Abstract

We report the first systematic study of the terrestrial cosmogenic radionuclide manganese-53 ($T_{1/2} = 3.7$ Ma) measured in thirteen samples from nine dolerite surfaces in the Dry Valleys, Antarctica. The terrestrial manganese-53 concentrations correlate well with cosmic-ray-produced helium-3 and neon-21 concentrations in the same samples, implying that the manganese-53 is produced continuously in situ and retained quantitatively over millions of years. The terrestrial manganese-53 production rate determination normalized to iron (the only important target element) and to high-latitude and sealevel yields a value of $P_{53} = 103 \pm 11$ atoms yr$^{-1}$ (g Fe)$^{-1}$. This is consistent with the theoretical value of 120 ± 18 atoms yr$^{-1}$ (g Fe)$^{-1}$ obtained from modeling calculations. Our results show that the manganese-53 concentrations in bulk terrestrial rocks can be used to monitor Earth surface processes on time-scales exceeding 10 My.

© 2006 Elsevier B.V. All rights reserved.

Keywords: terrestrial cosmogenic nuclides; Earth surface processes; radionuclides; accelerator mass spectrometry; Dry Valleys; Antarctica

1. Introduction

Terrestrial Cosmogenic Nuclides (TCN) have become indispensable tools in the earth sciences, particularly for studying the chronology of landforms [1–3]. Recent rapid progress in the TCN method has expanded the dating time-scale, improved analytical precision, extended the range of datable lithologies to include whole rocks, led to more precise production rates, and widened the spectrum of useful cosmogenic nuclide systems (e.g. [4,5]). Here we report a methodical investigation of terrestrial manganese-53 ($T_{1/2} = 3.7$ Ma) – a nuclide that so far has seen almost exclusively extraterrestrial applications – in rocks from the Dry Valleys, Southern Victoria Land, Antarctica.
Cosmogenic 53Mn was first measured in extraterrestrial materials by low-level counting techniques (see [6,7]). In 1965, a more sensitive method based on neutron activation was introduced by Millard [8]. It quickly supplanted low-level counting, ushering in a period that lasted through the mid-1990s (e.g., [9–12]). Although considerably easier than low-level counting, Millard’s method requires sophisticated radiochemistry. Therefore only very few 53Mn analyses of terrestrial samples have been reported (e.g. [13]). Progress in measuring 53Mn by accelerator mass spectrometry (AMS) [14], increasing the sensitivity by two orders of magnitude, suggested to us that the time had arrived for the systematic study of terrestrial 53Mn. Our initial goals were 1) to demonstrate the presence of cosmogenic 53Mn in terrestrial rocks; 2) to see whether 53Mn is conserved in rocks, a key requirement for dating; 3) to determine a 53Mn production rate; and 4) to compare the experimentally measured production rate with a value derived from theoretical calculations.

We selected for this study a suite of dolerite rocks from the Dry Valleys, Antarctica. Earlier studies had shown that these rocks contain some of the highest cosmogenic 3He and 21Ne concentrations known for

Fig. 1. Map of the Dry Valleys, Antarctica. The map is modified after [20] giving the sample sites. SG = Sirius Group sediment locations; EAIS = East Antarctic Ice Sheet. Samples 318 and NXP are from the SG at Mt. Fleming and Mt. Feather, respectively; Samples 446s, 446B and 464 from Insel Mt.; Sample 444 from the Labyrinth; Samples 435 and 439 from the Dais; and sample 403 from the Friise Hills.
any terrestrial samples [15]. These observations suggested that the 53Mn concentrations of the rocks would also be large, and therefore relatively easy to measure. We cross-calibrate the terrestrial 53Mn production rate by comparing the 53Mn concentrations of each sample to the cosmogenic 3He concentrations and the respective cosmogenic 3He production rate, which is one of the best calibrated production rates for any TCN [1,16].

If TCNs are to be useful in dating, their host lithologies must not exchange with the surroundings either the TCN themselves or the elements from which they are made. To see whether 53Mn and its principal parent, iron, met this requirement for our samples, we analysed both whole-rock samples and mineral separates.

Preliminary versions of this work have appeared in abstracts, e.g. [17,18].

2. Methods

2.1. Samples

Fig. 1 shows the field area. The samples are from erratic boulders that are elements of the Sirius Group tillites at Mt. Fleming (318) and Mt. Feather (NXP) and from bedrock samples from the Inner Dry Valleys including the Labyrinth (444), the Dais (435, 439), the Friise Hills (403), and the Insel Mountain (464, 446s and 446B; the last two samples were taken from the same geomorphological unit). For more details concerning sample collection see [15]; for detailed geomorphology of the Dry Valleys see e.g. [19,20].

The lithology of all rocks is Ferrar Dolerite, consisting primarily of pyroxene and plagioclase. Pyroxene separation is performed using standard magnetic and heavy liquid techniques followed by hand-picking (for details see [15]).

For all samples except 446B, cosmogenic helium and neon data were reported earlier [15]. To compare terrestrial 53Mn and cosmogenic noble gas concentrations from aliquots of the same sample, we resampled all rocks and split the samples after crushing into fractions for manganese and helium measurement.

2.2. Noble gas analyses

We reanalysed pyroxene separates from the helium fractions of all samples (318, NXP, 446s, 446B, 464, 403, 435, 439, 444) for helium isotopes at the noble gas facility at the Lamont-Doherty Earth Observatory (LDEO) [21,22]. Samples are heated to \sim1300–1400 °C for 15 min for total gas extraction. The released gases are exposed to a liquid nitrogen cooled charcoal trap to freeze out permanent gases such as water vapor, oxygen and CO$_2$. The gas is further purified by exposure to a SAES getter at room temperature to minimize the hydrogen background. The residual gas is collected on a cryogenically cooled trap held at \sim13 K. Helium is released into the mass spectrometer by heating the trap to 45 K while heavier noble gases remain frozen to the cold trap. Helium concentration and isotopic composition measurements are performed on a MAP 215-50 noble gas mass spectrometer calibrated with a known volume of a Yellowstone helium standard (MM) with a 3He/4He ratio of 16.45R_a, where $R_a=(^3$He/4He)$_{air}= 1.384 \times 10^{-6}$. Typical hot blanks yield 4He concentrations of less than 10$^{-10}$ cm3 STP with approximately atmospheric helium isotopic signature, corresponding to 3He blank corrections of $<1\%$.

