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Biological productivity in the equatorial Pacific is relatively high
compared with other low-latitude regimes, especially east of the
dateline, where divergence driven by the trade winds brings nutrient-
rich waters of the Equatorial Undercurrent to the surface. The
equatorial Pacific is one of the three principal high-nutrient low-
chlorophyll ocean regimes where biological utilization of nitrate and
phosphate is limited, in part, by the availability of iron. Throughout
most of the equatorial Pacific, upwelling of water from the Equatorial
Undercurrent supplies far more dissolved iron than is delivered by
dust, by as much as two orders of magnitude. Nevertheless, recent
studies have inferred that the greater supply of dust during ice ages
stimulated greater utilization of nutrients within the region of
upwelling on the equator, thereby contributing to the sequestration
of carbon in the ocean interior. Here we present proxy records for
dust and for biological productivity over the past 500 ky at three sites
spanning the breadth of the equatorial Pacific Ocean to test the dust
fertilization hypothesis. Dust supply peaked under glacial conditions,
consistent with previous studies, whereas proxies of export pro-
duction exhibit maxima during ice age terminations. Temporal
decoupling between dust supply and biological productivity indicates
that other factors, likely involving ocean dynamics, played a greater
role than dust in regulating equatorial Pacific productivity.
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Spanning nearly half the circumference of Earth, the equato-
rial Pacific represents one of the ocean’s largest biogeographic

provinces (1). Discovery of prominent Pleistocene cycles of car-
bonate (CaCO3) abundance in equatorial Pacific sediments in the
1950s (2) launched one of the longest-running debates in paleo-
ceanography. Arrhenius (2, 3) inferred that maxima in CaCO3
abundance reflected greater biological productivity under ice age
conditions, when intensification of the trade winds caused by steeper
meridional global temperature gradients generated enhanced nutri-
ent supply by upwelling. This view has been supported by a variety of
complementary approaches, often based on the accumulation rate of
organic carbon in equatorial Pacific sediments (e.g., refs. 4–7). On
the other hand, studies involving microfossil preservation indices (8),
spatial patterns of CaCO3 accumulation (9, 10), and B/Ca ratios in
benthic foraminifera as an indicator of carbonate ion concentration
(11) have inferred a primary control on CaCO3 cycles by varying
deep ocean chemistry, which regulates CaCO3 preservation, leaving
unresolved the question of past variability of equatorial Pacific
productivity and the conditions that regulate it.
A plausible role for dust in affecting productivity (e.g., refs. 12

and 13) can be invoked based on the following. First, biological
utilization of major nutrients is limited by some other factor, es-
pecially in the eastern and central equatorial Pacific (14) where
nutrients upwelled at the equator may spread poleward at the
surface by more than five degrees of latitude before being com-
pletely consumed (15). Second, mesoscale iron (Fe) enrichment
experiments have been shown to stimulate phytoplankton growth in
the equatorial Pacific (16, 17). Lastly, the supply of dust, a source of
Fe, was globally higher during the ice ages than during interglacials

(18, 19), potentially reducing the growth-limiting effect of Fe
deficiency.
Here, we evaluate the link between biological productivity and

dust supply by establishing whether or not there were systematic
changes in biological productivity throughout the past five glacial
cycles, and whether these changes in productivity correlated with
dust supply, as expected for the dust fertilization hypothesis.

Results and Discussion
We track dust flux and biological productivity, measured in the
same sediment cores from the eastern equatorial Pacific [Ocean
Drilling Program (ODP) site 849; 0.2°N, 110.5°W (19), this study]
across the central equatorial Pacific [TT013-PC72; 0.1°N, 139.4°W
(19–21)] to the western equatorial Pacific [RNDP74; 0.3°N, 159.4°E
(22)] (Fig. 1 and Table S1). We primarily use the accumulation rate
of excess barium (Baxs; see Materials and Methods) to reconstruct
changes in export production, the flux of organic matter produced by
biological productivity that rains from the euphotic zone to the deep
ocean (Fig. 2). At one of the sites, TT013-PC72 in the central
equatorial Pacific, where a record of opal, an independent proxy of
export production, is available (13, 23), the accumulation rate of Baxs
follows closely the accumulation rate of opal over the past 500 ky
(r = 0.7, P < 0.001, Fig. S1). As the preservation of Baxs and opal are
both variable and sensitive to multiple, but different, environmental
factors, the correspondence of the two proxy records strongly sup-
ports their interpretation here as a robust representation of changes
in export production (see also Supporting Information).
Throughout the past five glacial cycles, dust fluxes (recon-

structed from accumulation rates of 232Th; see Materials and
Methods) at the three sites are closely correlated with δ18O of
foraminifera, which primarily tracks global ice volume (Fig. 2).

