Pn attenuation beneath the Tibetan Plateau

Jiakang Xie

June, 2006

(Submitted to XXXX)
Pn attenuation beneath the Tibetan Plateau

Jiakang Xie

Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA, E-mail: xie@ldeo.columbia.edu

SUMMARY

Pn spectra are collected from three PASSCAL seismic experiments in the Tibetan Plateau (TP), over four path groups. The first and second path groups run southward from events in the eastern Tarim Basin (ETB), to stations in north and south central Tibet. The third and fourth path groups form two NNE-oriented profiles in the eastern TP. Events recorded by the first 2 path groups are also recorded by the Khyrghistan network (KNET) to the west. A comparison of Pn spectra averaged over both path groups and KNET reveal that mantle lid under the TB attenuates P waves more severely than central Asia, particularly at high frequencies (> 1 Hz). Apparent Q_0 and η (Pn Q at 1 Hz and its frequency dependence, respectively) are estimated with a simplified geometrical spreading of $\Delta^{-1.3}$. Over path group 1 that heavily samples northern TB, Q_0 and η are estimated to be 183 ± 33 and 0.3 ± 0.1, respectively. Over path groups 2 and 3 that sample either a mixture of northern and southern Tibet or eastern Tibet, the estimated Q_0 and η are between 250 and 270 and 0.0 and 0.1, respectively. Over the fourth path group that sample the easternmost TB the respective estimates are 374 ± 51 and 0.3 ± 0.1, similar to the estimates of 364 and 0.5 for central Asian paths.
from ETB to KNET. A comparison of Pn attenuations in continental regions suggest that they are similar in the easternmost TB, central Asia, Scandinavia and Canadian shield. Northern Tibet has the highest attenuation at all frequencies. Pn attenuation under southern Tibet is similar to the shield regions at low frequencies (≤ 1Hz), and similar to northern Tibet at higher frequencies (up to 4 Hz). It appears that a southward increase in the lid temperature causes increases of both Pn velocity and low-frequency Pn Q, but causes no change of high-frequency Pn Q. This phenomenon may be best explained by a propagation mechanism in which Pn traverses the lid as a single, deep refraction at low frequencies, and as multiply bounced and scattered ("whispering-gallery") rays at high frequencies.

Abbreviated title: Pn attenuation in Tibet

Keywords: Tibetan Plateau, P waves, attenuation, Q, seismic spectra, upper mantle

1 INTRODUCTION

Pn is the first arriving high-frequency seismic phase at regional distances between about 2-15°. It is an important phase to be used in location, identification and size-estimate of seismic events, and in inferring the velocity and attenuation structures of the Earth’s uppermost mantle. At close distances Pn is much like a mantle head wave, which evolves into a mantle turning wave with increasing distance (*e.g.*, Sereno and Given, 1990). This peculiar wave evolution causes the features of Pn, such as its ray geometry, travel time and amplitude vary with distance in manners that are highly dependent on the velocity
gradient in the mantle lid. Simplifications to these variations are typically introduced when Pn is used to study the velocity and attenuation structures of the mantle lid. Pn arrival times have been extensively used to study the lateral variations of compressional wave velocity (v_p) in the lid (e.g., Hearn et al., 1986). Most studies have ignored effects of the mantle velocity gradient and treated Pn as a pure head wave at all distances. A few studies, such as Zhao and Xie (1993) and Hearn et al. (2004) accommodated the first-order effect of velocity gradient and obtained v_p models that vary both laterally and vertically in the mantle lid.