2.3. 53Mn analyses

2.3.1. Chemistry

The chemical procedure used to separate manganese from terrestrial rocks is similar to those used for meteorites [23,24]. We analysed 53Mn in five pyroxene separates, namely NXP-93-52, 446B-030404, 403-030404, 403-020904, and 444-030404, and in eight whole rock samples, namely 318-1, 318-2, NXP-022004, 446s-2, 464-011105, 435-102504, 435-022005, and 439-011105 (the latter part of the sample name indicates subsamples). A split of the whole rock and pyroxene samples for 53Mn measurement is analysed for elemental composition. The samples (we used grain sizes between 200 and 500 μm, but all grain sizes including rock powder can be used) are weighed into teflon vessels. To achieve the desirable mass of manganese for accelerator mass spectrometry analysis (1 mg Mn minimum, 4 mg Mn desirable), we added stable Mn (Fisher Scientific ICP manganese; 1 mg/ml) as a carrier to samples with less than 1.5 mg natural manganese content (resulting in Mn masses between 1.7 and 6.1 mg). The sediment sample is dissolved in a closed Teflon vessel using a solution of hydrofluoric acid (HF), perchloric acid (HClO$_4$), and nitric acid (HNO$_3$) at 115 °C during 12 to 24 h. The digestion could also be done at lower temperature. Following dissolution, the sample is fumed with a mixture of 7 M hydrochloric acid (HCl) and concentrated HClO$_4$ to remove fluorides and chromium, the latter being a problematic interference in AMS analysis on atomic mass 53. Fuming is repeated twice more before the sample is loaded onto a standard anion column in 10.2 M HCl after including a trace of hydrogen peroxide (H$_2$O$_2$) [24]. The anion column chromatography is
repeated three times to remove traces of chromium. Manganese is precipitated with KClO$_3$ as MnO$_2$, dried, mixed with silver powder, and pressed into high purity silver target holders. From start to finish, the preparation of a MnO$_2$ AMS target from a dissolved rock sample typically takes 3 to 4 days.

2.3.2. Accelerator mass spectrometry

We measured 53Mn concentrations at the Munich MP Tandem with the terminal voltage set to ~ 13 MV [25] (Fig. 2). A sputter ion source produces beams of MnO$^{-}$ (typically a few 100 nA) that are mass selected, and injected into the tandem for further acceleration. At the terminal of the tandem, the 53MnO$^{-}$ ions pass through a thin carbon foil ($\sim 4 \mu$g/cm2) where a large fraction of the electrons is stripped off. This process leads to dissociation of all molecular ions. The resulting multiply charged positive ions are further accelerated by the same voltage as they exit the accelerator. Downstream, a 90° analysing magnet selects 52Mn$^{11+}$ ions with an energy of 156 MeV (m/Δm $\sim 10^4$), allowing an efficient suppression of fragments from molecular background. However, all these steps do not achieve separation of 53Mn from its stable isobar 53Cr. For this purpose we utilize a detector system consisting of a gas-filled magnet and a multi-anode ionisation chamber. Due to collisions with the gas particles in the magnet the average charge state of the ions depends on their nuclear charge. Consequently, the trajectories of 53Cr and 53Mn ions have different radii and exit the gas-filled magnet at different positions. Further isobaric separation is achieved in an ionisation chamber by measuring the ions’ differential energy loss, which depends again on their nuclear charge. Interfering 53Cr ions are suppressed by a factor of 10^7 in the gas-filled magnet and by a further factor of 10^6 in the ionisation chamber, where 53Mn events are accepted with an efficiency of about 30% [25].

53Mn concentrations are measured relative to our laboratory standard “Grant GLS” which was prepared from the iron meteorite Grant. Its 53Mn/55Mn ratio, $(2.96 \pm 0.06) \cdot 10^{-10}$, has been determined by comparison with a primary standard produced in a nuclear reaction: Short-lived 53Fe ($T_{1/2}=8.51$ min) was produced via 54Fe(3He,α)53Fe at the Munich tandem accelerator. It is energetically not possible to produce 53Mn directly since the 3He particle energy was only 19 MeV. Therefore, all 53Mn is due to radioactive decay of 53Fe. The 53Fe activity was measured by means of gamma ray spectroscopy (the efficiency of the gamma spectroscopy has been determined with an 152Eu standard), yielding the number of initially produced 53Fe nuclei after correction for radioactive decay. This number equals the number of 53Mn nuclei in the primary standard after complete decay of the short-lived 53Fe to 53Mn.

For background determination, and, in turn, evaluation of the Cr suppression factors, we measured 53Mn-free blanks made of commercial manganese with a Cr content comparable to our samples. Those yielded 53Mn/55Mn ratios of a few times 10^{-14}, which is between 10 and 280 times lower than our measured sample ratios (see Table 2). Typically, samples have been measured for 1–2 h each.