Significance

The equatorial Pacific is a key oceanographic region in Earth’s
climate system. Biological production in this region is limited, in
part, by the lack of the micronutrient iron. Atmospheric dust is
a source of iron, as is upwelling of ocean waters from below. A
longstanding question has been whether biological productivity
has responded to variable dust supply over ice age cycles. We use
geochemical proxies in three sediment cores spanning the breadth
of the equatorial Pacific to show that biological productivity did
not respond to dustier ice age conditions. Rather than atmospheric
iron supply, we infer that ocean dynamics, linking the equatorial
Pacific to nutrient supply from the Southern Ocean, played a
crucial role in regulating equatorial Pacific productivity.
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Dust fluxes are consistently about 2.5 times larger at peak glacial
conditions than during interglacial periods (19, 20).
Whereas Baxs accumulation rates show variability of a factor of

2 at each of the sites, we do not observe systematically greater
export production during glacial periods. Accumulation rates of
Baxs are not correlated with dust flux (Fig. 2; for scatter plots, see
Fig. S2). Given that we do not observe a systematic response of
export production to greater ice age supply of dust, we reject the
dust fertilization hypothesis for the equatorial Pacific.
The lack of a productivity response to changing dust fluxes is

consistent with our understanding of the Fe budget in the pre-
sent-day equatorial Pacific. Iron may be supplied to the euphotic
zone from advective and diffusive processes within the ocean as
well as by atmospheric deposition of mineral dust to the ocean
surface. Iron contribution by upwelling (Fig. 3, Fig. S3, and
Supporting Information) is found to be consistently much higher
than eolian-derived Fe contributions, identifying upwelling from
the Equatorial Undercurrent (EUC) as the principal source of
Fe to the surface waters across most of the equatorial Pacific
(24–26). Iron supply from upwelling is a factor of 20–100 greater
than eolian sources for much of the central/eastern equatorial
Pacific centered around site TT013-PC72 at 140°W (∼160°W to
115°W). In the western equatorial Pacific (∼160°E), where eolian
input is higher, and at the eastern end of our transect (110°W),
where dissolved Fe concentrations are lower, Fe input from
upwelling is about a factor of 7–10 higher than eolian supply.
Possible changes in the upwelling source or rate, as a result of
changing ocean circulation, are therefore more likely to impact
dissolved Fe supply to the surface ocean than the recorded
2.5-fold increase in dust-bound Fe deposition during glacials.
The dominant control on Fe supply by upwelling rather than

dust holds true for past climates, as shown by the lack of a
correlation (r = 0.11, P = 0.16, Fig. S4) between δ18O and the
accumulation rate of Fe (27) at TT013-PC72. Further support
comes from the Fe/Th record at core TT013-PC72 (Fig. 3). Bulk
sediment Fe/Th ratios are closely correlated to the 232Th flux
(Fig. 3B) and show cyclical variability between typical crustal

Fe/Th ratios [∼3,200 (28)] at maximum glacial conditions, when
eolian input was the highest, and increased Fe/Th ratios during
interglacial times. The enriched Fe/Th ratio requires an addi-
tional Fe source independent from eolian input, and we interpret
this source to be upwelled dissolved Fe from the EUC, with a
possible contribution from Papua New Guinea (PNG) volcanics
carried eastward across the equatorial Pacific.
At TT013-PC72, multiple linear regression modeling of trace

element and isotope data shows an upper limit for the contribution
to total lithogenic deposition from PNG volcanics of 30% during
the Holocene, and a much lower contribution during the Last
Glacial Maximum and earlier glacial stages (29). In the following,
we consider two limiting end-member scenarios to estimate the
supply of Fe by upwelling (Fig. 3C and Supporting Information). For
a constant maximum PNG lithogenic input, the best fit to the 500-ky
time series Fe and Th data at 140°W requires a source of dissolved
Fe from upwelling of 117 ± 7 μmol·m−2·y−1. Assuming no PNG
supply of lithogenic material, the best fit corresponds to 167 ±
8 μmol·m−2·y−1. This sediment-based estimated range of dissolved Fe
from upwelling by the EUC (Fig. 3C) is consistent with the modern
hydrographic constraints of Fe upwelling (gray box at 140°W in Fig.
3A) and provides independent support for upwelling rather than
dust as the dominant control on Fe supply in the equatorial Pacific.
The main feature in the record of export production across the

equatorial Pacific is repeated increases in export productivity cen-
tered at glacial terminations (I, II, and IV; Figs. 4 and 2). Deglacial
productivity maxima are consistent with previously observed peaks
in opal flux at glacial terminations in the central equatorial Pacific
(23) and similar findings, based on diatom/cocolithophore ratios
(30) and carbon burial rates (31) in the easternmost equatorial
Pacific.
Phytoplankton growth and utilization of nitrate (NO3) and

phosphate (PO4) in the equatorial Pacific are colimited by Fe and
by Si (32). Most of the Fe and all of the macronutrients (N, P,
and Si) supplied to equatorial Pacific phytoplankton are delivered
by upwelling of nutrient-rich water from the EUC. Therefore, the
deglacial productivity maxima must reflect either an increase in the
nutrient content of EUC water or an increase in the rate at which
EUC water is upwelled into the euphotic zone.
Is there any evidence for increased nutrient concentrations of