Few studies have been conducted to use Pn amplitude to estimate its attenuation, or Q. A fundamental difficulty in estimating Pn attenuation is caused by the lack of knowledge of the geometrical spreading term (G.S.T.), which describes the Pn amplitude fall-off with distance owing to the wavefront expansion in the mantle lid. The Pn G.S.T. is very sensitive to details of the lid velocity structure. Sereno and Given (1990) and Xie (1996) estimated the G.S.T. of Pn for Scandinavia and central Asia using synthetic seismograms calculated for various 1D velocity models. They found even for these simplified models the G.S.T. varied with distance and frequency in rather complex manners. In the real, 3D Earth structure even more complications are expected. For example, scattering and multiple bouncing (whispering-gallery) processes may affect the Pn wavetrain (e.g., Menke and Richards, 1980, 1983). To tackle the uncertainty in G.S.T., different parameterizations have been used in studies of Pn amplitude attenuation. Sereno et al. (1988) and Xie and Patton (1999) assumed a simplified, frequency independent G.S.T. of $\Delta^{-1.3}$ and estimated models of Pn Q ($Q(f)$) in Scandinavia and central Asia. They assumed a power-law frequency dependence of Pn Q,
\[Q(f) = Q_0 f^{-\eta}, \]

where \(Q_0 \) and \(\eta \) are Pn Q at 1 Hz and its frequency dependence, respectively. They obtained similar \(Q_0 \) values of 325 and 364, and \(\eta \) values of \(-0.5\) for the two regions. Zhu et al. (1991) simultaneously estimated a frequency-dependent G.S.T. and \(Q(f) \) for Canadian shield. Other authors such as Tinker and Wallace (1997), who studied Pn attenuation at near-regional distances within about 350 km, simply parameterized Pn attenuation by a single G.S.T. without Q.

The mantle lid under the Tibetan plateau (TP) is known to have highly laterally variable P wave velocities \((v_p) \). Zhao and Xie (1993), McNamara et al. (1997) and Hearn et al. (2002) used Pn arrival time data to invert for the laterally varying \(v_p \) models. Their \(v_p \) models contain grossly similar features such as a zone of low \(v_p \) under northern TP, and high \(v_p \) under much of southern TP. Ni and Barazangi (1983) and McNamara et al. (1995) also found that the Sn wave, which is the shear wave that traverses the mantle lid similarly to Pn, seemed to suffer abnormally high attenuation under northern TP. These findings are used to infer that the mantle lid is hot and partially molten under a broad region in northern TP, and cold under southern TP. Results of Pn and Sn studies contributed to the development of geodynamic model in which the Indian lithosphere under-thrusts in southern TP (Nelson et al., 1996), and subducts into the mantle further south, along the latitude of \(-32^\circ\)N (Tilmann et al., 2003).

Measurements of Sn attenuation under TP has been conducted by qualitatively comparing the amplitudes of Sn and P coda. The interpretation of the low Sn attenuation is also complicated by the possibility of an abnormal Poisson ratio in the mantle lid (Ni and Barazangi, 1983; McNamara et al., 1995, XXX Owens?). The amplitude spectra of
the Pn wavetrain can be quantitatively calculated at the distances where Pn is the first arrival. In this paper we present analyses of the attenuation of Pn spectra recorded during three PASSCAL experiments in TP. We first analyze Pn spectra from three events that occurred in 1994 or 1999 in the Lop Nop Nor Test Site (LTS) of eastern Tarim Basin, which are simultaneously recorded by the INDEPT (International Deep Profiling of Tibet and the Himalaya) II or III stations to the south crossing the TP, and Khyrghistan network (KNET) to the west crossing eastern Tienshan. A comparison of raw Pn spectra recorded by the INDEPT and KNET stations provides direct evidence that the mantle lid under the TP is more attenuative than that under eastern Tienshan at high frequencies (≥ 1 Hz). We then quantify the Pn attenuation along paths to INDEPT networks by estimating apparent Pn Q under a simplified G.S.T. and omega-square source models. This is followed by two-station measurements of apparent Pn Q along two PASSCAL profiles in eastern Tibet, deployed during the 1991-1992 Tibetan Plateau experiment. We report a spatial trend for the apparent Pn Q_0 to be low in north central TP, and to increase both southward and eastward. This trend correlates with the spatial variation of apparent Pn velocity measured in previous and this studies. Finally we compare the total Pn attenuations reported for various continental regions in the world, by taking into account both the G.S.T. and Q model. We find that in Canadian and Sacndenavian shields, central Asia, and easternmost TP where Pn velocity is high (≥ 8.0 km/s), the total Pn attenuations are similar to one another and much higher than that under the northern TP. The simplest explanation of this regional variation of the total Pn attenuation is that the variation is primarily controled by the variation in the intrinsic Q_p in the uppermost mantle, a quantity that is very sensitive to temperature variation. A regional variation of G.S.T. only plays a secondary role in affecting the Pn attenuation.
2 DATA PROCESSING

