are in-
tense typhoons in this cluster. These two recurving clus-

FIG. 5. TC tracks (black) over the western North Pacific, during the period 1983–2002 in
each of the seven clusters and for all TCs; the mean regression curve of each cluster is shown
in gray open circles.
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ters have very different genesis locations, with cluster E
forming much farther south (see Fig. 7). Cluster G also
contains a large number of intense typhoons (59%),
and like cluster E it has a genesis region near 10°N and
contains many long tracks. By contrast, the numerous
short tracks of cluster B (see Fig. 5) rarely develop into
intense typhoons (10%). Like cluster A, cluster C has a
genesis region near 20°N, and it too has relatively few
intense typhoons (21%).

It is clear from Figs. 5 and 8 that track length plays an

important role in intensity. This is also consistent with
the distribution of the cyclone’s lifetime shown in Fig. 9.
The median lifetime of the TCs in cluster A is 6.75 days,
compared to 11.25 days for cluster E. The typical life-
time of cluster B is the smallest of all (5.25 days), with
very few cyclones in this cluster reaching extended life-
times and intense typhoon status (10%). The median
lifetime in cluster G (whose TCs are often intense; see
Fig. 8) is the largest of all clusters (13.1 days); the stan-
dard deviation is also the largest in this cluster. This

FIG. 6. Distribution of TC angles of movement (as function of compass points E, NE, N,
NW, W, SW, W, and SE) for each cluster and for all TCs.
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positive relationship of intensity and lifetime of cy-
clones is consistent with the results of Camargo and
Sobel (2005), with longer-living and more intense ty-
phoons in El Niño years and the opposite in La Niña
years.

The straight-moving cyclones in clusters D and F are
quite equally divided among tropical storm, typhoon,
and intense typhoon strengths. However, the median
lifetime in cluster F is the second largest of all clusters
(11.5 days). Despite the length of its tracks, their tra-
jectory over land, when crossing the Philippines, could
be responsible for the relative lack of intense typhoons
in this cluster.

d. Landfall

Landfall risk is the paramount parameter of concern
for societies in SE and East Asia. Figure 10 shows the
location and percentage of landfall in each cluster, de-
fining landfall where the center of the TC intersects the
coast (which could be an island). Each asterisk (*)
shown in Fig. 10 represents the landfall of one TC in

TABLE 2. The median genesis location (latitude and longitude)
for TC first positions, in each cluster and for all TCs.

Cluster Lat (N) Lon (E)

A 17.0° 136.0°
B 14.9° 120.8°
C 18.3° 153.0°
D 9.2° 140.7°
E 8.9° 152.2°
F 6.9° 146.6°
G 6.6° 171.7°
All 13.0° 141.7°

FIG. 7. Number of cyclones with genesis position in each 2° lat � 2° lon square for each cluster and all TCs.
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that location. In clusters with a high percentage of land-
fall, these asterisks cover continuous segments of coast.

Some 51% of all cyclones over the basin make land-
fall, but the percentage varies from 7% to 85% between
the clusters. There is thus considerable landfall dis-
crimination between the clusters in landfall likelihood:

the landfall percentages in each cluster are significantly
different from the landfall percentage of the whole
JTWC dataset at the 95% significance level, using a
binomial significance test. The percentages of landfall
are also significantly distinct from cluster to cluster,
with the exception of cluster F when compared with
either A or D. In the case of the pair (A, F), it is the
percentages (61% and 63%) that are very close to each
other, while for the pair (D, F) the percentages (72%
and 63%) are not that close, but the population of the
two clusters is too small for statistical significance at the
95% level.

Examining the regional landfall distributions in Fig.
10, 61% of the tropical cyclones in cluster A (recurving)
make landfall in the Philippines, China, Taiwan, the
Korean Peninsula, and Japan. Cluster B (short straight
tracks over the South China Sea) has the highest per-
centage (85%) of landfall of all clusters, with landfall
from northern Vietnam to the south China coast, in-
cluding the Philippines and Taiwan. In contrast, cluster
C has the lowest landfall rate among all clusters (7%),
as its main TC activity occurs over the ocean. The few
landfall cases of cluster C occur over Japan.

