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ABSTRACT

Dynamical seasonal forecasts of tropical storm frequency require robust and efficient algorithms for detection
and tracking of tropical storms in atmospheric general circulation models (AGCMs). Tropical storms are generally
detected when dynamic and thermodynamic variables meet specified criteria. Here, it is shown that objectively
defined model- and basin-dependent detection criteria improve simulations of tropical storm climatology and
interannual variability in low-resolution AGCMs. An improved tracking method provides more realistic tracking
and accurate counting of storms.

1. Introduction

The impact of hurricanes, typhoons, and tropical cy-
clones on society gives considerable importance to the
problem of forecasting seasonal tropical cyclone fre-
quency. Routine seasonal forecasts of tropical storm fre-
quency in the Atlantic sector are produced using statis-
tical methods by Colorado State University (Gray et al.
1993, 1994; Landsea et al. 1994), the Climate Prediction
Center of the National Oceanic and Atmospheric Ad-
ministration (CPC 2002), and the University College of
London (UCL 2002). Statistical seasonal forecasts are
also issued for the Australian sector and the western
North Pacific (Nicholls 1992; Chan et al. 1998). Dy-
namical forecasting of seasonal hurricane activity using
climate models is another promising approach (Bengts-
son 2001). Dynamical forecasts of seasonal tropical
storm activity are currently produced at the European
Centre for Medium-Range Weather Forecasts
(ECMWF) based on coupled ocean–atmosphere models
(Vitart and Stockdale 2001).

Seasonal prediction of large-scale variables known to
affect tropical storm activity is one approach to fore-
casting tropical storm frequency (Ryan et al. 1992; Wat-
terson et al. 1995; Thorncroft and Pytharoulis 2001).
Another method, the subject of this work, is based on
the detection of tropical storm and cyclone-like struc-
tures in low-resolution atmospheric general circulation
models (AGCMs) and coupled ocean–atmospheric mod-
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els (Manabe et al. 1970; Bengtsson et al. 1982; Krish-
namurti 1988; Krishnamurti et al. 1989; Broccoli and
Manabe 1990; Wu and Lau 1992; Haarsma et al. 1993;
Bengtsson et al. 1995; Tsutsui and Kasahara 1996; Vitart
et al. 1997; Vitart and Stockdale 2001). Some aspects
of these model tropical storms, such as their geograph-
ical and temporal distributions, have been found to be
similar to observed tropical storms. However, the in-
tensity of model tropical storms is weaker, and their
spatial scale is larger than observed because of low
model resolution (Bengtsson et al. 1982; Vitart et al.
1997).

A fundamental issue is how well tropical storms in
AGCM simulations exhibit realistic climatological be-
havior (‘‘climatology’’) and interannual variability.
Methods for objective detection and tracking of model
tropical storms in AGCMs are necessary to investigate
this issue. Various tropical storm detection and tracking
methods are reviewed in Vitart (1998). These methods
monitor when chosen dynamical and thermodynamical
variables exceed thresholds determined from observed
tropical storm climatologies. Previous studies (Bengts-
son et al. 1982; Vitart et al. 1997) used a set of threshold
criteria globally. Threshold criteria taken from obser-
vational climatological values do not account for model
biases and deficiencies. Here, we demonstrate that use
of basin- and model-dependent threshold criteria im-
proves the climatology and interannual statistics of mod-
el tropical cyclones.

Tracks of tropical storms in AGCMs are usually made
by connecting nearby locations that satisfy the model
storm detection criteria. Model tropical storms are then
defined as those tracks that are longer than some fixed
time interval, in most cases 1.5–2.0 days (Bengtsson et
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al. 1995; Vitart et al. 1997). Tracks defined in this man-
ner are shorter than observed storm tracks, because de-
spite the obvious presence of a maximum in the low-
level vorticity and a minimum in the sea level pressure
in the model output, it may not consistently satisfy all
of the criteria throughout its lifetime. Such unrealistic
tropical storm tracks make landfall studies difficult.
Here we introduce a new tracking algorithm that extends
tracks of detected storms forward and backward in time
using relaxed threshold criteria. A similar idea of re-
laxing the thresholds for the tracking has been used in
a regional climate model for the South Pacific (Nguyen
and Walsh 2001). This method allows the identification
of the formation and decay stages of model tropical
storms, information useful for studying cyclogenesis
(Camargo and Sobel 2002). Similar algorithms for
tracking synoptic features in AGCMs have been pre-
viously developed for extratropical cyclones where cy-
clone activity is associated with strong variations in the
pressure field (Williamson 1981; Treut and Kalnay
1990; Murray and Simmonds 1991; Hodges 1994; Zo-
lina and Gulev 2002).