2.4. Calculations to model the rate of 53Mn production on the earth’s surface

For comparison with the measurements, we simulate 53Mn production in terrestrial rocks with a computer model based on two published codes, GEANT [26] and MCNP [27]. As this model is described in detail elsewhere [28], we recount only its main features. For the primary particle flux, we consider protons with energies between 10 MeV and 100 GeV. The primary flux is set equal to the long-term average value of $4.56 \text{ p cm}^{-2} \text{ s}^{-1}$ determined from cosmogenic nuclide data in lunar samples [29].
Table 1
Cosmogenic noble gas data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Subsample</th>
<th>(^{21})Ne (10^6 at g(^{-1}))§</th>
<th>(^{21})Ne-age (My)§</th>
<th>(^{3})He (10^9 at g(^{-1}))§</th>
<th>(^{3})He-age (My)§</th>
<th>(^{3})He (10^9 at g(^{-1}))£</th>
<th>(^{3})He-age (My)£</th>
</tr>
</thead>
<tbody>
<tr>
<td>318</td>
<td>1</td>
<td>1623±52</td>
<td>8.16±0.16</td>
<td>6.90±0.27</td>
<td>7.64±0.30</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>318</td>
<td>2</td>
<td>1557±55</td>
<td>4.27±0.15</td>
<td>5.21±0.18</td>
<td>4.36±0.15</td>
<td>5.21±0.25</td>
<td>4.36±0.23</td>
</tr>
<tr>
<td>NXP</td>
<td>93-52</td>
<td>711±25</td>
<td>5.28±0.19</td>
<td>2.79±0.11</td>
<td>4.85±0.19</td>
<td>3.08±0.08</td>
<td>5.36±0.13</td>
</tr>
<tr>
<td>NXP</td>
<td>022004</td>
<td>522±18</td>
<td>4.50±0.16</td>
<td>2.36±0.09</td>
<td>4.16±0.16</td>
<td>2.78±0.07</td>
<td>4.89±0.12</td>
</tr>
<tr>
<td>446s</td>
<td>2</td>
<td>340±11</td>
<td>2.45±0.08</td>
<td>1.49±0.04</td>
<td>2.19±0.09</td>
<td>1.34±0.06</td>
<td>1.97±0.08</td>
</tr>
<tr>
<td>446B</td>
<td>030404</td>
<td>124±6</td>
<td>1.27±0.06</td>
<td>0.53±0.02</td>
<td>1.25±0.06</td>
<td>0.52±0.02</td>
<td>1.23±0.05</td>
</tr>
</tbody>
</table>

Noble gas data are given within 1σ uncertainties including counting statistics and sensitivity variations of the mass-spectrometer.

§: Noble gas data from pyroxene by [15], typical sample size about 200 mg. The updated \(^{21}\)Ne production rates are based on the element concentrations given in [15] and on the updated elemental production rates given by [45]. The \(^{3}\)He production rates are based on a sealevel/high latitude value of 115 at g\(^{-1}\) yr\(^{-1}\). The slhl production rate values were scaled to the sample locations using the procedure given in [30] including neutron and muon production, taking into account the Antarctic sealevel air pressure (989 hPa instead of 1013 hPa), resulting in about 25% younger ages than previously published.

£: Pyroxene samples reanalysed for helium isotopes at the noble gas laboratory at the Lamont-Doherty Earth Observatory using pyroxene separates from the same samples measured for \(^{53}\)Mn. Typical sample size is about 20 mg. Production rate systematics: see section § above.

&: reported \(^{3}\)He concentration is the mean within 1σ standard deviation of nine \(^{3}\)He analysis of sample NXP.

We calculate the propagation of primary particles and their production of secondary protons and neutrons. All particles are followed through the atmosphere and into the lithosphere. For this purpose, the atmosphere is modeled as a spherical shell with an inner radius of 6378 km and a thickness of 100 km.

Table 2
Terrestrial \(^{53}\)Mn results from pyroxene and whole rock samples together with iron and manganese concentration data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Subsample</th>
<th>Sample type</th>
<th>Altitude (m)</th>
<th>Sample mass (g)</th>
<th>Mn (wt.%</th>
<th>(^{53})Mn carrier (mg)</th>
<th>Fe (wt.%</th>
<th>(^{53})Mn/(^{55})Mn (10(^{-12}))</th>
<th>(^{53})Mn/(^{55})Mn (10(^{9}) atoms (g Fe(^{-1})))</th>
</tr>
</thead>
<tbody>
<tr>
<td>318</td>
<td>1</td>
<td>wr</td>
<td>2150</td>
<td>1.026</td>
<td>0.15</td>
<td>2.2602</td>
<td>7.83</td>
<td>6.56±0.98</td>
<td>3.37±0.50</td>
</tr>
<tr>
<td>318</td>
<td>2</td>
<td>wr</td>
<td>2150</td>
<td>3.012</td>
<td>0.14</td>
<td>–</td>
<td>7.27</td>
<td>15.3±2.18</td>
<td>3.21±0.46</td>
</tr>
<tr>
<td>NXP</td>
<td>93-52</td>
<td>Px.</td>
<td>2555</td>
<td>1.052</td>
<td>0.16</td>
<td>–</td>
<td>7.04</td>
<td>12.7±0.9</td>
<td>3.16±0.22</td>
</tr>
<tr>
<td>NXP</td>
<td>022004</td>
<td>wr</td>
<td>2555</td>
<td>1.500</td>
<td>0.14</td>
<td>–</td>
<td>6.54</td>
<td>13.9±2.0</td>
<td>3.36±0.49</td>
</tr>
<tr>
<td>446s</td>
<td>2</td>
<td>wr</td>
<td>1530</td>
<td>1.033</td>
<td>0.15</td>
<td>2.4235</td>
<td>7.20</td>
<td>2.8±0.6</td>
<td>1.62±0.35</td>
</tr>
<tr>
<td>446B</td>
<td>030404</td>
<td>Px.</td>
<td>1530</td>
<td>1.996</td>
<td>0.17</td>
<td>–</td>
<td>5.54</td>
<td>6.2±1.4</td>
<td>2.09±0.46</td>
</tr>
<tr>
<td>464</td>
<td>011105</td>
<td>wr</td>
<td>1515</td>
<td>0.223</td>
<td>0.17</td>
<td>2.027</td>
<td>7.63</td>
<td>2.0±0.4</td>
<td>3.15±0.55</td>
</tr>
<tr>
<td>435</td>
<td>102504</td>
<td>wr</td>
<td>1595</td>
<td>0.102</td>
<td>0.19</td>
<td>2.990</td>
<td>9.21</td>
<td>0.41</td>
<td>1.52</td>
</tr>
<tr>
<td>435</td>
<td>02205</td>
<td>wr</td>
<td>1595</td>
<td>0.162</td>
<td>0.19</td>
<td>3.031</td>
<td>9.21</td>
<td>0.51±0.14</td>
<td>1.25±0.34</td>
</tr>
<tr>
<td>403</td>
<td>030404</td>
<td>Px.</td>
<td>1750</td>
<td>2.001</td>
<td>0.31</td>
<td>–</td>
<td>10.11</td>
<td>5.7±0.9</td>
<td>1.91±0.29</td>
</tr>
<tr>
<td>403</td>
<td>020904</td>
<td>Px.</td>
<td>1750</td>
<td>1.001</td>
<td>0.31</td>
<td>–</td>
<td>11.84</td>
<td>5.1±1.1</td>
<td>1.47±0.31</td>
</tr>
<tr>
<td>439</td>
<td>011105</td>
<td>wr</td>
<td>869</td>
<td>0.201</td>
<td>0.19</td>
<td>2.020</td>
<td>8.29</td>
<td>0.47±0.2</td>
<td>0.74±0.36</td>
</tr>
<tr>
<td>444</td>
<td>030404</td>
<td>Px.</td>
<td>1145</td>
<td>2.000</td>
<td>0.30</td>
<td>–</td>
<td>13.35</td>
<td>1.4</td>
<td>0.34</td>
</tr>
</tbody>
</table>