Landfall percentages for clusters D and F (straight
movers, crossing the Philippines Sea) are high (72%
and 63%, respectively), both with large landfall rates
over the Philippines. Their landfall distributions, how-
ever, are quite different over mainland Asia: cluster D
impacts southern China to northern Vietnam, including
Taiwan, while cluster F affects Vietnam, Malaysia, and
Thailand.

Cluster E is recurving and has a relatively low num-
ber of landfalls (32%), mostly over the northern Phil-
ippines, Taiwan, the eastern coast of China, the Korean
Peninsula, and Japan. Only 15% of the cyclones in clus-
ter G (with genesis positions farthest east) make land-
fall. These landfall locations are relatively widespread,
occurring in the Philippines, Taiwan, China, Korea, and
Japan.

4. Temporal evolution

a. Seasonality

Based on track shape and geographic location, the
regression-curve mixture model identifies clusters of
TC tracks with quite distinct properties, as described in
the previous subsections. A key motivation for this de-
composition is to obtain a probabilistic description of
the temporal behavior of TC activity. We begin here
with the mean seasonal evolution and transition prob-
abilities between clusters. In Part II of this paper, we
extend the analysis to interannual variability.

Figure 11 shows the mean number of cyclones per

FIG. 9. Distribution of lifetime per cyclone, in each cluster and
for all TCs in the period 1970–2002. The boxes show the 25th and
75th percentiles, the lines in the boxes mark the median, the as-
terisks (*) the mean, and the crosses (�) the values below (above)
the 25th (75th) percentiles of the distributions.

FIG. 8. Percentage of cyclones that have TS, TY (categories
1–2), and ITY (categories 3–5) strength in each cluster and for the
whole basin in the period 1970–2002.
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calendar month, for each cluster and for all TCs, based
on genesis date. The seasonal evolution of TC activity is
remarkably different from cluster to cluster, facilitating
therewith a description of the basinwide seasonal cycle.
Certain clusters are highly season specific. Among the
recurving clusters, cluster A (peak activity in JAS) pre-
cedes cluster C (peak in ASO), while cluster E has a
smoother evolution. Of the straight movers, cluster B
cyclones are almost absent in JFM, and there is little
cluster D activity in FMA, and even less cluster F ac-
tivity in JJAS.

The mean genesis location of the TCs in the western
North Pacific has a well-defined annual cycle (Chia and
Ropelewski 2002; Camargo et al. 2005), with the aver-
age latitude reaching its northernmost position in Au-
gust and its most equatorward position around Febru-
ary. This cycle is consistent with the seasonal occur-
rence of the clusters, as the genesis locations vary in
latitude among the clusters (see Table 2). Clusters A, C,
and to a lesser extent B, have the northernmost genesis
positions, and this is reflected in their prevalence dur-
ing summer and fall, with almost no activity during

FIG. 10. Landfall location and percentage of cyclones making landfall, in each cluster and
for all TCs.
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January–April. The larger spread in cluster B could be
explained by more persistent warm sea surface tem-
peratures (SSTs) over its genesis region, namely the
South China and Philippines Seas. Because of the pres-
ence of the western North Pacific’s warm pool, the cli-
matological SSTs in the Philippines Sea are above 26°C
year round, and this holds for the South China Sea from
May to November too.

The activity in clusters with low-latitude genesis
points (D, E, F, and G) is distributed more irregularly

throughout much of the year. Cyclones in clusters D
and E occur mainly from July to November, with
maxima in July and October, or in September, respec-
tively. Most of the TCs in cluster F occur after the peak
typhoon season, from October to December, with a
peak in November. Clusters F and G have the latest
median genesis day among the clusters (not shown),
along with the most equatorward genesis latitude
among the clusters (see Table 2). The formation of TCs
in the late boreal fall and early winter is restricted to

FIG. 11. Mean number of cyclones per month, in each cluster and all TCs.
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the Pacific warm pool and low latitudes. This is due
primarily to the presence of high values of vertical wind
shear in other parts of the basin.

b. Transitions between clusters

The simplest temporal dependency given by a cluster
analysis is in terms of transition probabilities between
clusters (Fraedrich and Klauss 1983; Mo and Ghil 1987,
1988). Table 3 is a transition matrix of TC number of
occurrences in each cluster (column), given a previous
occurrence in another cluster (row). The bottom row
gives the TC occurrences in each cluster, as in the num-
ber of tropical cyclones (NTC) column of Table 1. The
statistical significance that the occurrence of a transi-
tion between clusters is more or less likely than pure
chance was determined following Vautard et al. (1990).