The new detection and tracking algorithms have been
tested with several different AGCMs and found to im-
prove the climatology and interannual variability when
compared with previous approaches. The algorithms
were also applied to the ECMWF reanalysis dataset
ERA-15 (Gibson et al. 1997; Serrano 1997) with similar
results.

We begin our discussion in section 2 with the joint
statistics of tropical-cyclone-related variables. In section
3 we present the basin- and model-dependent criteria
for storm detection and their application to the German
T42 ECHAM4.5 model (Roeckner et al. 1996). Section
4 discusses the new tracking method. Conclusions are
given in section 5. Details of the algorithms are found
in the appendixes.

2. Joint statistics of tropical-cyclone-related
variables

In the tropical storm detection methods of Vitart et
al. (1997) and Bengtsson et al. (1995), tropical storms
are identified by first requiring that the 850-hPa relative
vorticity; the 10-m wind speed; the temperature at 850,
700, 500, and 300 hPa; and the sea level pressure si-
multaneously satisfy a set of treshold criteria. Then near-
by points are connected and classified as a tropical storm
when they span at least 2 days. Criteria details are given
in appendix A.

A basin-independent version of this algorithm using
the threshold values (basin-independent thresholds)
from Vitart et al. (1997) and Bengtsson et al. (1995)
was applied to an ensemble of 12 integrations of the
ECHAM4.5 AGCM at T42 resolution forced with ob-
served monthly mean sea surface temperatures for the
period 1979–95 Atmospheric Model Intercomparison
Project II (AMIP II 1997) This resolution is used at the

International Research Institute for Climate Prediction
(IRI) for routine seasonal forecasts (Mason et al. 1999;
Goddard et al. 2001).

Seven ocean basins were considered following pre-
vious studies and are shown in Fig. 1. In basins such
as the Atlantic and the eastern Pacific, the detection
algorithm using basin-independent thresholds does not
detect tropical storms that by subjective visual inspec-
tion are evident in different model fields. Visually, these
tropical storms appear as extrema in the low-level vor-
ticity, a minimum in surface pressure, a cyclonic cir-
culation in the low-level winds, and a maximum of
anomalous temperature throughout the troposphere.
Therefore, basin-dependent threshold criteria are a rea-
sonable approach to improving detection algorithms.
Also, differences in model behavior mean that thresh-
olds appropriate for one model are not useful for another
model, and so threshold criteria should be model de-
pendent.

To obtain robust methods of estimating basin- and
model-dependent thresholds we begin by looking at sta-
tistical properties of the dynamic and thermodynamic var-
iables used in the detection criteria. Since we require that
the criteria be satisfied simultaneously we look at joint
probability distribution functions (PDFs). Much of the
relevant information can be seen in joint PDFs of low-
level vorticity/vertically integrated anomalous tempera-
ture and low-level vorticity/surface wind speed. The ver-
tically integrated anomalous temperature is defined using
three pressure levels throughout the troposphere (see ap-
pendix B for definition). The detailed procedure used to
calculate the PDFs is also described in appendix B.

In Fig. 2 the joint PDF for the low-level vorticity/
vertically integrated anomalous temperature is shown
for the western North Pacific and Atlantic basins based
on the ECHAM4.5 model. In Fig. 3 the PDF for the
low-level vorticity and the vertically integrated anom-
alous temperature (Fig. 3a) and surface wind speed (Fig.
3b), respectively, in the western North Pacific basin us-
ing ECMWF ERA-15 reanalysis results are given.