\(^{53}\)Mn/\(^{55}\)Mn ratios reflect AMS measured values. Errors represent 1σ statistical uncertainty.

Manganese and iron concentrations were measured at Rutgers University by Atomic Absorption Spectrometry and for some samples additionally by ICP-MS.

wr: ‘whole rock’; Px: ‘pyroxene’.

If the detected counts are below 20, uncertainties are calculated following an approach including Poisson statistics developed for experiments with small signals and known background [46].
Atmospheric composition (by weight) is assumed to be: 75.5% N, 23.2% O, and 1.3% Ar. The total thickness of the atmosphere is taken to be 1033 g cm$^{-2}$. For the Earth’s surface, we assume the following average elemental composition (by weight): 0.2% H, 47.3% O, 2.5% Na, 4.0% Mg, 6.0% Al, 29.0% Si, 5.0% Ca and 6.0% Fe. Reasonable changes to this surface composition, e.g., addition of K, have little effect on the calculated fluxes, although hydrogen is an exception in this regard. The surface density of the Earth is set at 2.0 g cm$^{-3}$. To investigate the depth dependence of particle fluxes, the near-surface region is divided into spherical shells, each with a thickness of 5 g cm$^{-2}$. We calculate the fluxes of protons and neutrons within each cell. The statistical errors of the calculations are approximately 5–8%. Uncertainties of the calculated fluxes are estimated to be in the range of 5–10% for depths less than 400 g cm$^{-2}$ and to increase with depth. Having calculated the particle fluxes, the production rates of 53Mn are calculated by integrating over energy the product of these fluxes and cross-sections for the nuclear reactions that produce the 53Mn. As suggested above, nuclear reactions with 56Fe are by far the most important source of 53Mn production.

3. Results

New cosmogenic 3He results are shown in Table 1 together with cosmogenic 3He and 21Ne data published earlier [15]. The 53Mn data are given in Table 2. The data sets are compared in Fig. 3, and the terrestrial 53Mn

![Fig. 3. Cosmogenic 53Mn–3He scatter plot. ‘Decay correction’ for 53Mn concentrations are based on $(^{53}$Mn)$_\text{decay-corr} = (^{53}$Mn)$_\text{measured} \cdot (\lambda T^3/(1 - e^{-\lambda T}))$, where $\lambda = 0.187 \cdot 10^{-6}$ a$^{-1}$ and T=He-age (yr); For all samples but 318-2, 53Mn and 3He concentrations were measured on aliquots from the same samples, i.e. we used the new 3He data presented here to cross-calibrate the 53Mn production rate in Fig. 3 (3He data marked with “\S” in Table 1). The 53Mn concentration of sample 318-2 is measured from an aliquot of the sample that was measured earlier for cosmogenic 3He and 21Ne [15], i.e. for this samples we used the earlier 3He concentration in Fig. 1 (3He data marked with “$\£$” in Table 1). The filled diamonds indicate the data used for the 53Mn–3He production rate cross-calibration and fitted by the regression ($R^2 = 0.99$). The slope of 0.91±0.07 reflects the production rate ratio of cosmogenic 53Mn/3He. Samples 446B, 403, and 464 (open circles) are not used for cross-calibration (see Section 3.1).
production rate cross-calibration is shown in Fig. 3 and Table 3.

3.1. Cosmogenic noble gases

Table 1 shows cosmogenic noble gas exposure age calculations assuming no erosion and hence yielding minimum exposure ages. Production rates are based on the scaling procedure given by Stone [30], taking into account the Antarctic sealevel air pressure (989 hPa instead of 1013 hPa), resulting in about 25% younger minimum ages than previously published [15]. The new minimum 3He-ages range from 1.2±0.1 My (444) to 6.8±0.2 My (318) (Table 1; last column), the 3He exposure ages recalculated from the earlier data range from 1.3±0.1 My (444) to 7.6±0.3 My (318) (Table 1; column six). The new 3He concentrations agree with the earlier helium data for samples NXP, 446s, 464, 435 and 444. The new 3He concentrations and ages measured from samples 403, 446B, and 439 are about 20% younger than the earlier 21Ne-age and about 10% younger than the 3He-ages given in [15]. As mentioned above, sample 446B is taken from the same geomorphological unit and only a few meters away from sample 446s. The two exposure ages should agree. In fact, the new 3He-age of 446B of 2.5 My is only half of the 21Ne (5.3±0.2 My) and 3He-age (4.9±0.2 My) of the geomorphological sister sample 446s.