Figure 1 shows all seismic stations in Tibet deployed during the three PASSCAL experiments. The 1991-1992 Sino-US Tibetan Plateau experiment consisted of 11 broad-band stations that were deployed between July, 1991 and July, 1992 (Owens et al., 1993), in the eastern part of the Tibetan plateau. The INDEPTH II experiment was conducted in southern Tibet between May and October, 1994 (Nelson et al., 1996), with 15 broad-band and short-period stations deployed along an NNE-oriented profile. The INDEPTH III experiment was conducted in central Tibet between July, 1998 and June, 1999. Forty-seven broad or intermediate band and 15 short-period stations were deployed along a profile across the Banggong-Nujiang Suture (BNS) in a NNW direction (Figure 1; also c.f. Rapine et al., 2003). Stations in all three experiments are three-component, with sampling rates of 20 s\(^{-1}\) or higher. Figure 1 also shows the locations of regional events used in this study. Figure 2 shows an example of the record sections containing Pn.

To obtain stable estimates of Pn amplitude spectra, a finite-length Pn wavetrain that includes Pn coda must be used (Sereno et al., 1988; Zhu et al., 1991; Xie and Patton, 1999). In this study we follow the procedure by these authors to compute average spectra of Pn and Pn coda, using spectra from a series of overlapping windows applied to the vertical-component seismograms. These windows have a constant length of 4.5 s, a 20% taper and 50% overlap. Only spectra with signal to noise ratios larger than 2 are used. The maximum number of the windows for a given seismogram is determined by the following criteria: (a) the total length of Pn wavetrain sampled does not exceed 12.5 s (i.e., the maximum window number is 5), (b) at closer distances (\(\Delta < 1000\) km) the last window does not include signals with group velocities slower than 6.6 km/s, so the crustal Pg wave is
not sampled; and (c) at large recording distances (Δ~1500 km) the last window does not include the possible reflections from the 440 km and 660 km discontinuities, previously observed in Tibet (8301 Program Group, 1988). Figure 3 shows an example of the windows used, and the resulting individual and average Fourier spectra of the Pn wavetrain. The effect of ambient noise is reduced by subtracting the signal power by the noise power. Instrument responses are then removed. We shall refer to the average spectra thus calculated for the Pn wavetrain as "Pn spectra" in the rest of the paper.