the EUC during the deglaciation? Most of the nutrients that fuel
biological productivity in the tropical ocean, including the equatorial
Pacific, originate in the Southern Ocean, where a portion of the nu-
trient-rich deep water that upwells south of the Antarctic Polar Front
(APF) mixes northward to be entrained into Subantarctic Mode
Water (SAMW), thereby feeding the upper thermocline nutrient
source to low latitudes (33, 34). A southward displacement of the
southern westerly winds, thought to have been responsible for the
deglacial increase in upwelling of deep water south of the APF (35),
would also have raised the nutrient content of SAMW based on
historical observations (36). Silicon isotope records from core sites
in the New Zealand sector of the Southern Ocean indicate higher
nutrient concentrations in the SAMW source regions during the last
deglaciation (37). At sites in the easternmost equatorial Pacific, east
of 90°W, a deglacial peak in the nutrient content of EUCwater during
the last three ice age terminations has been inferred from the carbon
isotope composition of thermocline-dwelling planktonic foraminifera
(38, 39). The Nd isotope composition of the foraminfera from the
same site indicates an increase in supply of Southern Ocean water to
the EUC coincident with the rise in nutrient concentration (40).
Support for increased rates of upwelling during deglacial

periods of greater export production, concurrently with a rise in
the nutrient content of EUC water, comes from observations of
the spatial and temporal variability of sea surface temperature
at eastern equatorial Pacific sites (31, 41). Similarly, the ni-
trogen isotope composition of sedimentary organic matter in
the eastern equatorial Pacific indicates a deglacial minimum in
nitrate utilization coinciding with maximum export production,

Fig. 1. Location of the three cores from the equatorial Pacific. Back-
ground map shows the surface water phytoplankton pigment concentra-
tion (oceancolor.gsfc.nasa.gov/SEAWIFS), which is interpreted to reflect
primary production.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1600616113 Winckler et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600616113/-/DCSupplemental/pnas.201600616SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600616113/-/DCSupplemental/pnas.201600616SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600616113/-/DCSupplemental/pnas.201600616SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600616113/-/DCSupplemental/pnas.201600616SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1600616113/-/DCSupplemental/pnas.201600616SI.pdf?targetid=nameddest=STXT
http://oceancolor.gsfc.nasa.gov/SEAWIFS
www.pnas.org/cgi/doi/10.1073/pnas.1600616113


a situation that requires an increase in supply of nutrients by
upwelling (42).
The evidence for both increased nutrient content and increased

upwelling is limited to observations from sites in the easternmost
equatorial Pacific; unfortunately, corresponding proxy records are
not available for our sites. Nevertheless, as the EUC supplies a
uniform source of water, corresponding to uniform forcing through-
out the upwelling system, we infer that the changes presented
above for the easternmost equatorial Pacific likely extended to the
entire central and eastern equatorial Pacific. Consequently, both
factors, increased nutrient content of EUC water as well as in-
creased rates of upwelling, likely contributed to the deglacial
maxima in export production.
Although upwelled nutrients are not used immediately in the

equatorial Pacific, they are eventually consumed completely and

exported to depth as organic matter as surface waters mix poleward.
Consequently, the biological pump in the equatorial Pacific is oper-
ating at full efficiency when integrated over appropriate temporal and
spatial scales (15, 43). Neither natural variability of Fe sources in the
past nor purposeful addition of Fe to equatorial Pacific surface water
today, proposed as a mechanism for mitigating the anthropogenic
increase in atmospheric CO2 inventory, would have a significant
impact on atmospheric pCO2.

Materials and Methods
Reconstruction of Dust Supply. We use common thorium (232Th), a trace el-
ement enriched in continental crust and low in basaltic volcanic material, as
a tracer for lithogenic material, which, for cores far enough away from the
continental margins, exclusively reflects eolian dust supply (19, 44). As 232Th
has very similar concentrations in dust sources from around the world, we

A

B

C

Fig. 2. Accumulation rates (230Thxs-normalized fluxes) of excess barium (Baxs, blue) and dust (red) at the three sites across the equatorial Pacific: (A) ODP
site 849, (B) TT013-PC72, and (C ) RNDP74. Dust fluxes are converted from 230Thxs-normalized 232Th fluxes by dividing by the average 232Th concentration of
upper continental crust (10.7 ppm; seeMaterials and Methods). Accumulation rates of Baxs are not correlated with dust flux [correlation coefficients of the
Baxs and dust flux time series are 0.025 (P = 0.88), 0.18 (P = 0.014), and −0.11 (P = 0.37) in the eastern, central, and western Pacific, respectively]. The
oxygen isotope records (black lines, y axis not reversed) are included for reference and define the glacial terminations as periods of rapid decrease in δ18O
(highlighted in gray bars).
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convert to dust mass fluxes by dividing by the average 232Th concentration
of upper continental crust (UCC), 10.7 ppm (28).

Reconstruction of Export Production. We use Baxs and opal to reconstruct
variability in export production. The flux to the seabed of Baxs, the fraction of

A

B

C

Fig. 3. Iron budget of the equatorial Pacific. (A) Compilation of upwelled Fe fluxes (using Fe concentration data from refs. 26 and 48 and vertical velocities
from ref. 49; box model results from ref. 50) and eolian Fe fluxes [aerosol data from ref. 51 and Shank and Johansen (2008),* as cited in ref. 48; for details on
core top sediment data compilation, see Supporting Information] illustrating that, over much of the equatorial Pacific, the input of Fe to surface waters from
upwelling is much higher than that from eolian input. (B) Time series records of bulk sediment Fe/Th ratios (black) and 232Th fluxes (red) at site TT013-PC72 over
the past 500 ky. (C) The relationship between Fe/Th ratio and 232Th fluxes reflects mixing of an eolian component, upwelling Fe from the EUC, and possible
influence from PNG. The fit (see Supporting Information for details) requires EUC upwelling Fe fluxes between 117 ± 7 μmol·m−2·y−1 [assuming an upper limit
(29) of PNG lithogenic 232Th input of 0.015 μg·m−2·ky−1, assumed to be constant over the past 500 ky], and 167 ± 8 μmol·m−2·y−1 (assuming no sediment input
from PNG). This range of upwelling Fe supply (gray square in A) is consistent with modern hydrographic estimates of Fe upwelling fluxes.