The low-level vorticity and vertically integrated
anomalous temperature and surface wind speed are nor-
malized in each joint PDF by the corresponding standard
deviation in that ocean basin as shown in the PDFs in
Figs. 2 and 3. The core portions of these four distri-
butions are quite different. Tropical cyclones correspond
to extreme values of all three of our classifying variables
and, therefore, occupy a small region on the periphery
of the PDF domain. In the joint PDF vorticity/temper-
ature, the tropical cyclones occur for large values of
vorticity and positive vertically integrated temperature
anomalies. At higher values of vorticity, the joint PDF
distribution is such that larger values of the temperature
anomalies are expected. In a similar way, the joint PDF
vorticity/wind speed distribution features higher vortic-
ity together with higher wind speed. Tropical cyclones
have all these characteristics: high vorticity, wind speed,
and positive temperature anomalies; so potentially they
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FIG. 1. Definition and location of the basin domains used in this study: north Indian (NI), western North
Pacific (WNP), eastern North Pacific (ENP), Atlantic (ATL), south Indian (SI), Australian (AUS), and South
Pacific (SP).

can be well represented by appropriate tails of these
PDFs. The PDFs are normalized by the total number of
storms, so they represent a relative frequency of storms
in each basin. The tails of the two distributions in nor-
malized variables in Figs. 2 and 3 are sufficiently similar
that it seems reasonable to use a single criterion defined
in terms of the normalized variables. Therefore, the idea
is to choose threshold criteria so that events in the dis-
tribution tails are selected. The PDFs show that model-
and basin-dependent criteria are necessary to accom-
plish this.

Figure 2 shows that the ECHAM4.5 model has very
different characteristics in the two basins shown. In the
western North Pacific (Fig. 2a) the distribution has a
larger spread, with higher peak values of the vorticity,
such that with a common threshold would not select the
tail of both distributions. We applied the same analysis
to two other AGCMs [ECHAM3 (Model User Support
Group 1992) and National Aeronautics and Space Ad-
ministration’s (NASA) Seasonal to Interannual Predic-
tion Project (NSIPP) model (Suarez and Takacs 1995)]
(not shown) and to the ECMWF reanalysis (Fig. 3), and
all the PDFs obtained have similar qualitative features
in the models and in the reanalysis. However, the nu-
merical characteristics of the PDFs such as mean, stan-
dard deviation, and maximum location are basin and
model dependent. This suggests defining the detection
criteria in relative terms rather than absolute terms.

Serrano (1997) and Walsh (1997) analyzed the rep-
resentation of tropical cyclones in high resolution using
the ERA-15 reanalysis and ECMWF analysis, respec-
tively. The resolution was an important factor in how
well the analysis represented tropical cyclones (Serrano
1997) and even with a resolution of 1.2358 the maximum
surface wind speeds of analysis tropical cyclones were
much lower than observed. Understandably, with a res-
olution of 2.58, the tropical cyclones represented in the
ERA-15 reanalysis have even lower surface wind speed
and only a handful reach the observational minimum
surface wind speed for a hurricane of 17 m s21, which

corresponds to 6.5y/sy in Fig. 3b, mainly due to the
low resolution of the reanalysis data used.

3. Detection algorithm

Our detection algorithm, described in appendix A,
applies basin-dependent threshold criteria to three var-
iables: low-level vorticity, surface wind speed, and ver-
tically integrated temperature anomaly. The basin-de-
pendent thresholds should reflect the different statistical
characteristics of each variable and model. However,
here we emphasize their basin dependency since the
results of a single model are described in this paper.

For each of the detection variables, thresholds of the
form as 1 b were defined, where a and b are constants
independent of the basin, chosen to provide consistency
on average with fixed thresholds introduced in prior
studies. The standard deviation s of each of these three
variables is model and basin dependent. This choice of
threshold allows us to have thresholds defined from a
single variable s in a form that is consistent with ob-
served and previous studies results, but taking into ac-
count the differing basin and model statistics.

The vorticity threshold in each basin jmin is defined
as jmin 5 2sj, that is, twice the vorticity standard de-
viation sj in each basin. The vertically integrated anom-
alous temperature standard deviation sT was calculated
only for systems with a warm core, by analogy to the
PDFs in appendix B. The basin-dependent threshold for
the vertically integrated anomalous temperature Tmin is
chosen to be the basin standard deviation, sT. Last, in
the case of the surface wind speed basin-dependent
threshold ymin, first the oceanic global wind speed ygl

was calculated—the average wind speed over all the
ocean basins, as defined above. Then, using both the
wind speed standard deviation in each basin sy and the
global average oceanic wind speed ygl , the wind speed
basin-dependent threshold was defined as ymin 5 ygl 1
sy . Threshold values obtained this way are shown in
Table 1 together with the basin-independent values used
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FIG. 2. Joint PDF of the vorticity j and vertically integrated tem-
perature anomaly T for (a) the western North Pacific and (b) the
Atlantic basins of the ECHAM4.5 model. In (a) and (b) the contour
interval is 2 3 1024. The variables are normalized by their respective
standard deviation s. The sj values are, respectively, 1.8 and 1.3,
and the sT values are 1.9 and 1.9 in the western North Pacific and
Atlantic basins.