Pyroxene from Ferrar Dolerite has been proven to be retentive for cosmogenic 3He on long time-scales [15,31], and therefore cannot be blamed for the lower 3He-ages compared to the 21Ne-ages. However, plagioclase loses >90% of all cosmogenic 3He by diffusion on time-scales discussed here, whereas more than half of the cosmogenic 21Ne is retained [32]. Thus, the lower 3He-ages are most easily explained by 3He loss from plagioclase present in the pyroxene separates. Plagioclase contamination of pyroxene separates is a known problem for Ferrar Dolerite samples (e.g. [33,34]). X-ray diffraction analysis for samples 318, NXP, 446s, 464, 435, and 444.

Table 3

<table>
<thead>
<tr>
<th>Sample</th>
<th>Subsample</th>
<th>Sample type</th>
<th>Local 53Mn prod. rate</th>
<th>53Mn prod. rate, sealevel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(atoms yr$^{-1}$ (g Fe)$^{-1}$)</td>
<td>(atoms yr$^{-1}$ (g Fe)$^{-1}$)</td>
</tr>
<tr>
<td>318</td>
<td>1</td>
<td>wr</td>
<td>880±133</td>
<td>112±17</td>
</tr>
<tr>
<td>318</td>
<td>2</td>
<td>wr</td>
<td>836±121</td>
<td>107±15</td>
</tr>
<tr>
<td>NXP</td>
<td>93-52</td>
<td>Px</td>
<td>1060±93</td>
<td>102±9</td>
</tr>
<tr>
<td>NXP</td>
<td>022004</td>
<td>wr</td>
<td>1120±175</td>
<td>108±17</td>
</tr>
<tr>
<td>446s</td>
<td>2</td>
<td>wr</td>
<td>479±103</td>
<td>96±21</td>
</tr>
<tr>
<td>435</td>
<td>102504</td>
<td>wr</td>
<td>563±225</td>
<td>107±37</td>
</tr>
<tr>
<td>435</td>
<td>022205</td>
<td>wr</td>
<td>463±127</td>
<td>88±24</td>
</tr>
<tr>
<td>439</td>
<td>011105</td>
<td>wr</td>
<td>340±164</td>
<td>118±48</td>
</tr>
<tr>
<td>444</td>
<td>030404</td>
<td>Px</td>
<td>311±106</td>
<td>85±23</td>
</tr>
</tbody>
</table>

Unweighted mean 103±11

Weighted mean 103±6

Theoretical value 20±18

Measured production rates are calculated using the measured 53Mn concentrations (Table 2) decay-corrected with the 3He exposure age derived from the same sample given in Table 1. We used λ=0.187·10$^{-6}$ a$^{-1}$ (corresponding to $t_{1/2}$=3.7 Ma).

Uncertainties reflect the 1σ error of the 53Mn and 3He concentrations given in Table 2. We give the local production rate values at the sample location together with the sealevel production rates using the scaling procedure given in [30] based on Antarctic atmosphere pressure (sealevel air pressure of 989 hPa). We include the upper nine samples to determine a 53Mn production rates that are given as mean within 1σ standard deviation and as weighted mean, respectively (see also Fig. 3). Samples 403 and 446B are used to calculate an upper limit for the 53Mn production rate.
and manganese concentrations and amounts of ^{55}Mn exchange with the surroundings. No periods of burial; 3) manganese and iron do not geometry is fixed, which implies minimal erosion and over time, which requires minimal uplift; 2) irradiation conditions must be met: 1) cosmic-ray flux is constant for ^{53}Mn. For Eq. (3) to hold, the following

\begin{equation}
\lambda \left(1 - e^{-\lambda t}\right) = \frac{P(3\text{He})}{P(3\text{He})} t
\end{equation}

Combining the two equations and rearrangement leads to

\begin{equation}
\frac{^{53}\text{Mn}}{1 - e^{-\lambda t}} = \frac{P(3\text{Mn})}{P(3\text{He})} \frac{[3\text{He}]}{t}
\end{equation}

where P is the production rate and λ is the decay constant for ^{52}Mn. For Eq. (3) to hold, the following conditions must be met: 1) cosmic-ray flux is constant over time, which requires minimal uplift; 2) irradiation geometry is fixed, which implies minimal erosion and no periods of burial; 3) manganese and iron do not exchange with the surroundings.

Since neither neutron energy spectrum nor cross-sections change appreciably over the relevant altitudes (850 m to 2500 m), we can assume that the ratio $\frac{P(3\text{Mn})}{P(3\text{He})}$ is constant within our sample set. This makes it straightforward to examine whether the ^{53}Mn concentrations in our samples vary as expected for in situ production, i.e. are consistent with Eq. (3).

Fig. 3 shows that this is indeed the case for the samples 318-1, 318-2, NXP-93-52, NXP-022004, 446s-2, 435-102504, 435-022205, 439-011105, and 444-030404. The colinearity of the data in $^{53}\text{Mn}/3\text{He}$-space suggests that ^{53}Mn is indeed in situ cosmic-ray-produced. For samples NXP-93-52 and 444 the ^{53}Mn analysis is done from a pyroxene separate, for all others whole rock is used, indicating that ^{53}Mn is produced and retained in whole rock and pyroxene over millions of years in the Antarctic.

Fig. 3 also shows outliers. The data for samples 403-030404, 403-020904, and 446B-030404 plot above the line, as noted above, consistent with ^3He loss from contaminant plagioclase. Sample 464-011105 also plots above the line, but ^3He and ^{21}Ne exposure ages agree for this sample (Table 1) and the X-ray diffraction analysis indicates a high purity of 97% pyroxene, so ^3He loss from plagioclase is not the reason. A possible explanation would be contamination by meteoritic, ^{53}Mn-rich, material during sample processing in the laboratory. Since we cannot rule this out, we do not further discuss this sample.