*Shank LM, Johansen AM (2008) Atmospheric trace metal and labile iron deposition
fluxes to the equatorial Pacific during EUCFe2006. Ocean Sciences Meeting, March 2–7,
2008, Orlando, FL.
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Ba that is not associated with lithogenic input, has been empirically shown to
be strongly related to export production (e.g., refs. 45–47), because barite
forms within aggregates of decomposing organic matter. Excess barium was
calculated by subtracting the lithogenic Ba from the total Ba concentration
using a (Ba/Al)terrigeneous ratio of 0.0075 (46). Corrections for the terrigeneous
fraction are <1.5% at ODP site 849, <2.5% at TT013-PC72, and 3–8% at
RNDP74 of the total measured barium in the sediments.

We present new Baxs data from ODP site 849 and integrate these with pre-
viously published U/Th data (19), as well as previously published Fe (27), Ba (21),
and opal (23) data from site TT013-PC72, and Ba data from RNDP74 (22). Barium
at ODP site 849 was measured by inductively coupled plasma mass spectrometry
by isotope dilution at Lamont-Doherty Earth Observatory (LDEO). Data will be
made available through the National Oceanic and Atmospheric Administration
paleoclimatological data archive (National Climatic Data Center).

Reconstruction of Accumulation Rates. Accumulation rates of sedimentary
constituents (Baxs, opal, Fe,

232Th) were calculated using the 230Thxs method
(for more details, see Supporting Information). Briefly, 230Th is produced in
thewater column by the decay of 234U at a known and constant rate. Thorium has

a short residence time in the water column (20−40 y); it is adsorbed rapidly to
settling particles and deposited in sediments at a rate that is fast relative to the
timescale of lateral advection. Its scavenged flux to the seafloor can be assumed to
be approximately equal to its known production rate in the overlying water col-
umn. Fluxes of sedimentary constituents (e.g., Baxs, opal, Fe,

232Th) were calculated
as the product of the concentration of the constituent, [i], and the 230Thxs-derived
mass accumulation rate.

Statistical Correlation. Correlations between time series are indicated by
Pearson’s correlation coefficient (r).
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Reconstruction of Export Production Using Opal and Baxs Fluxes. The
correlation between fluxes of opal and Baxs at TT013-PC72
supports their use as proxies for export production (Fig. S1). Opal
and Baxs preservation in sediments is most sensitive to different
environmental variables (temperature and redox conditions, re-
spectively), so the internal consistency indicates that neither record
has been compromised by variable preservation. Finding some
scatter in the relationship is not surprising, considering that some
export of organic matter, the decomposition of which regulates the
formation of barite in the thermocline, is supported by phyto-
plankton taxa other than diatoms. Furthermore, variable silicifica-
tion of diatoms under different environmental conditions may also
have contributed to the observed scatter, but the overall good
correlation indicates that variable silicification was a secondary
factor influencing the opal flux record, if it occurred at all.
Although there is no direct proxy to constrain past changes in

silicification, indirect evidence supports the view that it was minimal,
if it occurred at all. Warnock et al. (52) found no glacial−interglacial
change in diatom preservation in eastern equatorial Pacific sedi-
ments. One would expect diatom preservation to vary with silicifica-
tion (positive correlation). The absence of any change in preservation
argues against changes in silicification. Similarly, Bradtmiller et al.
(53) showed that Pa/Th ratios are generally correlated with opal flux
in the equatorial Pacific sediment downcore records. This is ex-
pected, due to the dominant role played by opal in scavenging Pa
from seawater, but one would expect the correlation to break down
if the sedimentary opal flux was strongly influenced by variable di-
atom silicification or by variable opal preservation. Combining evi-
dence for no change in diatom preservation (52) with the evidence
for a positive correlation between opal flux and Pa/Th (53), we can
conclude that the opal flux record is not primarily influenced by
variable diatom silicification or by variable opal preservation.

The Iron Budget in the Present-Day Equatorial Pacific.Dissolved iron
(Fe) can be supplied to the euphotic zone of the equatorial Pacific
by two processes: (i) via upwelling and (ii) via deposition of
atmospheric mineral dust to the surface ocean and subsequent
dissolution.
To constrain the Fe budget of the present-day equatorial Pa-

cific, presented in Fig. 3, we compiled information available from
the literature and evaluated (i) the relative contribution of Fe
upwelling from the EUC and (ii) from atmospheric input from
dust deposition.
Upwelling iron fluxes.Upwelling Fe fluxes can be determined based
on dissolved iron concentration measurements, available from
recent cruises to the western [EUCFe2006 (48)] and eastern
[EB4, EB5 (26)] equatorial Pacific together with estimated ver-
tical velocities [although upwelling in the equatorial Pacific is
large compared with most other regions of the ocean, it is still
much too small to be measured directly (54)].
We have combined dissolved Fe concentrations from the

western and eastern equatorial Pacific in a zonal section spanning
150°E−110°W (Fig. S3A), and averaged Fe concentrations for
subsurface waters (50−100 m) for each station (Fig. S3B). At
110°W and 140°W where meridional sections are available, we
have averaged the Fe data over a 2° meridional band.
For the section from 140°W to 110°W, Palacz et al. (50) used a

box model approach together with the dissolved Fe data from
the EB4/EB5 cruise and estimated Fe upwelling fluxes on the
order of 150–750 μmol·m−2·y−1 (Fig. 3A). To expand the estimate of
Fe upwelling fluxes to the entire equatorial Pacific section from