FIG. 3. Joint PDF of the vorticity j and (a) vertically integrated
temperature anomaly T and (b) wind speed y for the western North
Pacific using the ECMWF reanalysis (ERA-15). In (a) and (b) the
contour interval is 2 3 1024. The variables are normalized by their
respective standard deviation s. The sj, sT, and sy values are, re-
spectively, 1.3, 2.0, and 2.6 in the western North Pacific basin.

TABLE 1. Basin-independent (BInd) and basin-dependent ECHAM4.5 thresholds for vorticity, surface wind speed, and vertically
integrated temperature anomaly for each of the ocean basins.

BInd SI AUS SP NI WNP ENP ATL

j 3 1025

y
T

3.5
15

3

3.0
11.4

2.1

3.0
11.8

2.0

3.0
11.2

2.1

3.0
12
1.7

3.6
11.8

1.9

2.6
10.4

1.9

2.6
10.4

1.9

in our initial study. We note, for instance, that the thresh-
olds are lower in the Atlantic. These parameter choices
were made based on the joint PDFs’ statistical prop-
erties. The basin-dependent threshold values so chosen
are not very different from the basin-independent ones
initially used, which were based on observational values

and previous studies (Bengtsson et al. 1995; Vitart et
al. 1997), but at the same time they reflect the different
properties of the ocean basins in the model. In appendix
C, the basin-dependent thresholds obtained for different
models and the ECMWF reanalysis are given. The ba-
sin-dependent thresholds values do not differ much



1156 VOLUME 17W E A T H E R A N D F O R E C A S T I N G

FIG. 4. Ensemble mean number of storms per year detected using
basin-independent thresholds (V), the basin-dependent thresholds
(3), and observations (*) for (a) the Atlantic and (b) the Australian
basins.

among the models. It is interesting to note the impact
of using daily average fields versus 6-hourly snapshots
in at least one model. This will be discussed further in
a future publication.

In Fig. 4 the effect of changing the thresholds from
basin-independent to basin-dependent thresholds is
shown for the ensemble mean number of storms in the
Atlantic and Australian basins. In both cases, the en-
semble mean number of storms increases for all years.
The four regions in which the basin-dependent algo-
rithm improves the detection significantly, considering
all years and ensemble members, are the Atlantic (88%),
eastern Pacific (96%), south Indian (79%), and Austra-
lian (63%). The percentages were calculated using the
total number of storms per year in all years and ensemble
members. In these basins, the average number of storms

becomes closer to observed, although the model bias is
not completely corrected. The improvement of the fre-
quency of storms occurred in all the AGCMs analyzed,
as the basin-dependent thresholds are also model de-
pendent. Therefore, the detection algorithm managed to
obtain better results from AGCMs taking into account
the biases of each model.

With the exception of the western North Pacific, the
basin-dependent thresholds produce better results than
the absolute thresholds. It is important to note that we
were especially concerned with the basins such as the
Atlantic and eastern North Pacific where few or no
storms were being detected, and in these cases, there is
good improvement, but the detection method does not
produce frequencies near the observed ones. This is not
unexpected, because this method does not attempt to
determine whether the model is under- or oversimulating
storm formation in each basin.

The counting of the tropical storms can be further
improved. The present algorithm counts twice a storm
that weakens and strengthens again later. This problem
especially affects the storm counting in the western
North Pacific because of the large number of typhoons
per year. In the next section we describe a tracking
algorithm that is able to count correctly storms that
weaken and strengthen again. How the interannual var-
iability of the number of storms is affected by the basin-
dependent and tracking algorithms is discussed in the
next section.

4. Tracking

The procedure described in appendix A detects storms
that satisfy all our criteria and connects them from one
model output time to the next when they are sufficiently
close, forming a storm track that can be compared to
observed storm tracks. However, the tracks obtained by
this procedure are usually quite short. Visual exami-
nation of the corresponding vorticity fields shows that
the storm structure is visible well before and after the
detection criteria are met, suggesting that relaxing de-
tection criteria would produce longer tracks. However,
if the detection criteria are simply relaxed uniformly,
spurious detections will occur. To avoid spurious de-
tections we only apply the relaxed criteria to points near
those that have already met our detection criteria.