3. PN SPECTRA FROM EVENTS IN THE EASTERN TARIM BASIN

3.1 Spectra from the 1994 explosions

During the INDEPTH II experiment, two underground nuclear explosions occurred in the Lop Nor Test Site of eastern Tarim Basin (Figure 1). Pn wavetrains are recorded by all 12 operational INDEPTH stations for the October 7 (Mb~6) explosion (Figure 2), and by 7 stations for the June 10 (Mb=5.7) explosion. Pn spectra from both explosions were also recorded by the Khyrgihstan network (KNET) to the west (Figure 1), and studied by Xie and Patton (1999). The paths to the KNET stations traverse to the eastern Tienshan. In comparison, the paths to the INDEPTH II network run southward and sample the TB. Both groups of paths have similar, far-regional distances between about 1050 and 1550 km (Figure 1). Any anisotropic radiation patterns are expected to be minimal for the Pn wavetrain. Therefore we may directly compare the Pn spectra to see the gross attenuation effect of the mantle lid under Tienshan and the Tibetan Plateau. The top two rows of Figure 4 show the Pn ground displacement spectra from both explosions, scaled by Δ\(^{1.3}\) to reduce the effects of G.S.T.
A prominent feature of the Pn spectral amplitudes from both explosions is their variability within the networks, particularly within the KNET. Both networks have apertures of less than about 350 km compared to the average path lengths of > 1050 km. Yet the sample standard deviation is typically at the level of \(\sim 60\% \) of the averaged spectra for the KNET stations, and range between \(\sim 60\% \) (at frequencies < 1 Hz) and \(\sim 30\% \) (at frequencies > 1 Hz) for the INDEPTH stations. For both networks the amplitude variations are not monotonic with distance, so path attenuation from finite Q is not the primary cause of the variations. Xie (1996) and Xie and Patton (1999) concluded that the most likely cause for the drastic Pn amplitude variations across the KNET is a laterally varying Moho topography that likely occurred along the Tienshan range. Xie (1996, 2003) conducted ray tracings in 2D velocity models for Central Asia in and around the Tienshan region to demonstrate the potential effect of a Moho topography. Significant amplitude variations of Pn over short distance ranges seem to be common in other mountainous regions in the world (e.g., Tinker and Wallace, 1997) The use of a finite duration wave train to calculate Pn spectra has not sufficiently suppressed its variability. Therefore to study the gross effect of whole-path attenuations, we take the network average of Pn spectra, as shown in the right columns of Figure 4.

The network-averaged Pn spectra from the well recorded, October 7 explosion (top right panel of Figure 4) start at similar levels for KNET and INDEPTH II at the lowest frequency (\(\sim 0.4 \) Hz). With increasing frequency the average spectrum from the INDEPTH II network rapidly falls below that from the KNET. At \(\sim 1 \) Hz the separation between the two spectra reaches a factor of 4. At higher frequencies the separation increases monotonically with frequency and overwhelms the variabilities within the
networks as measured by the standard deviations. At 4 Hz (the highest frequency available for INDEPTH spectra), the separation reaches a factor of \(\sim 35 \). Network averaged spectra from the June 10 explosion (right panel of row 2 of Figure 4) have a similar, frequency-dependent separation, although the smaller event size causes both fewer recordings and narrower recording bands. Since the recording distances to KNET and INDEPTH networks are similar, the frequency dependent separations between the network-averaged Pn spectra from both explosions means that Pn attenuations under the Tibetan plateau and Tienshan are similar at low frequencies (\(\sim 0.4 \) Hz), but become increasingly different with increasing frequency.

3.2 Spectra from the 1999 earthquake

Event "99.030" in Figure 1 is an \(m_b = 5.9 \) earthquake on January 30, 1999, which nearly colocated with the 1994 explosions. The event is simultaneously recorded by 10 KNET and 38 INDEPTH III stations. Of the latter, 35 are deployed along a main profile that crosses the BNS, and 3 are deployed on the BNS but outside the main profile (Figures 1 and 5). Pn velocity analyses reveal that the BNS is an approximate boundary separating regions of abnormally slow and fast mantle lid velocities (Zhao and Xie, 1993; McNamara et al., 1997; Hearn et al., 2002; Xie, 2003). So in this study we have divided the INDEPTH III stations into two groups. Group 1 (denoted as III-1) contains stations south of the BNS and group 2 (denoted as III-2) contains 23 stations north of, and on, the BNS (Figure 5). Rows 3 and 4 of Figure 4 show the Pn spectra from KNET and the two groups of INDEPTH III stations. As in the case of Pn spectra from the explosions (top two rows in Figure 4), the spectra from earthquakes (bottom two rows) also exhibit substantial variations within each network, particularly the KNET. The averages of Pn spectra from
KNET and INDEPTH III stations also exhibit a frequency-dependent separation, indicating more severe attenuation of the Tibetan mantle lid at higher frequencies. There are also notable differences between explosion and earthquake spectra. For example, the explosion spectra contain spectral overshoots near the source corner frequencies (e.g., above 1 Hz for the October 7 explosion). The earthquake spectra (bottom rows) exhibit no overshoot and decay more gently (see Xie and Patton, 1999 for a detailed discussion).