150°E to 110°W, we have extracted the modeled vertical velocities
from the Geophysical Fluid Dynamics Laboratory’s (GFDL) Global
Coupled Climate–Carbon Earth SystemModel 2 (ESM2), averaged
for the interval 1985–2005 to filter out the high-frequency variability
(ref. 49, Fig. S3C). We infer upwelling Fe fluxes across the equa-
torial Pacific by multiplying the subsurface (i.e., 50–100 m) Fe
concentrations with the model-derived vertical velocities, averaged
over the upper (i.e., 30–80 m) water column, across the equatorial
Pacific (Fig. 3A). Although we acknowledge that the results may be
model-dependent, this approach allows for a first-order consistent
comparison of the strength of upwelled Fe input to the surface
waters of the equatorial Pacific. In the eastern equatorial Pacific,
the Fe upwelling fluxes calculated based on the GFDL ESM2
model velocities are up to a factor of 3 lower than the values de-
rived by Palacz et al. As both analyses are based on the same Fe
concentration data set (26) and performed at comparable depths in
the water column, we interpret the difference between the two
approaches to reflect a difference in the assumed upwelling rate,
thus indicating that the upwelling rates from the GFDL ESM2
model are a conservative, time-averaged estimate, compared with
the Palazc et al. box model.
Eolian iron input.We assess the atmospheric input of dissolved Fe to
the equatorial Pacific surface ocean following three independent
approaches: First, Shank and Johansen (2008)* analyzed aerosol
filters, collected during the EUCFe2006 cruise, and estimated a
dissolved Fe flux from dust of 6.6 μmol·m−2·y−1 averaged across
the 150°E to 140°W section of the equatorial Pacific. Second, we
compiled published thorium-based dust flux estimates from
sediment core tops across the equatorial Pacific. Assuming a
UCC average Fe/Th ratio of 3271 wt%/wt% (28) and an iron
solubility of 6 ± 0.9% [determined from aerosol measurements
from 4°N to 4°S from P16 cruise, cited after Kaupp et al. (26)],
we estimate dissolved Fe input from eolian dust deposition of
about 4–6 μmol·m−2·y−1 east of 160°W, and 11–22 μmol·m−2·y−1

in the western equatorial Pacific. This is consistent with modern
iron flux estimates of 3.3 μmol·m−2·y−1 for 1981–1987 from the
only aerosol station in the low-latitude Pacific on Fanning Island,
located in the western equatorial Pacific [160°W, 3.9°N (51)].
The agreement between the ship aerosol analysis, the aerosol

land station, and the core top-based reconstructions (from a
variety of cores and laboratories) is very good, particularly when
considering that these analyses integrate over very different time-
scales, short-term dust input in case of the aerosol filters and island
station vs. long-term integrated dust fluxes over centuries−millennia
for the sediment-based estimates.
Comparing upwelling iron fluxes with eolian iron fluxes. Across the
equatorial Pacific from 160°E to 110°W, the Fe contribution from
upwelling is consistently much higher than eolian-derived iron
contributions, indicating that upwelling from the EUC is the
principal source of iron to the surface waters of the equatorial
Pacific (Fig. 3A). The difference between the two sources is
highest in the middle section of the transect (160°W to 115°W)
where the upwelling Fe flux is 20 to >100 times higher than the
eolian contribution.
In the western (160°E) and eastern (110°W) equatorial Pacific,

the relative difference is somewhat smaller, but upwelling fluxes
remain about a factor of 7–10 higher than eolian input. We note
that, in the eastern equatorial Pacific, between 115°W and
110°W, Fe concentrations drop off relatively abruptly. We do not
have an extended data set for dissolved Fe east of 110°W to
explore the iron budget. However, we note that the flux of dust
to the equator at ∼86.5°W, evaluated using an approach similar
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to that used here, is about 3 times greater than the flux we de-
termine at 140°W (41). If the trend of eastward decreasing dis-
solved Fe concentrations shown in Fig. S3A continues eastward,
then dust may supply an increasing portion of the total Fe
available to phytoplankton. We suggest that additional con-
straints are needed in the easternmost part of the equatorial
Pacific to assess the role of ice age dust in regulating the pro-
ductivity of the ecosystem in that region.
Iron sources constrained by sediment composition.As shown in Fig. 3 B
and C, the Fe/Th ratios measured at core site TTN013-PC72 are
closely correlated to the 232Th flux (Fig. 3B) over the past 500 ky
and show cyclical variability between low Fe/Th ratios at 232Th
flux maxima (glacial conditions) and high Fe/Th ratios at 232Th
minima (interglacial conditions). Measured Fe/Th ratios at times
of maximum dust flux approach values for average UCC (3,271),
which is expected if the main source of dust to this site is from
East Asia (29, 55). Therefore, some source other than Asian dust
must supply a major portion of the Fe accumulating in these
sediments, and the proportional contribution from the other
source(s) must be greatest during interglacial periods of mini-
mum dust supply.
One possibility is that all of the nondust Fe is delivered as