We take the first position and time at which the storm
meets the detection criteria and then use the low-level
vorticity field to track the storm backward and forward
in time. First, the vorticity in a 5 3 5 gridpoint box is
examined around the first position defined previously
(based on the minimum sea level pressure). We refer to
this box as a vorticity matrix. The location of the max-
imum value of the vorticity magnitude is found in that
matrix and a new vorticity matrix is formed, now of
size 3 3 3 grid points around the location of the max-
imum. The centroid of this new vorticity matrix is then
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FIG. 5. Tracks of a storm in the (a) Atlantic and (b) western
North Pacific using the new tracking (*) routine and the previous
one (V).

FIG. 6. Tracks of all tropical storms in the western North Pacific
during the Jun–Oct 1991 typhoon season for (a) one of the ensemble
members using the new tracking routine and (b) observed tropical
cyclones.

calculated and defined as the initial storm center for that
storm.

Using this initial storm center, the storm is then
tracked backward and forward in time as follows:

• The grid point nearest the centroid center is obtained.
• A vorticity matrix (3 3 3 grid points) is formed in

the next time step around the grid point nearest the
centroid center from the previous time step.

• The maximum value of the vorticity magnitude is
found in this vorticity matrix and a new vorticity ma-
trix (3 3 3 grid points) is defined around it.

• The position and value of the vorticity centroid of the
next time step is calculated in this new vorticity ma-
trix.

• If the absolute value of the vorticity at the centroid
at the next time step is larger than the threshold (1.5
3 1025 1 s21), this procedure is repeated. This value
was chosen based on trial and error in order to opti-
mize the tracking detection of the model, by looking
at the tracks produced using different thresholds and
the structures present in the low-level vorticity in the
model output field.

This procedure is performed for all storms obtained
using the detection algorithm. Then, the tracks obtained
are compared and if they are the same, the two storms
are counted as a single one. This procedure improves

the tracks of the storms, which are now longer and
smoother. The quality of the new tracks has definitely
improved toward typical observed tracks. The compar-
ison of the original tracks and the new tracks of one
storm in the Atlantic and one in the western North Pa-
cific are shown in Fig. 5. By examining the historical
observed tracks of tropical cyclones (see, e.g., Unisys
2002) and comparing them with the model tracks, one
finds tropical cyclones with paths similar to model
tracks.

Figure 6a shows all the tropical storms in the western
North Pacific in one season (June–October, JJASO) for
one of the ensemble members. By comparing these
tracks with observed tracks in the typhoon season of
the same year, shown in Fig. 6b, one sees that though
the tracking algorithm improves the original tracks,
model biases are not corrected. For example, in the west-
ern North Pacific the model tends to form too many
storms in the central Pacific and too few in the South
China Sea, as compared with observed tracks. Addi-
tionally, in the northwest basins of the Atlantic and in
the Pacific, model tracks do not reach poleward latitudes
as observed and most model tracks do not have the
typical observed characteristic curvature near the con-
tinents. These model track biases would need to be cor-
rected for application to landfall studies.

The counting of the storms is improved since storms
that were counted twice or thrice are now correctly
counted as a single storm. The tracking algorithm is
then essential for a physically correct counting of the
storms. The procedure additionally makes the counting
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TABLE 2. Ensemble average (12 members) number of storms in 17
yr (1979–95) using the basin-independent thresholds, the basin-de-
pendent thresholds with the new tracking algorithm, and observed
values.

Type SI AUS SP NI WNP ENP ATL

Basin independent
Basin and tracking
Observed

6.0
7.8

12.5

5.4
6.0
9.2

4.1
4.6
6.1

12.7
7.5
4.9

30.1
29.4
27.7

1.0
3.3

17.5

1.5
3.1
9.3

FIG. 7. Annual cycle of tropical storms in the (a) Atlantic and (b)
South Pacific using the basin-dependent thresholds with the new
tracking routine (3) and the basin-independent thresholds with the
previous tracking method (V). The observed annual cycle (*) is also
shown.

TABLE 3. Correlation of the observed number of tropical storms with the ensemble average number of storms using the basin-independent
thresholds and the new thresholds with the new tracking algorithm. Boldface correlation values are significant at 95% confidence level.