The main diagonal of Table 3 contains the self-
transition occurrences; that is, the number of times two
consecutive TCs occur in the same cluster. The self-
transition occurrences in all clusters, with the exception
of B, are more likely to occur than pure chance at the
95% significance level. In clusters A, D, F, and G the
highest values of occurrence are for self-transition, in-
dicating that the same type of cyclone is likeliest to
recur, once the conditions are right. Even in the other
three clusters, the self-transition occurrences are
among the highest. This is probably related to the ob-
served fact that around 5 days after a cyclone has
formed, the environmental conditions are favorable to
the formation of other TCs (Frank 1982; Holland 1995).
If the environmental conditions persist, there is a large
chance that the next cyclone track will be in the same
cluster as the previous one. A possible mechanism for
the formation of TCs at short intervals from each other
is wave accumulation (Sobel and Bretherton 1999).

In the case of A (the largest cluster), besides persis-
tence, there is a statistically significant chance that a
transition to cluster C occurs, while transitions to clus-

ters D, E, F, and G are less likely (see Table 3). On the
other hand, cluster B occurrence (the South China Sea
cluster) seems to be independent of both the other clus-
ters and persistence, as none of the transitions are sta-
tistically significant. Clusters F and G, though rare,
seem to be persistent and occur often following one
another, as well as following cluster E.

By examining the sequence of cyclone occurrences
within different clusters (not shown), we find that the
most populated clusters, especially A and C, seem to
exhibit groups of TCs, with several successive cyclones
belonging to the same cluster. In contrast, the less
populated clusters (F, G) have a clearer interannual
variability, with no cyclones at all in some years and
several in others. The interannual variability will be
further explored in Part II.

5. Concluding remarks

a. Discussion

We have applied a novel clustering methodology to
the best-track dataset of tropical cyclones (TCs) over
the western North Pacific (Joint Typhoon Warning
Center 2005). The analysis included tropical storms as
well as typhoons but not tropical depressions. The
methodology combined regression modeling of tracks
of arbitrary length with mixture modeling of quadratic
track shapes obtained by the regression. Our classifica-
tion resulted in seven clusters labeled A–G. Here, we
discuss our results and compare these to previous work,
followed by our conclusions in section 5b.

Our main categories of cluster track types are con-
sistent with the two principal track types identified in
previous studies (e.g., Sandgathe 1987; Harr and Elsberry
1995; Lander 1996), namely recurving and straight-
moving track types. Previous work on western North
Pacific TC tracks used manual classification into
straight-moving and recurving types (Sandgathe 1987;

TABLE 3. Transition matrix between cyclone clusters: number of occurrences of a TC in a specific cluster (column) given that a TC
in a given cluster occurred (row). Transitions between clusters that are more (less) likely than pure chance at the 95% significance level
are in bold (underlined). Significance at the 99% levels is denoted with an asterisk (*). The statistical significance was determined
following Vautard et al. (1990).