dissolved Fe transported by the EUC. The other end-member
situation is that sediment with a much greater Fe/Th ratio is
delivered to the site by the EUC (or by other currents). Sediment
from PNG is a likely candidate, both because of its high Fe/Th
ratio [∼20,000 (29, 56, 57)] and because transport of PNG sed-
iment to the site of TT013-PC72 would be facilitated by the same
EUC system that delivers dissolved Fe. Although PNG has the
required high Fe/Th ratio, a simple mass balance based on Nd
isotopes informs us that the nondust Fe cannot be entirely as-
sociated with PNG sediment. As shown by Ziegler et al. (29), the
maximum contribution of PNG sources to the total lithogenic
material in TT013-PC72 is ∼30% during interglacials and much
less during glacials. This can be derived using the Nd isotopic
composition of PNG sediment («Nd ≈ +7) and that of Asian dust
sources («Nd ≈ −10), the likely source of eolian material de-
livered to the core site. Further considering that PNG sediment
and Asian dust have similar Nd concentrations (∼30 ppm), the
measured isotopic composition of lithogenic material in TT013-
PC72 («Nd ≈ −5) allows a maximum contribution of 30% PNG
sediment during interglacials, and less during glacials.
Assuming that up to three principal sources (dust, PNG sed-

iment, and dissolved Fe carried by the EUC) deliver Fe and Th to
the sediments at the site of TT013-PC72, we use the least squares
fit to the relationship between bulk sediment Fe/Th ratio and
230Th-normalized 232Th flux (Fig. 3C) to constrain the supply of
dissolved Fe carried by the EUC as well as the Fe/Th ratio of the
dust source. We evaluate these parameters for two end-member
situations: one for which there is no supply of PNG sediment and
one for which the supply of PNG sediment is constant through
time and equivalent to 30% of the total supply of lithogenic
material during interglacials (an upper limit; see above and ref.
29). In each case, the relationship has the form Y = A/X + B,
where Y is the bulk sediment Fe/Th ratio and B is the Fe/Th ratio
of dust.
In the first case, with no PNG sediment and further assuming

no significant supply of dissolved Th by the EUC, we have
�
Fe
Th

�
bulk−sediment

=
�
FFe−EUC +FFe−dust
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=
�
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Here, F refers to flux to the core site and A is the supply of
dissolved Fe by the EUC (FFe-EUC), which is estimated from
the least squares fit to be 167 ± 8 μmol·m−2·y−1.
In the second case, assuming no supply of dissolved Th by the

EUC and a constant source of PNG sediment, equivalent to 30%

of the total interglacial supply of lithogenic material to the site of
TT013-PC72, the mass balance is

�
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Rearranging the right-hand side yields
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Again, the form of the equation is Y = A/X + B and B = (Fe/Th)dust.
X is the total supply of Th to the sediment (PNG + dust), and

A=FFe−EUC +FTh−PNG ·
��
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�
dust
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We evaluate the supply of dissolved Fe by the EUC (FFe-EUC)
by rearranging the equation above after substituting the numer-
ical values for A and B [(Fe/Th)dust] obtained by best fit to the
data in Fig. 3C, the value for (Fe/Th)PNG [∼20,000 (29, 56, 57)],
and FTh-PNG (0.015 μg·m−2·ky−1), which is derived assuming a
constant flux of PNG sediment equal to 30% of the total inter-
glacial lithogenic supply and a Th content of 3.5 ppm (57). This
end member yields a lower limit for the supply of dissolved Fe by
the EUC of 117 ± 7 μmol·m−2·y−1.
The Fe/Th ratio of the dust end member, implied by the mixing

relationship in Fig. 3C, is about half of the UCC average of 3,271
(28), used above to estimate modern eolian iron fluxes.
Our estimate of the low Fe/Th ratio for the dust end member

obtained from the statistical fit to the data in Fig. 3C relies on the
assumption of a constant supply over time of sediment derived
from PNG. Instead, if the supply of PNG sediment to 140°W
decreased systematically during glacial periods or on some other
climate-related cyclicity (e.g., ref. 58), then the estimated Fe/Th
ratio of the dust end member would increase accordingly, ap-
proaching the UCC value in the absence of any input of PNG
sediment. Further work is needed to establish whether the dust
delivered to 140°W has a Fe/Th ratio roughly half that of UCC,
or if the supply of PNG sediment to 140°W varies systematically
with climate, with supply of PNG sediment decreasing, perhaps
to negligible levels, during glacial periods. In either case, as
noted above, any realistic departure from our assumption of an
UCC value for the Fe/Th ratio of dust in estimating the eolian
source of Fe to the equatorial Pacific would reduce the level of
dust-derived Fe illustrated in Fig. 3A, further widening the gap
between Fe supplied by upwelling and Fe delivered by dust.
Accordingly, using the UCC ratio for estimating the eolian iron
input from core top sediment data (Fig. 3A) provides a conser-
vative upper limit of eolian Fe fluxes.