Type SI AUS SP NI WNP ENP ATL

Basin independent
Basin and tracking

0.058
20.162

0.726
0.722

0.265
0.177

20.318
20.241

0.162
0.222

0.402
0.554

0.640
0.605

of the number of storms more reliable. Both cases shown
in Fig. 5 were counted initially as more than one storm,
but using the tracking algorithm on these storms led us
to count each of them correctly as one single storm. The
effect of the tracking algorithm on the counting is es-
pecially important in the western North Pacific because
of the high number of storms occuring in that basin. Table
2 shows the average number of storms in each basin
initially and after applying the detection and tracking
algorithms. The average number of storms becomes more
similar to the observed number in all basins in the latter
case. The climatology of the storms in the different basins
is improved using both the new thresholds and the new
tracking procedure, as can be seen in Fig. 7, which shows
the annual cycle for the model ensemble members in the
South Pacific and in the Atlantic, using the previous
methodology and the one described here.

The interannual variability of the number of storms
is affected both by using the basin-dependent thresholds
and the tracking algorithm. Tables 3 and 4 show the
correlations and the root-mean-square errors of the num-
ber of tropical storms using the basin-independent
thresholds and the basin-dependent thresholds with the
tracking algorithm in comparison with observations.
The changes in the correlations are not significant, ac-
cording to the Fisher test. However, before applying our
basin-dependent and tracking algorithms, only two
(Australian and Atlantic basins) out of seven basins have
significant correlations (95% confidence level); these
basins continue to have significant correlations and an
additional one (eastern North Pacific) has a significant
correlation. Therefore, using correlation as our measure,
the interannual variability is improved in one basin and
remains significant in the other two.

Using the root-mean-square error to look at the in-
terannual variability, only in the south Indian and South
Pacific basins is the root-mean-square error larger after
applying both the basin-dependent and tracking algo-
rithm than it had been originally; in the other five basins
there is an improvement in the value of the root-mean-

square error. In the two basins where the root-mean-
square error is larger than when using basin-dependent
thresholds, the correlations of the number of observed
and ensemble mean number of storms are not signifi-
cant. In summary, by using the detection and tracking
algorithm there is a slight improvement in the inter-
annual variability of the model globally.
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TABLE 4. Root-mean-square error between the observed number of
tropical storms and the ensemble average number of storms using
the basin-independent thresholds and the basin-dependent thresholds
with the new tracking algorithm.

Type SI AUS SP NI WNP ENP ATL

Basin independent
Basin and tracking

2.62
2.84

2.92
2.87

3.07
3.23

3.32
2.77

5.57
4.76

4.09
3.81

3.21
3.05

Similar results were obtained when applying the
tracking algorithm to other AGCMs. This tracking al-
gorithm was also used successfully for tropical cyclones
in the Indian Ocean generated by a regional model (the
Regional Climate Model, version 2; RegCM2; Giorgi
et al. 1993) using different boundary domains (Land-
mann et al. 2002).

In the case of the ECMWF reanalysis, the climatology
of the number of storms is improved by using the de-
tection and tracking algorithms, and the mean number
of storms is improved in all basins. It is important to
note that the ECMWF does not include ‘‘bogus obser-
vations’’ of observed tropical cyclones, which are wide-
ly used in several other analyses products (see Walsh
1997 and references therein).

The impact of the detection and tracking schemes on
the interannual variability of number of storms in the
ECMWF reanalysis was analyzed using correlations and
the root-mean-square error in comparison with the ob-
served number of storms. The root-mean-square error
diminishes in all the ocean basins. Changes of the cor-
relation values were significant in only one ocean basin
and in this case the correlation became significant. The
interannual variability of the number of storms in the
ECMWF reanalysis then improved by applying the al-
gorithms described here.

5. Conclusions

Algorithms for detection and tracking of tropical cy-
clones in AGCMs were presented and applied to an
ensemble of AGCM simulations. These algorithms use
basin-dependent statistics to define detection criteria
thresholds and a centroid vorticity calculation to track
the cyclone in time. The usage of these algorithms on
average improves both the climatology and the tracks
of tropical cyclones and therefore improves the possible
use of AGCMs in forecasting seasonal cyclone fre-
quency. Significant biases still remain and need to be
addressed through increased resolution and changes in
model physics. Although this work has presented results
from a single model, the algorithms have been applied
successfully to several AGCMs.