From/to A B C D E F G Sum Mean Std dev

A 103* 70 64 26* 27 5* 11* 306 43.7 36.0
B 71 52 60 44 24 15 14 280 40.0 22.6
C 59 53 54* 21 29 5* 14 235 33.6 21.7
D 35 29 17* 38* 33 16 10 178 25.4 10.9
E 22* 36 25 19 31 23* 20 176 25.1 6.2
F 6* 20 6* 17 16 30* 17* 112 16.0 8.3
G 10* 20 9* 13 15 18* 20* 105 15.0 4.5
Sum 306 280 235 178 175 112 106 1392
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Miller et al. 1988; Harr and Elsberry 1991; Lander
1996), and more recently, K-means cluster analysis
(Elsner and Liu 2003). The latter study analyzed ty-
phoon tracks (excluding tropical storms) based on the
typhoon’s position at maximum intensity and its final
intensity. The three clusters obtained were associated
with straight-moving, recurving, and north-oriented
tracks. Their straight-moving cluster includes not only
South China Sea typhoons (our cluster B), but also
typhoons that are classified in our other straight-
moving clusters, D, F, and G. The landfall region for
their straight-moving cluster includes southern China,
the Philippines, and Vietnam, similar to the result of
pooling all our straight-moving clusters. Their second
cluster is defined as recurving, with landfall predomi-
nantly in Japan and Korea. This region falls within the
landfall area of clusters A and E, keeping in mind that
our study includes more TCs. While our analysis in-
cludes tropical storms, only typhoons are included in
Elsner and Liu (2003). By including tropical storms in
our analysis, our landfall region is probably larger than
if we had considered typhoons only, similarly to Elsner
and Liu (2003). Finally, their third, north-oriented clus-
ter has very few landfalls and could be associated with
our cluster C.

We have also repeated our analysis with tracks of
fixed length, using the middle part of the tracks (5
middle days), and excluding TCs that lasted less than 5
days. The clusters so obtained did not have the same
characteristics as the ones presented here. For instance,
no clear track types—straight or recurving—could be
identified for each of the clusters obtained.

Our model allows all tracks to be included in the
classification, independent of shape, while in Harr and
Elsberry (1991), tropical cyclones classified as “odd”
were excluded from their analysis. Our analysis in-
cludes TCs forming throughout the year, while Harr
and Elsberry (1991) considered only the peak season.
We have repeated our analysis with June–November
TCs only, and although the clusters are qualitatively
similar, the differences in seasonal timing among them
(section 4a) were less clear.

Our model did not identify the north-oriented and
“S”-shaped tracks identified subjectively in Lander
(1996) and found to be associated with a reverse-
oriented monsoon trough. This synoptic configuration
is relatively rare, occurring on average about once per
typhoon season, usually between mid-July and mid-
October. Lander (1996) identified only 35 cases of S
tracks out of 508 TCs (6.9% of the cases). The cluster
methodology is not expected to represent such rela-
tively rare events in terms of mean trajectories, but
rather as stochastic excursions from them. The ty-

phoons cited as north oriented or with an S track in
Lander (1996) are classified using our cluster algorithm
into one of the recurving clusters (A, C, E, and G), with
the exception of typhoon Yunia (1994), which was clas-
sified in cluster B.

Comparison with the synoptic track types identified
subjectively by Lander (1996) serves to emphasize the
probabilistic nature of our model. By identifying rela-
tively broad-brush categories, the intent is to isolate
types of TC behavior that may contain predictability at
the seasonal scale in a probabilistic sense. This aspect is
pursued further in Part II. On this time scale, individual
synoptic events will not be predictable and will thus
need to be treated stochastically.