Reconstruction of Accumulation Rates by Thorium Normalization.
Reconstruction of accumulation rates using the 230Thxs method. Accu-
mulation rates of sedimentary constituents (Baxs, opal, Fe,

232Th)
are calculated using the 230Thxs method (59, 60). Thorium-230 is
produced in the water column by the decay of 234U at a known
and constant rate. Thorium has a short residence time in the
water column (20−40 y); it is adsorbed rapidly to settling parti-
cles and deposited in sediments at a rate that is fast relative to
the timescale of lateral advection. Its scavenged flux to the
seafloor can be assumed to be approximately equal to its known
production rate in the overlying water column. Sedimentary
concentrations of 230Thxs are therefore inversely proportional to
the vertical rain rate of sediments.
The 230Thxs-normalized mass accumulation rate (MAR) for

each sample is
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MAR=
β · z

½230Thxs�

where β is the constant 230Th production rate in seawater, z is the
water depth in meters, and [230Thxs] is the measured 230Th ac-
tivity after corrections for 230Th supported by 238U in detrital
sediments, 230Th supported by authigenic 238U precipitated from
seawater, and radioactive decay since deposition.
Fluxes of sedimentary constituents (e.g., Baxs, opal, Fe,

232Th)
are calculated as the product of the concentration of the con-
stituent, [i], and the mass accumulation rate,

F = ½i� ·MAR.

Our analysis of 230Thxs-normalized accumulation rates is limited
to proxies in the fine fraction of the sediments, which is not
sensitive to the recently reported fractionation of coarse (car-
bonate) fraction during sediment redistribution (61). We also
note that the consistency of correlations (and lack thereof)
across the equatorial Pacific illustrates that this is not a specific
effect at any one site but a consistent pattern observed across
varying regimes of the entire tropical Pacific.
The 230Thxs normalization method offers several advantages

over stratigraphic accumulation rates (59, 60), which rely on the
mass of sediment accumulated between age control points. Most
significantly, the 230Thxs normalization method corrects for syn-
depositional redistribution of sediment by deep-sea currents
(sediment focusing). The method does not require knowledge of
in situ sediment density, and it is relatively insensitive to small
(few kiloyears) errors in age control points. Lastly, the 230Thxs
normalization method allows the evaluation of preserved sedi-
ment flux at every sample depth, in contrast to the stratigraphic
accumulation method, which provides average accumulation
rates between each pair of age control points.
Comparison with stratigraphy-derived results. Our 230Th-normalized
results are inconsistent with previous work inferring large max-

ima in export production during peak glacial conditions based on
stratigraphic Baxs (and barite) bulk MARs (BMARs) (6), i.e.,
accumulation rates derived from linear sedimentation rates cal-
culated between δ18O-dated depth horizons. We reproduce
pronounced changes in stratigraphy-based Baxs fluxes at all three
sites (Fig. S5), similar to the previously reported results at
TTN013-PC72 (6). We also find that the Baxs BMARs are
strongly correlated to stratigraphic 232Th BMARs (for scatter
plots, see Fig. S2 D−F). However, these correlations disappear
when the proxy concentrations are normalized to 230Thxs (Fig. 2
and Fig. S2 A−C), and there is consistently no correlation be-
tween export production and dust input. Similarly, strong links
between opal BMAR and iron BMAR have been inferred (13)
based on stratigraphic mass accumulation rates (BMARs, Figs.
S4E and S6B). The correlation disappears when opal and iron
are normalized to 230Th (Figs. S4B and S6A).
We hypothesize that the correlation between the stratigraphic

accumulation rates of Baxs and
232Th (Fig. S2 D−F), as well as

the correlation between the stratigraphic accumulation rates of
iron and opal (Fig. S4E), is related to a combination of the
following potential artifacts: First, because CaCO3 is the main
phase in these sediments and controls the concentrations of all
other phases, including opal, Fe, 232Th, Ba, and 230Thxs (Figs.
S6C and S7, and scatter plots in Fig. S8), variable dilution by
CaCO3 may lead to apparent correlations. Second, maxima in
stratigraphy-derived Baxs and

232Th BMARs, as well as in Fe and
opal BMARs, correspond to CaCO3 minima (Fig. S6). Loss of
CaCO3 by dissolution may impose systematic errors on the δ18O-
derived age model whereby the apparent duration of CaCO3-
poor intervals is artificially shortened by the loss of foraminifera
deposited during those periods, thus creating an erroneously
large apparent BMAR. A third potential factor is climate-related
variability in sediment redistribution (e.g., refs. 60, 62, and 63).
Normalizing the proxy data to 230Thxs avoids artifacts related

to carbonate dissolution and correctly represents vertical fluxes
that may have been modified by sediment redistribution.