3.4. Experimental production rate of ^{53}Mn

A linear regression ($R^2 = 0.99$) through the ‘calibration data points’ 318-1, 318-2, NXP-93-52, NXP-022004, 446-2, 435-102504, 435-022205, 439-011105, and 444-030404, passes close to the origin (y-axis intercept $= -0.10 \pm 0.02$) and has a slope of 0.91 ± 0.07, which equals the production rate ratio $\frac{P(3\text{Mn})}{P(3\text{He})}$ (Fig. 3).

Table 3 shows the experimentally derived ^{53}Mn production rate for each sample along with the corresponding theoretical result. The calculated ^{53}Mn production rates at sea level and high latitude for the calibration data range from 85 ± 29 to 118 ± 57 atoms yr$^{-1}$ (g Fe)$^{-1}$, with an unweighted mean of 103 ± 11 atoms yr$^{-1}$ (g Fe)$^{-1}$. The samples with the depleted noble gas concentrations (but most likely non-depleted ^{53}Mn concentrations) 403-030404, 403-020904, and 446B yield upper bounds for the ^{53}Mn production rate of 196 ± 31 atoms yr$^{-1}$ (g Fe)$^{-1}$, 151 ± 32 atoms yr$^{-1}$ (g Fe)$^{-1}$ and 226 ± 52 atoms yr$^{-1}$ (g Fe)$^{-1}$, respectively (Table 3). If we calculate the ^{53}Mn

439, and 444 indicated that the separates were relatively clean consisting of more than 90% pyroxene. However, the pyroxene separates of samples 446B and 403 were found to contain significant amounts of plagioclase [35]. For the ^{55}Mn–^3He cross-calibration presented below, we therefore exclude samples 403 and 446B and use the data only to determine upper limits for the ^{53}Mn production rate (Table 3).

3.2. AMS measurements of ^{53}Mn

The results of the AMS ^{53}Mn concentration measurements given in Table 2 (together with natural iron and manganese concentrations and amounts of ^{55}Mn added as carrier) range from $3.4 \cdot 10^8$ (444) to $3.4 \cdot 10^9$ atoms (g Fe)$^{-1}$ (318-1 and NXP-022004). The $^{53}\text{Mn}/^{55}\text{Mn}$ ratios range from $0.4 \cdot 10^{-12}$ to $15 \cdot 10^{-12}$, well above the background of about $0.5 \cdot 10^{-12}$. The good agreement between the ^{53}Mn concentrations measured in the pyroxene NXP-93-52 and the whole rock sample NXP-022004 implies that ^{53}Mn can be reliably measured from whole rock. The duplicate samples (318-1 and 318-2; 435-102504 and 435-022205; 403-020904 and 403-030404) indicate satisfactory reproducibility of the terrestrial ^{53}Mn measurements.

3.3. Evidence for in-situ production of ^{53}Mn

Under the assumption that the effects of erosion (see Section 3.4) and uplift [31] are small for the samples discussed here, the ^{53}Mn concentration normalized to iron concentration, $[^{53}\text{Mn}]$, grows with exposure age, t, according to the relation

\begin{equation}
[^{53}\text{Mn}] = P(3\text{Mn})/\lambda (1 - e^{-\lambda t})
\end{equation}

while the ^3He concentration increases linearly with time

\begin{equation}
[3\text{He}] = P(3\text{He})t
\end{equation}

Combining the two equations and rearrangement leads to

\begin{equation}
\frac{^{53}\text{Mn}}{1 - e^{-\lambda t}} = \frac{P(3\text{Mn})}{P(3\text{He})} [3\text{He}]
\end{equation}

Table 3 shows the experimentally derived ^{53}Mn production rate for each sample along with the corresponding theoretical result. The calculated ^{53}Mn production rates at sea level and high latitude for the calibration data range from 85 ± 29 to 118 ± 57 atoms yr$^{-1}$ (g Fe)$^{-1}$, with an unweighted mean of 103 ± 11 atoms yr$^{-1}$ (g Fe)$^{-1}$. The samples with the depleted noble gas concentrations (but most likely non-depleted ^{53}Mn concentrations) 403-030404, 403-020904, and 446B yield upper bounds for the ^{53}Mn production rate of 196 ± 31 atoms yr$^{-1}$ (g Fe)$^{-1}$, 151 ± 32 atoms yr$^{-1}$ (g Fe)$^{-1}$ and 226 ± 52 atoms yr$^{-1}$ (g Fe)$^{-1}$, respectively (Table 3). If we calculate the ^{53}Mn
production rate for sample 446B using the cosmogenic noble gas age of its sister sample 446s (5.4 My instead of 2.5 My) the resulting value of $P^{(53)\text{Mn}} = 123 \pm 28$ atoms yr$^{-1}$ (g Fe)$^{-1}$ is in good agreement with the mean value given above.

3.4.1. The influence of erosion

The high minimum exposure ages of up to 7 My of our samples correspond to very low maximum erosion rates (assuming infinite exposure) of less than 10 cm/My. These samples are sensitive to the process of erosion (see Fig. 3 in [15]), so we evaluate the influence of erosion on the experimentally derived ^{53}Mn production rate. Assuming 2 cm/My of steady erosion for sample NXP-93-52 would increase the cross-calibrated ^{53}Mn production rate by 3%. Assuming 5 cm/My for this sample, a value close to the maximum erosion rate, yields a 9% higher ^{53}Mn production rate. For sample 444-030404, steady erosion at the rate of 10 cm/My would increase the ^{53}Mn production rate by not more than 2%. We conclude that our experimental determination of the terrestrial ^{53}Mn production rate is relatively robust against the process of steady erosion.