The regression-model methodology used here none-
theless results in a finer differentiation between track
types compared to other previous studies. With respect
to genesis location, Harr and Elsberry (1991) showed
that TCs with first positions situated north of 20°N, or
east of 150°E and north of 10°N, tend to have recurving
tracks. This is consistent with our recurving clusters A,
C, and E. These three clusters, however, do have dis-
tinguishing characteristics that are useful–such as land-
fall characteristics—but cannot be identified a priori.
Harr and Elsberry (1991) also identified the region
south of 20°N and west of 135°E as more likely to give
rise to straight-moving storms. This region includes our
cluster B genesis locations, with tracks that we also
classify as straight moving. Our straight-moving clusters
D, F, and G, though, have distinct genesis regions.
Therefore, the clustering presented here tends to pro-
vide greater initial-position separation than Harr and
Elsberry’s (1991). Another method that has been used
to classify TCs is based on clustering of anomalous
large-scale circulation patterns and makes use of rela-
tionships between track type and these patterns. Harr
and Elsberry (1995) used a fuzzy cluster analysis (Mo
and Ghil 1987, 1988) in the subspace of leading empiri-
cal orthogonal functions of the 700-hPa wind field. A
posteriori, TCs were then classified according to these
large-scale circulation patterns. Tracks were classified
into four types—straight mover, recurve-south, re-
curve-north, and South China Sea—and tracks not fit-
ting into these four types were discarded. These authors
considered only the June–October seasons of nine yr
(1979–87), resulting in a much smaller number of
tracks—172 as compared to 1393 here. Two of their
large-scale clusters are clearly dominated by straight
movers and recurving-south tracks (see Table 4 in Harr
and Elsberry 1995), two others by recurving-south and
recurving-north TCs, and another by recurve-south
tracks, while the two remaining clusters are not associ-
ated with a dominant track type. The straight tracks
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associated with one of the clusters in Harr and Elsberry
(1995; see their Fig. 8a) are very similar to those in our
cluster D. The tracks associated with two of their other
clusters (their Figs. 8b and 8c), however, could not be
related to our analysis. We will turn to connections
between our TC clusters and large-scale circulation
anomalies in Part II.

b. Conclusions

In Part I of this two-part study, we have examined the
seven clusters obtained by our curve-based mixture
model in terms of distributions of tracks, genesis posi-
tions, intensity and lifetimes, landfalls, seasonality, and
cluster transitions. Any cluster analysis will produce a
set of clusters according to the chosen metric, and an
important task is to demonstrate that the resulting par-
tition is meaningful. Our metric combines track shape
and position, using all recorded 6-hourly latitude–
longitude positions of the TC. Additional properties,
such as intensity, could have been included in the met-
ric, but were left out on purpose, for verification of the
results. By using the entire trajectory, we are able to
include the path between the important positions of
genesis and landfall. Genesis position clearly plays an
important role in the resulting partition. However, gen-
esis location alone cannot be used to determine the
landfalling locations, as there is some overlap of the
genesis location among the clusters. We found that us-
ing only the fixed-length, middle portion of the tracks
yielded poorly defined clusters. Trajectory shape is also
important, as small differences in the shapes lead to
different landfall and impact regions.

Several distinct straight-moving and recurving TC
clusters were identified, refining analyses from previous
studies. The latitudinal tightness of the three straight-
moving clusters B, D, and F is of interest because it
suggests the possibility of fairly sharp landfall predic-
tions for these clusters. The recurving clusters clearly
exhibit more spread. This is physically plausible be-
cause of the much larger intrinsic variability of the mid-
latitude atmosphere into which recurvers penetrate.

The model partition according to position and shape
lead also to high differentiation in storm intensity and
seasonally between the clusters. Since neither informa-
tion was available to the clustering algorithm, this is
good evidence that the resulting partition is meaning-
ful. The statistics of intensity of different clusters could
be potentially useful in forecasts. Once a tropical cy-
clone is identified as belonging to one of the clusters,
the historical information on the probabilities of certain
intensity (i.e., major tropical cyclone) can be used as a
guidance to forecasts.

We have argued that the seven clusters are supported

by the data, and more evidence of this is presented in
Part II, where the accompanying large-scale circulation
patterns and the relationship with ENSO are investi-
gated. The analysis yields a differentiated picture of
landfall probabilities in terms of distinct trajectory
types. If this picture is robust, it could yield new pre-
dictors for landfall, several days in advance. The poten-
tial advantage of this approach is that we have not
keyed the analysis to landfall at a particular location,
instead we analyzed the whole western North Pacific
simultaneously, so that cyclones with highly variable
trajectories can be treated consistently. Since the indi-
vidual clusters have distinct regional landfall probabil-
ity distributions, the methodology could form the basis
for improved landfall risk maps and probabilistic sea-
sonal forecasts of TC risk.
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APPENDIX

Clustering Trajectories Using Mixtures of
Regression Models

Let zi be an ni � 2 matrix of latitude and longitude
measurements for TC track i and let ti be an ni � 1
vector of corresponding discrete time indices {0, 1, . . . ,
ni � 1}.