4. STOCHASTIC MODELING OF PN SPECTRA

To quantitatively estimate Pn Q and source spectra, we use the stochastic modeling of Pn spectra used by Sereno et al. (1988) and adapted by Xie and Patton (1999). For convenience we briefly summarize the modeling here. We assume that Pn spectra, $A(f)$, can be modeled by

$$A(f) = S(f)R(\theta)G(\Delta)\exp\left(-\frac{\pi f \Delta}{VQ(f)}\right)X(f), \quad (2)$$

where θ, Δ, V are the azimuth, distance and Pn group velocity, respectively. $Q(f)$ is Pn Q (equation (1)). $R(\theta)$ is the source radiation pattern. $X(f)$ is an error term that represents systematic errors such as a non-unity site response, and random errors caused by amplitude fluctuation. $S(f)$ is the Pn source spectrum, which is given by the Brune’s model and Modified Mueller-Murphy (MMM) model for earthquakes and explosions, respectively (equation (2) of Xie and Patton, 1999). Both models have f^{-2} asymptotic decays at high-frequencies, and are grossly characterized by a seismic moment (M_0) and corner frequency (f_c). The MMM model for explosions also has a spectral overshoot controlled by a parameter β, which is set as 1.0 by Xie and Patton (1999). In equation (2), $G(\Delta)$ is the geometrical spreading term (G.S.T.) and takes the form,
\[G(\Delta) = \Delta_0^{-1} (\Delta_0/\Delta)^m \]

where \(\Delta_0 \) is a reference distance, and \(m \) is the decay rate of \(A(f) \) at large distances \((\Delta > \Delta_0) \). As mentioned in the Introduction, a well known problem in modeling Pn is that the values of \(\Delta_0 \) and \(m \) are uncertain because of the unknown details of the lid velocity structure. Based on theoretical and empirical considerations, Sereno et al., (1988) used \(\Delta_0 \) and \(m \) of 1 km and 1.3, respectively, for Scandinavia. Xie (1996) found that these values were also within the ranges obtained using synthetic Pn waveforms in various 1D velocity models for central Asia. Therefore Xie and Patton (1999) used these \(\Delta_0 \) and \(m \) values to study Pn spectra from several nearly colocated explosions in the Lop Nor Test Site (LTS), recorded by the KNET in the west, and the Kazakhstan network (KZNET) in the north. To obtain robust source and path parameters, Xie and Patton first estimated source \(f_c \) and path-variable Pn Q using the empirical Green’s function and composite event methods, respectively. These estimates were then input as a priori knowledge to an Bayesian inverse method to measure \(M_0 \) and refined \(f_c \) values for all explosions. The Pn Q values by Xie and Patton (1999) are apparent because they are obtained with the specific geometrical spreading. These values are robust and will be used as a priori knowledge in this study (next section).

5 ESTIMATES OF APPARENT PN Q TO INDEPTH STATIONS

The October 7 explosion was recorded by 8 KNET stations. The average \(Q_0 \) and \(\eta \) to these stations were estimated to be 381 and 0.4, respectively (Xie and Patton (1999)). We input these values to the Bayesian method to estimate source \(M_0 \), \(f_c \) path-variable \(Q_0 \) and \(\eta \) values to the INDEPTH II stations (Equation (2), also see equation (13) of Xie and Patton, 1999). Figure 6 (row 1) shows the fit of the resulting source spectral and path Q
models to the observed spectra from the INDEPTH II network and KNET. The estimated M_0, f_c values are the same as those previously obtained by Xie and Patton (1999; 3.2×10^{15} Nm and 2.6 Hz, respectively). The estimated average Q_0 value to the INDEPTH II stations is 253 ± 53, which is about 30% lower than the value of 364 to all 12 KNET stations estimated by Xie and Patton (1999). The average η to INDEPTH II stations is 0.0 ± 0.1, which is much lower than the average η of 0.5 estimated to the KNET stations. The June 10 explosion is relatively poorly recorded, in narrower frequency bands and by fewer stations (Figure 4). We are not confident at estimating Q using that event.