Seasonal forecasts of tropical storm frequencies based
on the application of these detection and tracking al-
gorithms applied to AGCM forecasts are presently being
evaluated and will be reported on in future work.
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APPENDIX A

Detection Algorithm

1) The 850-hPa relative vorticity exceeds the vorticity
threshold. In the Southern Hemisphere a negative
threshold is used.

2) The maximum surface wind speed in a centered 7
3 7 box exceeds the wind speed threshold.

3) The sea level pressure is the minimum in a centered
7 3 7 box.

4) The temperature anomaly averaged over the 7 3 7
box and three pressure levels (300, 500, and 700
hPa) exceeds the temperature anomaly threshold.

5) The local temperature anomaly averaged over the 7
3 7 box is positive at all three pressure levels (300,
500, and 700 hPa).

6) The local temperature anomaly, averaged over the 7
3 7 box, at 300 hPa is greater than at 850 hPa.

7) The mean speed averaged over a 7 3 7 grid box is
larger at 850 hPa than at 300 hPa.

8) The grid points representing the center of storms that
obeyed all the criteria above are connected if they
are less than a certain distance from the center of
the previous time step analyzed.A1 This distance is
defined by the frequency of the output of the model.
For 6-hourly outputs, we use two grid points (5.68)
in longitude and/or latitude, while for daily output,
three grid points is the maximum distance (8.58) pos-
sible.A2

9) If the storm lasts at least 2 days (1.5 in the case of
6-hourly output), it is identified as a model tropical
storm.

APPENDIX B

Construction of the PDFs

The PDFs and statistical properties of the chosen var-
iables (vorticity, surface wind speed, and vertically in-

A1 All the grid points that obey the previous criteria are connected
as one storm. This part of the algorithm does not distinguish among
several possibilities for tropical tracks; this is done in the tracking
algorithm described in section 4.

A2 This maximum distance is only used in the detection algorithm;
this restriction in not used in the tracking algorithm described in
section 3. None of the many storms in the models we analyzed cov-
ered a distance longer than that. However, this is possible for observed
tropical cyclones in the Atlantic and eastern Pacific, such as happened
with Hurricane Floyd in 1999.
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TABLE C1. Time periods and type of output used in the models and reanalysis.

Model Period Output Name

ECHAM4.5
ECHAM4.5
ECHAM4.5
ECHAM3
NSIPP
ECMWF reanalysis

1979–95
1950–2000
1950–2000
1949–2000
1961–2000
1979–93

Daily snapshots
Daily averages
Six-hourly snapshots
Six-hourly snapshots
Daily snapshots
Six-hourly snapshots

ECHAM4.5
ECHAM4.5DA
ECHAM4.5SH
ECHAM3
NSIPP
ECMWF

tegrated anomalous temperature) are calculated in each
basin using only the values during the tropical cyclone
peak season of that basin: June–October for the western
North Pacific, eastern North Pacific, and Atlantic; De-
cember–April for south Indian Ocean, Australian basin,
and South Pacific Ocean; and May, June, September,
October, and November for the north Indian Ocean. The
points must satisfy criteria 3, 5, and 6. The PDFs were
obtained with the following procedure:

• Calculate the daily vertically integrated temperature,
the sum of the temperature at 700, 500, and 300 hPa
in each grid point.

• A local average daily vertically integrated temperature
is calculated in a square, 7 3 7 grid points, centered
at the grid point of interest.

• The anomalous vertically integrated daily temperature
in the grid point at the center of the square is calculated
as the difference between the daily vertically inte-
grated temperature in that grid point and the local
average daily verticaly integrated temperature around
it.

• The anomalous daily temperature for the levels 850,
700, 500, and 300 hPa is calculated, by analogy to
the anomalous vertically integrated temperature.

• The difference of the temperature anomalies at 850
and 300 hPa is calculated. The temperature anomaly
at 850 hPa has to be positive and smaller than the
temperature anomaly at 300 hPa.

• The signs of the temperature anomalies at 700, 500,
and 300 hPa are compared.

• In order to be defined as having a warm core, two
different criteria must be satisfied: the sign of the tem-
perature anomalies in all three levels (700, 500, and
300 hPa) must be the same, and the temperature anom-
aly at 850 hPa must be smaller than at 300 hPa. If
these two criteria are not satisfied, that grid point is
excluded from our temperature anomaly statistics of
the probability distribution functions and from the
temperature anomalies statistics.