Fig. S1. Correlation between the 230Th-normalized accumulation rate of excess Ba and opal at the central equatorial Pacific site, TT013-PC72. The accumu-
lation rate of excess barium follows closely the accumulation rate of opal over the past 500 ky, indicated by a correlation factor of r = 0.7 (P < 0.001). The
internal consistency, despite differing sensitivity of the preservation of Baxs and opal to deep-sea environmental conditions, supports their use as proxies for
export production.
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Fig. S2. Correlations between excess barium and dust at the three locations (A and D, ODP 849; B and E, TT013-PC72; and C and F, RNDP 74) using 230Thxs-normalized
accumulation rates (A−C) and stratigraphic accumulation rates (D−F). No significant correlations between export production and dust flux are observed in 230Thxs-
normalized rates (A−C). Positive correlations observed for stratigraphic rates (D−F) are due to artifacts related to some combination of carbonate dissolution,
sediment redistribution, or errors in age models.
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Fig. S3. (A) Zonal section of dissolved iron concentrations along the equator from 150°E to 110°W [data from Slemons et al. (48) and Kaupp et al. (26)].
(B) Averaged Fe concentrations (50−100 m), with the errors representing the SD of the data. (C) Vertical velocities (averaged over 30–80 m) from GFDL ESM2M
model (49), averaged over a 1° and a 2° meridional band. Upwelling rates are about a factor of 2–4 lower in the western equatorial Pacific than in the eastern
equatorial Pacific, with the west−east gradient being more pronounced closer to the equator (1° band) than in the 2° meridional band.
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Fig. S4. Correlation between iron and opal, and their accumulation rates at the central equatorial Pacific site TT013-PC72. Iron is highly correlated with opal
concentration (A) and calcium carbonate (D). However, 230Th-normalized opal fluxes are not correlated to iron supply (B). The apparent correlation, observed
between the stratigraphic opal and iron accumulation rate (E), is due to artifacts, related to carbonate dissolution and/or sediment redistribution. We do not
observe a significant correlation between Fe flux and δ18O over the past 500 ky (C), in contrast to 232Th flux (dust proxy) and δ18O (Fig. 2B). The absence of a correlation
between Fe flux and δ18O indicates a substantial source of Fe that is not associated with dust, which we attribute to supply by upwelling from the EUC.
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Fig. S5. Stratigraphic accumulation rates (BMAR) of excess barium (blue) and dust (red) for the three sites: (A) ODP 849, (B) TT013-PC72, and (C) RNDP 74. The
oxygen isotope records (black lines, y axis not reversed) are included for reference. Stratigraphic Baxs accumulation rates are strongly correlated to stratigraphic
dust accumulation rates but not to the climate signal. Correlation factors are indicated in each panel, all P < 0.001. The apparent correlations may be related to
a combination of the following potential artifacts: (i) variable dilution by CaCO3, the main phase in the sediments; (ii) the effect of the loss of CaCO3 by
dissolution on δ18O-derived age models (e.g., by apparently shortening the duration of CaCO3-poor intervals); and (iii) variability in sediment redistribution.
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Fig. S6. Iron and opal records from the central equatorial Pacific site TT013-PC72. (A) The 230Thxs-normalized accumulation rates of iron (red, Fe data from ref.
27) and opal (dark yellow, from ref. 23). (B) Stratigraphic mass accumulation rates (BMAR, open symbols) of iron (27) and opal (23). (A and B) Correlation
coefficients of accumulation rate time series are indicated. (C) Iron concentration (red, from ref. 27) and opal concentration (dark yellow, from ref. 23, left y
axis) vs. calcium carbonate content (black, right y axis, reversed scale). Correlation coefficients of opal (dark yellow) and iron concentrations (red) with CaCO3

content are given.

Fig. S7. Time series of Baxs (blue) and
232Th (red) at the central equatorial Pacific site TT013-PC72. The concentrations of 232Th and Baxs are dominated by

dilution with calcium carbonate (as are all other sedimentary constituents). By normalizing the proxies for dust and for productivity to 230Th, we correct for the
variable dilution with CaCO3 and can then compare meaningful fluxes of these components.
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Fig. S8. Correlation between sedimentary constituents and calcium carbonate, the dominant component of the sediments, at the central equatorial
Pacific site, TTN013-PC72. (A) Fe, (B) opal, (C) 230Th, (D) 232Th, and (E) Baxs, respectively, vs. CaCO3. All components are highly correlated with CaCO3 (see correlation
factors, all P < 0.001), indicating that dilution by variable calcium carbonate preservation is the primary control on the concentration of all components, including
lithogenic (232Th), biogenic (opal, Baxs), and authigenic (230Thxs, decay corrected to time of deposition) constituents as well as iron, which is supplied from
multiple sources.

Table S1. Core locations and data sources

Core Location Age model δ18O* U/Th isotopes Baxs Opal Fe

ODP 849 (3,839 m) 0.2°N,110.5°W (64) (64) (19) this study n/a§ n/a
TT013-PC72 (4,298 m) 0.1°N,139.4°W (27)† (21) (19, 20, 65) (21) (23) (27)
RNDP74 (2,547 m) 0.3°N,159.3°W (22) (22) (22)‡ (22) n/a n/a

*Oxygen isotope records of cores ODP849 and TT013-PC72 are from benthic foraminifera; the oxygen isotope
record of RNDP74 is measured on planktonic foraminifera.
†Age model of the upper 100 cm is based on 14C AMS dating (10).
‡U/Th data were collected in samples older than 166 ky by α-spectrometry (22) but are not reported here because
uncertainties become too large.
§Not available.
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