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located near Monte Verde, thought to be the oldest archaeological
site in the Americas18. Remains interpreted as partially burned plant
and animal artefacts in association with hearths have been cited as
evidence for the presence of humans and their use of ®re between
,12.5 and 12 14C kyr BP. Possibly, the high climate variability
between ,11.2 and 9.9 14C kyr BP afforded the conditions that
allowed humans to set small-scale ®res that altered the vegetation
near the Huelmo and Lago Condorito sites.

Our data suggest that climate approaching modern conditions
prevailed in the Chilean Lake District between ,13 and
12.2 14C kyr BP. This was followed by a general reversal in trend
with cooling events at ,12.2 and ,11.4 14C kyr BP, and then by
subsequent warming at 9.8 14C kyr BP. The total temperature depres-
sion between ,11.4 and 9.8 14C kyr BP was relatively minor (#3 8C),
as indicated by the persistence of rainforest vegetation. The timing,
direction, and relative magnitude of these events matches the late-
glacial record from nearby Lago Mascardi19 (Fig. 1), which indicates
retreat of the Monte Tronador ice cap between 13 and
12.4 14C kyr BP, a reversal starting at ,12.4 14C kyr BP and culminat-
ing with glacial readvance between 11.4 and 10.2 14C kyr BP. These
records from the Andean region of mid-latitude South America
show a notable resemblance in timing and structure to palaeocli-
mate ¯uctuations recorded in Europe and Greenland. In contrast,
Bennett et al.4 found no palynological evidence for climate change
during late-glacial time in the Chilean channels (458±478 S). If this
interpretation is correct, their results would imply that: (1) a major
climate boundary existed between 428 and 458 S during late-glacial
time; or (2) late-glacial climate changes did not reach a critical
threshold to trigger discernible vegetation changes in palynological
records, and thus the impoverished late-glacial ¯ora of the Chilean
channels was insensitive to the magnitude of late-glacial cooling;
and/or (3) plant succession, soil development, and migration from
glacial refugia were the dominant factors controlling vegetation
change in this newly deglaciated region during the critical time
period.

Our results suggest that mid-latitude climate in the Southern
Hemisphere changed in unison with the North Atlantic region
between ,13 and 10 14C kyr BP. This is in contrast with the palaeo-
climate signal derived from sediment cores in the South Atlantic
Ocean20 and ice cores from interior Antarctica21, where the pattern
of climate change is opposite to that found in the Chilean Lake
District between ,13 and 10 14C kyr BP. Determining the represen-
tativeness of these opposing results on a hemispheric scale has
important implications for understanding the climate mechanisms
operative during ice ages, because one set of data supports an in-
phase interhemispheric linkage in the atmosphere2,22,23, whereas the
other favours an out-of-phase relationship via a bipolar see-saw in
deep ocean circulation24. The solution could well be that synchro-
nous climate changes, propagated in the atmosphere over much of
the planet, were counteracted in Antarctica by a bipolar see-saw of
thermohaline circulation, whose effects in the Southern Hemi-
sphere were con®ned to the high southern latitudes. M
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Sea¯oor spreading is accommodated by volcanic and tectonic
processes along the global mid-ocean ridge system. As spreading
rate decreases the in¯uence of volcanism also decreases1±4, and it
is unknown whether signi®cant volcanism occurs at all at ultra-
slow spreading rates (,1.5 cm yr-1). Here we present three-
dimensional sonar maps of the Gakkel ridge, Earth's slowest-
spreading mid-ocean ridge, located in the Arctic basin under the
Arctic Ocean ice canopy. We acquired this data using hull-
mounted sonars attached to a nuclear-powered submarine, the
USS Hawkbill. Sidescan data for the ultraslow-spreading
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(,1.0 cm yr-1) eastern Gakkel ridge depict two young volcanoes
covering approximately 720 km2 of an otherwise heavily sedimen-
ted axial valley. The western volcano coincides with the average
location of epicentres for more than 250 teleseismic events
detected5,26 in 1999, suggesting that an axial eruption was
imaged shortly after its occurrence. These ®ndings demonstrate
that eruptions along the ultraslow-spreading Gakkel ridge are
focused at discrete locations and appear to be more voluminous
and occur more frequently than was previously thought.

The Arctic basin is the last of Earth's oceanic frontiers. Permanent
pack ice covers the Arctic Ocean, restricting the free motion of
surface ships, making it impossible to map the sea ¯oor compre-
hensively. The ice canopy impedes the use of satellite altimetry data
to derive the predicted bathymetry models that now exist for every
other ocean6,7. Nuclear submarines are ideal for Arctic research
because they operate beneath the pack ice and are thus independent
of surface conditions. In 1995 the US Navy and National Science
Foundation cooperatively developed the Science Ice Exercises
(SCICEX), a ®ve-year programme supported by nuclear-powered
Sturgeon-class submarines to study the ice canopy, oceanography,
biology and geology of the Arctic basin. For SCICEX-98 and
SCICEX-99 the US Navy's submarine USS Hawkbill was equipped
with the Sea¯oor Characterization and Mapping Pods (SCAMP), a
geophysical mapping system built to create the ®rst three-dimen-
sional maps of the Arctic sea ¯oor. SCAMP instrumentation
includes a 12-kHz Sidescan Swath Bathymetric Sonar (SSBS), a
swept frequency (2.75 kHz to 6.75 kHz) High-Resolution Sub-
bottom Pro®ler (HRSP), a BGM-3 gravimeter and the Data
Acquisition and Quality Control System (DAQCS)8. We used the
Submarine Inertial Navigation system to navigate under the ice,
supplemented by occasional ®xes from the Global Positioning

Satellite network when the USS Hawkbill surfaced. Our relative
positional accuracy was better than 3 km.