3.5. Theoretical calculation of the ^{53}Mn production rate

The modeled ^{53}Mn production rate for sea level and high-latitudes is 120 atoms yr$^{-1}$ (g Fe)$^{-1}$, with an uncertainty of $\sim 15\%$. This value is about 30% lower than that reported in an earlier modeling study [36]. Our calculations show that more than 99% of the terrestrial ^{53}Mn is produced from iron, in large measure because the concentrations of elements with $Z > 26$ were taken to be less than 1 wt.%, a situation typical for terrestrial rocks. The remaining 1% is produced by spallation reactions on manganese and copper. Neutron spallation at energies around 110 MeV dominates (est. > 95%). A small fraction (est. 3–5%) is also produced by muons. The size of the calculated production rate from iron shows that we can safely ignore primordial sources (a potential problem for ^{3}He), atmospheric sources (a potential problem for ^{30}Be, ^{21}Ne, and ^{36}Ar), and contributions from fission of U and Th (a potential problem for ^{21}Ne).

4. Discussion

4.1. Strengths of ^{53}Mn vis à vis other terrestrial cosmogenic nuclides

If manganese and iron were to behave conservatively in all minerals, then ^{53}Mn would be useful for rock chronometry wherever iron concentrations and production rates integrated over time were appreciable. Our data indicate that iron and manganese were conserved in the set of samples that we used to produce the first empirical calibration of the terrestrial ^{53}Mn production rate. Nishiizumi et al. [37] reported that Fe and Mn behaved conservatively in mineral fractions of Antarctic meteorites that had undergone different degrees of weathering. We conclude that in the Antarctic, manganese and iron seem to be conserved in surface rocks over time-scales relevant for cosmogenic dating studies. How well these observations generalize to other environments remains to be seen. Geochemists have known for a long time that manganese mobilizes easily under conditions of low pH and low oxygen availability [38], which would allow for fractionation. The size of the fractionation effect may be either small or localized, however, Jeon and Lee [39] studied the evolution of a soil column from granitic bedrock. They found that iron and manganese ‘remained immobile during chemical weathering,’ although they then point out that manganese concentrates at the bottom of the soil column. We anticipate that ^{53}Mn will be most reliable where weathering is slow, pH high, and oxygen readily available or water excluded.

Under such conditions ^{53}Mn dating should have particular advantages, some of which are complementary to those of terrestrial cosmogenic nuclides that are already widely used (^{10}Be, ^{26}Al, ^{36}Cl, ^{14}C, ^{3}He, and ^{21}Ne). First, for the measurement of in situ ^{10}Be, ^{26}Al, and ^{14}C, the preparation and analysis of quartz mineral separates is strongly preferred. For ^{53}Mn, as for ^{36}Cl, most whole rocks are suitable. Second and as noted above, the production of ^{53}Mn in whole rock samples is dominated by spallation from the single target element, iron, and is therefore much simpler than the complex whole rock production pathways for ^{36}Cl [40–42]. The relative simplicity of the production rate systematics should help in interpreting measurements and in comparing results for different samples. Third, the ^{53}Mn method can be applied to exposure time-scales exceeding 10 My. Fourth, since there is no significant non-cosmogenic source of ^{53}Mn, no sample decontamination or data deconvolution is necessary. Fifth, the chemical procedure to extract manganese from whole rock is relatively simple, making the sample preparation quick and relatively inexpensive. We expect a combination of additional production rate cross-calibration studies using different TCNs, laboratory cross-section experiments, and theoretical calculations will soon result in more accurate production rate estimates for ^{53}Mn.

The ^{53}Mn method introduced here is expected to be relevant to various earth scientific applications. In this
study, ^{53}Mn has been used to date surface exposures from 1–7 My. This timeframe can be straightforwardly extended up to 15 My. The combination of the long-lived radionuclide ^{53}Mn with cosmogenic noble gases should be useful for deciphering long-term geomorphic processes in slowly denuding landscapes. Erosion rates on time-scales of 10 My can now be quantified. Burial histories of bedrock subjected to lengthy periods of exposure and burial can now be reconstructed. Obvious targets for this approach include the bedrock underlying the ice-shields of Greenland and Antarctica, where the ^{53}Mn-technique can contribute to understanding when and for how long the polar continents were ice free in the recent geological past.

The new AMS ^{53}Mn technique is also expected to be relevant to the meteorite community [23,43]. The higher sensitivity would be of interest for very small samples and eventually might allow ^{53}Mn analysis of cosmic dust and other materials returned from space missions.

4.2. Current limitations of the ^{53}Mn method

Although several factors constrain the ^{53}Mn method as presented here, the most significant one is the counting rate of ^{53}Mn, typically 1 cpm for a sample with a $^{53}\text{Mn}/^{55}\text{Mn}$ ratio of $1 \cdot 10^{-12}$, 500 cpm for a standard with a $^{53}\text{Mn}/^{55}\text{Mn}$ ratio of $3 \cdot 10^{-10}$, and 0.03 cpm for a blank with a comparable Cr content than our samples. For practical counting times – on the order of 1 to 2 h – these rates translate into a statistical uncertainty of $\sim 15\%$ for Antarctic surfaces at 1000 m altitude containing 7 wt.% Fe and 0.2 wt.% Mn, that have been continuously exposed for 1 My. In addition, there is a systematical uncertainty between 5 and 10%. The uncertainty decreases as exposure duration, altitude, and iron content increase or Mn content decreases. We present calculations of expected $^{53}\text{Mn}/^{55}\text{Mn}$ ratios in a few specific types of sample in Section 5.

In principle, an overall reduction in uncertainty could be attained by counting for longer times, but only at appreciable cost in accelerator time. With accelerator time scarce and costly, this option is unlikely to be exercised except for samples of unusual scientific importance. Omission of ^{55}Mn carrier would facilitate AMS by raising the $^{52}\text{Mn}/^{55}\text{Mn}$ ratio. However, it would also require processing a larger sample mass to achieve the minimum of the few mg of Mn needed for AMS analysis. This would add to the difficulty of the chemical separation of manganese from rock samples on the order of 10 g or more.