We model both longitude and latitude with a poly-
nomial regression model of order p (where p � 2 for
results in this paper), with time ti as the independent
variable. Under the assumption that TC track i was
generated by cluster k we have

zi � Ti�k � �i, �i � N�0, �k	. �A1	

Here Ti is the ni � (p � 1) Vandermonde regression
matrix associated with the vector ti, defined as (p � 1)
columns corresponding to ti such that the components
of ti in the mth column are taken to the power of m for
0 � m � p. Here, 
k is a (p � 1) � 2 matrix of regres-
sion coefficients for cluster k, containing the longitude
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coefficients in the first column and the latitude coeffi-
cients in the second column; and �i is an ni � 2 matrix
of multivariate Gaussian noise, with zero mean and a
2 � 2 covariance matrix �k. The covariance matrix �k

contains diagonal elements �2
k1 and �2

k2, which are the

noise variances for each longitude and latitude obser-
vation, respectively. The cross covariance is set to 0 for
simplicity.

The conditional density for the ith cyclone, conditioned
on membership in the kth cluster, is thus defined as

p�zi|ti, �k	 � f�zi|Ti�k, �k	 � �2�	�ni|�k|�ni�2 exp��
1
2

tr�zi � Ti�k	�k
�1�zi � Ti�k		��, �A2	

where �k � {
k, �k}.
This results in the following unconditional (uncondi-

tional on k) regression mixture model with K clusters:

p�zi|ti, 
	 � �
k

K

�kpk�zi|ti, �k	 � �
k

K

�k fk�zi|Ti�k, �k	,

�A3	

where �k is the probability of a randomly selected TC
track belonging to cluster k (and �k �k � 1) and �
represents the overall set of mixture parameters (
k,
�k, and �k; 1 � k � K).

If we let Z � {z1, . . . , zn} be the complete set of n
cyclone trajectories and T � {t1, . . . , tn} be the set of
associated measurement times, then the full probability
density of Z given T, also known as the conditional
likelihood, is

p�Z|T, 
	 � �
i

n

�
k

K

�k fk�zi|Ti�k, �k	. �A4	

Clustering is performed by maximizing this likeli-
hood expression to find estimates of the parameters �
given data. The EM algorithm (described below) pro-
vides an iterative algorithm for finding local (not nec-
essarily global) maxima of the likelihood. Given a
learned model one can then infer for each TC track
which of the K models it is most likely to be associated
with.

Let N � �n
i ni, let Y be the N � 2 concatenated matrix

(y�1, . . . , y�n)�, and let X be the N � (p � 1) concatenated
matrix (X�1, . . . , X�n)� of regression matrices. In the E
step, we calculate the membership probability,

wik �
�k fk�zi|Ti�k, �k	

�j
K�j fj�zi|Ti�j, �j	

, �A5	

that trajectory i was generated from cluster k. Note
that wik is equal to the ratio of the likelihood of trajec-
tory i under cluster k, to the total likelihood of trajec-
tory i under all clusters. Let wik � wik Ini, where Ini is
an ni vector of ones. Let Wk � diag(w�1k, . . . , w�nk) be an

N � N diagonal matrix. In the M step we use Wk to
calculate the mixture parameters

�̂k � �X�WkX	�1X�WkY, �A6	

�̂k �
�Y � X�̂k	�Wk�Y � X�̂k	

�
i

n

wik

, �A7	

and

�̂k �
1
n �

i

n

wik.

These updated equations are equivalent to the well-
known weighted least squares solution in regression
(Draper and Smith 1981). The diagonal elements of Wk

represent the weights to be applied to Y and X during
the weighted regression.

The EM algorithm iterates through pairs of E and M
steps until convergence. For the results in this paper the
algorithm was initialized by randomly selecting a set of
membership weights Wk and then executing an M step.
Convergence was detected when the ratio of the incre-
mental change in log-likelihood of the current iteration
to the change from the second iteration drops below a
threshold of 10�8. To avoid poor local maxima in pa-
rameter space the highest likelihood solution obtained
from 10 starts of EM was chosen, where for each run
the algorithm was started with a different randomly
selected set of membership weights Wk.
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