The SCICEX-99 survey of Gakkel ridge was carried out at an
operating depth of 225 m and a speed of 16 knots. The average
usable swath width for bathymetry data is 10 km; the average swath
width for sidescan data is 16 km. Typical sub-bottom penetration
in sedimented areas is 100 m. SCICEX-98 and SCICEX-99 data
provide approximately 100% bathymetric and sidescan coverage for
the western Gakkel ridge rift valley and ¯anks out to 50 km on both
sides of the ridge axis. Full spreading rates range from 1.33 cm yr-1

to 1.15 cm yr-1 (ref. 9) at the ends of this region (Fig. 1). During
SCICEX-99 a reconnaissance survey of the eastern Gakkel ridge
extended coverage of the axial zone out to 1.0 cm yr-1 full-spreading
rate9.

One goal of the SCICEX surveys was to resolve a debate regarding
the nature of volcanism at the ultraslow-spreading Gakkel ridge.
The presence of lineated magnetic anomalies10,11 over the entire
ridge suggests that sea¯oor volcanism occurs. Three bathymetric
pro®les across the axis of Gakkel ridge near 158 E depict a central
high with 200 m relief12 on the axial valley ¯oor that may be a
constructional ridge analogous to those observed on the slow-
spreading Mid-Atlantic Ridge13,14. However, theoretical modelling
predicts that melt production should be diminished, or even
inhibited, at spreading rates less than 1.5 cm yr-1 (refs 1±4). Analysis
of SCICEX-96 gravity data suggests that the Gakkel ridge crust is
anomalously thin15, supporting a hypothesis of diminished volcan-
ism. The paucity of high-resolution bathymetry and sidescan data
for Gakkel ridge has prevented unequivocal identi®cation of any
volcanic features until now.

SCICEX-99 sidescan and bathymetry data for the reconnaissance
survey of the eastern Gakkel ridge show two amorphously shaped
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Figure 1 SCAMP sidescan data for the eastern Gakkel ridge. Two areas with high acoustic

return strength, labelled the western volcano and eastern volcano, are probably younger

than the weakly re¯ective terrain, presumably covered with thicker sediments, that

surrounds them. Upper right inset, location map showing the Gakkel ridge survey within
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areas with highly re¯ective acoustic character (Fig. 1) that are also
topographic highs with 1,000 and 500 m relief, respectively (Figs 2
and 3). The sidescan data show long, sinuous channels of very
re¯ective (dark grey) terrain, adjacent to and occasionally sur-
rounding less re¯ective (light grey) terrain. The regions with
lower acoustic re¯ectivity are interpreted to have thick sediment
cover; the attenuation of sound waves in sediments reduces the
strength of acoustic echoes16. Average sedimentation rates for the
eastern Arctic are estimated to be 1±3 cm kyr-1 (ref. 17), increasing
as Gakkel ridge approaches the Laptev shelf. Given the 12.5-cm
operational wavelength of the SSBS and the estimated sedimenta-
tion rate, it would take thousands of years to create sediment cover
thick enough to attenuate the strength of the acoustic return
signi®cantly. We thus interpreted regions of low acoustic return to
be older than strongly re¯ective regions.

Portions of the strongly re¯ective regions in the SCICEX-99
sidescan data abut lineaments, consistent with the ponding of lava
against fault scarps (Fig. 2). Terminations of acoustically re¯ective
terrain in regions devoid of lineaments have shapes characteristic of
lava ¯ow fronts or `toes' (Fig. 3). The ¯ow toes are radially
distributed around the topographic highs. The morphology of the

strongly re¯ective regions is consistent with submarine volcanic
¯ows mapped at other mid-ocean ridges by acoustic and optical
systems18±20. The acoustic character of the highly re¯ective Gakkel
ridge terrain is very similar to a lava ®eld at 88 S on the East Paci®c
Rise that was ®rst detected because of its strong acoustic
re¯ectivity18 and was subsequently shown to contain fresh, glassy
basalts21. The two acoustically re¯ective regions are thus probably
volcanoes that are largely devoid of sediment cover, and therefore
erupted recently. The presence of these two young volcanoes,
covering approximately 20% of the 3,750 km2 surveyed along this
portion of the eastern Gakkel ridge, proves that signi®cant volcan-
ism occurs at ultraslow spreading rates.