• The average and the standard deviation of the vorticity
at 850 hPa, surface winds, and vertically integrated
temperature (only at the grid points not excluded by
the previous criterion) are calculated for the time pe-
riod of the integration (1979–95) using the 13 ensem-
ble members in each of the ocean basins.

• The sea level pressure value is then examined in a
box of 7 3 7 grid points around the grid point that
passed all previous criteria. If this grid point is also

a local minimum of sea level pressure, it is used to
construct our PDFs.

• We calculated one PDF for each ocean basin using
the selected grid points of the vertically integrated
temperature anomaly, low-level vorticity, and sur-
face wind speed. This is done for each of the basins,
using all the years of the integration and all the
ensemble members to construct the basin-dependent
PDFs.

• The vorticity at 850 hPa is then examined for the
grid points that satisfy the warm core criteria and
the vorticity value is binned in previously chosen
vorticity values. If the vorticity value is in one of
the bins of vorticity values chosen, the sea level
pressure value is examined in a box of 7 3 7 grid
points around it. In case this is a local minimum of
the sea level pressure, the values of the vertically
integrated temperature anomaly and of the surface
wind speed in that box are also examined and a
probability distribution function is constructed for
all the basins.

APPENDIX C

Basin-Dependent Thresholds in Different AGCMs

We applied the detection and tracking algorithms de-
scribed in this paper in different AGCMs and the
ECMWF reanalysis (Gibson et al. 1997). Besides the
integration of the ECHAM4.5 model described, two oth-
er integrations of the ECHAM4.5 model were analyzed.
Thresholds for a previous version of this model,
ECHAM3 (Model User Support Group 1992), are also
shown, as well as for the NSIPP (Suarez and Takacs
1995) model. The time periods and types of output are
given in Table C1, together with the name used here to
distinguish among the different ECHAM4.5 integra-
tions.

Different basin-dependent thresholds were obtained
in each model, as shown in Table C2. The model with
the highest thresholds values for the surface wind speed
was NSIPP, while the vorticity low-level thresholds
were very similar to the other models. The temperature
thresholds were the ones that differed the least among
the models. It is interesting to note that the ECMWF
reanalysis thresholds do not differ much from those of
the other AGCMs.
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TABLE C2. Basin-dependent thresholds of different AGCMs and ECMWF reanalysis.

Model Variable SI AUS SP NI WNP ENP ATL

ECHAM4.5
ECHAM4.5
ECHAM4.5

j 5 1025

y
T

3.0
11.4

2.1

3.0
11.8

2.0

3.0
11.2

2.1

3.0
12
1.7

3.6
11.8

1.9

2.6
10.4

1.9

2.6
10.4

1.9
ECHAM4.5DA
ECHAM4.5DA
ECHAM4.5DA

j 3 1025

y
T

2.8
11.4

1.9

3.0
11.8

1.8

2.8
11.2

1.9

3.0
12
1.4

3.4
11.8

1.8

2.4
10.4

1.8

2.4
10.4

1.8
ECHAM4.5SH
ECHAM4.5SH
ECHAM4.5SH

j 3 1025

y
T

2.8
11.6

2.0

3.0
12
2.0

3.0
11.4

2.1

3.0
12.2

1.5

3.4
1
1.9

2.6
10.6

1.9

2.6
10.6

1.9
ECHAM3
ECHAM3
ECHAM3

j 3 1025

y
T

2.6
10.6

2.1

2.6
10.6

2.1

2.2
9.8
1.8

2.4
10.0

1.7

2.8
10.4

1.8

2.2
9.4
2.2

2.6
9.8
1.9

NSIPP
NSIPP
NSIPP

j 3 1025

y
T

2.6
13.2

1.9

2.8
13.0

1.8

2.4
12.8

1.9

3.4
13.6

1.9

2.6
13.4

1.9

2.2
12.4

2.0

2.4
12.4

1.8
ECMWF
ECMWF
ECMWF

j 3 1025

y
T

2.4
10.8

2.1

2.6
11.0

2.2

2.4
10.2

2.5

2.6
11.4

1.5

2.6
10.6

2.0

2.0
9.8
1.9

2.0
10.0

1.9
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