On the accelerator side, improvements in counting rates may be achievable by improving transmission, increasing the ion source current and by decreasing the background due to Cr. Currently about 70–80% of the ‘good’ ^{53}Mn counts are rejected to suppress the ^{53}Cr background. Lower chromium levels would directly improve statistics and lower uncertainties. Our group is currently working towards these ends.

4.3. Geomorphologic implications

The agreement between cosmogenic ^3He and ^{53}Mn data presented here has implications for the ongoing discussion about the long-term landscape stability of the Dry Valleys. The very old cosmogenic noble gas exposure ages of the Dry Valleys samples were used to support the argument towards a stable East Antarctic Ice Sheet throughout the Pliocene period [15]. This is challenged by the controversial view that the EAIS melted almost entirely about 2.5–3 My ago (e.g. [44]) in response to the mid-Pliocene warm period, an apparent contradiction to the high exposure ages. However, the high cosmogenic noble gas concentrations of these surfaces could have been accumulated during several periods of exposure, at their current position or elsewhere, that were interrupted by periods of burial, e.g. by the EAIS. In this case the old noble gas exposure ages would not contradict a rather stable and fluctuating EAIS during Pliocene time. With the addition of a radionuclide measurement, however, it becomes possible, in principle, to identify samples that were exposed/buried intermittently. Such samples should show lower ratios of ^{53}Mn to stable cosmogenic nuclides than continuously exposed samples, since the radionuclide decays during the coverage while the concentrations of stable cosmogenic nuclides remain constant.

The observed agreement of the cosmogenic ^{53}Mn and noble gas concentrations argues against a significant burial time of these surfaces of 1 My or more. The data supports a simple and continuous exposure history of the Sirius Group and Inner Dry Valley bedrock surfaces. Exposure ages assign indeed minimum ages to the surface formation, ranging from more than 1 My for the Labyrinth, over approximately 5.4 My for the Insel Mountains to at least 6.8 My and 4.4 My for the Sirius Formations on Mt. Fleming and Mt. Feather, respectively. Therefore, this calibration study of terrestrial ^{53}Mn, in turn, supports the earlier geomorphic conclusions towards long-term stability of the EAIS given in [15], that were based on the cosmogenic noble gas data.
5. Conclusions

By using accelerator mass spectrometry, we have determined the concentrations of ^{53}Mn in Antarctic surface rocks with cosmogenic noble gas exposure ages ranging from 1.2 My to 7.6 My. In general, the ^{53}Mn concentrations increase with noble gas exposure age in the way one would expect if the sampled surfaces had simple histories of exposure to cosmic rays, a single stage of cosmic-ray irradiation in a fixed geometry. Regression analysis of these data with adjustments for altitude leads to an average ^{53}Mn production rate at sea level and high latitude of $103 \pm 11 \text{ atoms yr}^{-1} (\text{g Fe})^{-1}$. The experimental determination of the terrestrial ^{53}Mn production rate agrees well with a theoretically derived value of $120 \pm 18 \text{ atoms yr}^{-1} (\text{g Fe})^{-1}$.

Due to the abundance of Fe in rocks, ^{53}Mn, in principle, should be measurable in whole rock samples from most lithologies. The dating time-scale for ^{53}Mn is lithology dependent. Rocks with higher Fe/Mn ratios such as basalt and gabbro are preferable because they have higher intrinsic $^{53}\text{Mn}/^{55}\text{Mn}$ ratios, which are easier to measure by accelerator mass spectrometry. For example, a 5 g sample from basaltic rock (Fe \approx 9 wt.%, Mn \approx 0.14 wt.%) exposed for 0.5 My in Antarctica at 1500 m altitude would yield about 7 mg of manganese and a ratio of $^{53}\text{Mn}/^{55}\text{Mn}=2 \cdot 10^{-13}$, i.e. would be detectable. Quartz-bearing rocks are attractive because they permit multi-nuclide dating with ^{53}Mn in concert with ^{10}Be, ^{26}Al, and ^{21}Ne. With the same parameters as above, however, a granitic sample (Fe \approx 1.9 wt.%; Mn \approx 0.04 wt.%) would yield only 2 mg of manganese and a ratio of $^{53}\text{Mn}/^{55}\text{Mn}=1.5 \cdot 10^{-13}$. Thus for granite rocks a mass of 10 g would be required to reach the desired sample size of 4 mg manganese without adding manganese carrier.

If we can show that mobilization of iron and manganese in rocks over relevant time-scales of millions of years or less is small even in humid environments, then earth surface processes in areas outside the polar regions, such as the Tibetan Plateau, could be investigated by the terrestrial ^{53}Mn method. A 5 g granodiorite sample (Fe \approx 3.3 wt.%; Mn \approx 0.07 wt.%) exposed for 100 ky at 4000 m in Tibet (30° N) is expected to yield 3.5 mg of manganese and a ratio of $^{53}\text{Mn}/^{55}\text{Mn}=1.0 \cdot 10^{-13}$.

We expect to further refine the terrestrial ^{53}Mn method. More production rate calibration experiments, further modelling, and experiments to refine the geochemistry as well as the AMS methods underlying this new tool are in progress. Finally, as samples brought back from Mars and other extraterrestrial bodies become available, ^{53}Mn may be, together with the cosmogenic noble gases, a valuable tool for addressing questions about geological processes on the Martian surface.

Acknowledgments

We appreciate the constructive reviews by Derek Vance and an anonymous reviewer. J.M.S. was supported by the NSF grant EAR-0345835 (CRONUS-Earth) and thanks the Comer Science and Educational Foundation for its support of this study. We are grateful to Roseanne Schwartz for her most competent help with the sample processing and Linda Baker for her assistance during the helium analysis. Work at Comenius University was supported by SGA grant and 6 F.P.grant CRONUS-EU. This is L-DEO contribution number 6959.

References