The sidescan data reveal that both volcanoes are cut by lineations
interpreted to be faults formed by tectonic processes that occurred
subsequent to volcanic emplacement. The western volcano (Fig. 3)
is signi®cantly less faulted than the eastern volcano (Fig. 2),
suggesting that lava on the western volcano experienced less post-
emplacement tectonism and is therefore younger. The few faults
evident on the western volcano are located near the southern ¯ank
of the topographic high. Two of these faults traverse abrupt changes
in acoustic re¯ectivity; these light/dark contacts indicate signi®cant
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Figure 2 Three-dimensional view of the eastern volcano looking from east to west. In this

image sidescan data are overlaid on a digital terrain model derived from SCAMP

bathymetry. Colour-coded contours indicate depth. The region of highly re¯ective terrain

located near the upper right corner of the data is approximately centred about a 1,000-m

topographic high. To the west and east of the topographic high, sinuous channels of

re¯ective terrain spill downslope. Where these channels adjoin lineations or higher-

elevation terrain they abruptly terminate or ¯ow around features. This morphology is

consistent with submarine lava ¯ows observed on other mid-ocean ridges. The re¯ective

terrain on the eastern volcano is laced with WNW±ESE trending lineations. These

lineations are interpreted to be faults caused by tectonism that occurred after the

emplacement of the re¯ective volcanic terrain. See Fig. 1 for the location of the eastern

volcano.
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differences in the amount of sediment cover. We interpret them to
represent a boundary between lava ¯ows of different ages. The
presence of faults having suf®cient vertical offset to be imaged by
SCAMP indicates that the southern ¯ank of the western volcano did
not erupt recently. Assuming reasonable geological slip rates of a few
mm yr-1 (refs 22, 23), faults of suf®cient size to be imaged by
SCAMP in ,4,000 m of water depth would require hundreds to
several thousands of years to develop, although collapse events can
form large scarps over short time periods24. In contrast, the north-
ern ¯ank of the western volcano is remarkably devoid of lineations.
In addition, all of the faults on the western volcano terminate
abruptly to both the northwest and southeast. The abrupt trunca-
tion of faults on the western volcano and the absence of lineations in
sidescan data for the northern ¯ank support our hypothesis of a
recent eruption that volcanically overprinted pre-existing faults.
The volcanic overprinting and the presence of faults that cross-cut
regions with different amounts of sediment cover lead us to
conclude that the western volcano was formed by more than one
eruption.

Teleseismic data for the Arctic basin corroborates the hypothesis

of a recent Gakkel ridge eruption. In January 1999 global seismic
networks detected the beginning of an earthquake swarm on Gakkel
ridge centred near 868 N, 858 E (refs 5, 26). Seismic activity con-
tinued through September 1999 although 75% of the events took
place before the end of May. On 6 May 1999, the USS Hawkbill
passed directly over the average location of the earthquake epicen-
tres. The average location of the epicentres corresponds to the
location of the western volcano (Fig. 3). The remarkable correlation
between the locations of the earthquake epicentres and the location
of the strongly re¯ective, untectonized western volcano together
with the volcanic character of the seismic record5,26 provide evidence
that lava erupted on the eastern Gakkel ridge days to months before
SCAMP mapped the area. Because 12-kHz sonars can penetrate
through thin sediments covering acoustically re¯ective lavas25, it is
possible that no eruption occurred on Gakkel ridge in 1999;
however, historical global seismic records indicate that this is the
only earthquake swarm detected on Gakkel ridge in about 100 years
(ref. 5). SCAMP HRSP data show no evidence of sediment layering
on either volcano although there is evidence of layering adjacent to
both (Fig. 4). Taken together, the SCICEX and teleseismic data
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Figure 3 Three-dimensional view of the western volcano looking from west to east. Data

presentation is analogous to that described for Fig. 2. The dark, re¯ective terrain is

centred about a close-contoured high having a maximum vertical relief of 500 m. As in

Fig. 2, lava channels spill downslope from the volcano, ponding against fault scarps or

terminating in ¯ow toes that are characteristic of eruptive processes. Lava on the western

volcano is signi®cantly less faulted than lava on the eastern volcano (Fig. 2). The few faults

evident on the southern ¯ank of the western volcano are located on a small saddle

between the western volcano and the prominent volcano to its south (right). On the saddle,

these faults cut through both strongly and poorly re¯ective terrain indicating that at least

some of the highly re¯ective terrain has undergone substantial tectonic modi®cation.

However, the faults abruptly terminate to west and east of the saddle, suggesting that they

have been volcanically overprinted. Red circles show the locations of epicentres for the

Gakkel ridge earthquake swarm that ran from January until September in 1999. See Fig. 1

for the location of the western volcano.
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provide a revised model for volcanism at the ultraslow-spreading
Gakkel ridge, in which voluminous, sustained eruptions focused at
discrete sites may have occurred more frequently than previously
thought. M
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Figure 4 SCAMP sub-bottom data for the western and eastern volcanoes show no

evidence of sediment layering on top of the constructs, although layers are apparent

adjacent to the ¯anks of both highs. In these plots the x-axis represents time; the USS

Hawkbill was heading from east to west when the data were collected. Vertical relief is

indicated.
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