Earthquake 99.030 was recorded by all 12 KNET stations and 38 INDEPTH III stations. We assume that for this earthquake the source radiation pattern ($R(\theta)$ in equation (2)) does not vary significantly to the former and latter stations. This assumption is justified quantitatively in APPENDIX A. The assumption allows us to use the average Q_0, η values to KNET estimated by Xie and Patton (1999; 364 and 0.5, respectively) as a priori information in the Bayesian inversion in the same way as we did for explosions. The resulting estimates of source M_0 and f_c values are 2.49×10^{16} Nm and 0.8 Hz, respectively. The average Q_0 and η values to the southern station group, III-1, are estimated to be 255 ± 48 and 0.1 ± 0.1. These values are similar to those to the INDEPTH II stations estimated above. By contrast, the average Q_0 and η values to station group III-2, located to the north of BNS, are estimated to be 183 ± 33 and 0.3 ± 0.1, respectively.

The Q_0 and η estimates presented in this section are those along long paths from ETB and contain small crustal segments in both the source and receiver end, and small mantle segments in the Tarim Basin. The two-station method (Xie et al., 2004), when applicable, can minimize effects of both attenuation outside the networks and the source
radiation. We attempted to use that method to estimate Pn Q along the INDEPTH profiles but obtained very unstable (negative) Q values. This is caused by the large variability of Pn spectral amplitudes within the INDEPTH II and III networks (Figure 4) which means errors ($X(f)$ in equation (2)) are large. Xie et al. (2004) pointed out that at a given frequency, the effect of error ($X(f)$) in Q estimates could be suppressed by using large measuring distances. Unfortunately the INDEPTH profiles are short (< 350 or 400 km; see Figure 1), resulting in small inter-station distances that are not adequate to suppress the large $X(f)$.

6 APPARENT PN Q ALONG PASSCAL PROFILES IN EASTERN TIBET

Stations deployed during the 1991-1992 Sino-US Tibetan Plateau experiment (Owens et al., 1993, BSSA) recorded Pn spectra from four regional earthquakes (Figures 1 and 5) that are approximately in line with profiles SANG-TUNL and SANG/GANZ-MAQI in eastern Tibet. Inter-station distances along these profiles are generally large so the effect of error term ($X(f)$) in two-station Q measurements should be reduced (last section). We use Pn spectra along these profiles to estimate spectral ratios from many pairs of two-stations. These ratios are then averaged along profiles SANG-TUNL, SANG/GANZ-MAQI and WNDO-TUNL to estimate Q_0 and η using equation (4) of Xie et al. (2004), replacing V_{Lg} by a Pn group velocity of 7.6 km/s. Profile SANG/GANZ-MAQI is merged from two subprofiles SANG-MAQI and GANZ-MAQI. Profile WNDO-TUNL is actually the northern half of profile SANG-TUNL; it is used to see if Pn Q changes from south to north along profile SANG-TUNL that crosses the BNS. Figure 7 shows the stacked spectral ratios (SSRs) along the three profiles and the best fitting Q_0 and η values. At most frequencies (> 0.7 Hz) the SSRs closely follow the straight lines representing the best
fitting models of Q_0 and η. The SSRs at frequencies lower than 0.7 Hz are abnormally small along all profiles. These may be caused by a trend of increasing effects of modeling errors ($X(f)$) in Q estimates toward lower frequencies, as predicted by Xie et al. (2004). The Q_0 and η values estimated along profile SANG-TUNL are 278±23 and 0.1±0.1, respectively (Figure 7), similar to those estimated for paths from Lop Nor to the INDEPTH stations in southern Tibet (last section). There is no significant north-south change of Q_0 and η values along profile SANG-TUNL since the values estimated along its northern half (profile WNDO-TUNL) are 273±32 and 0.0±0.1 (Figure 7), virtually the same as those estimated along the entire profile. The Q_0 and η estimated along profile SANG/GANZ-MAQI, which is located in the easternmost TB, are about 374±57 and 0.3±0.1, similar to the the values of 364 and 0.5 estimated for paths from the Lop Nor to KNET (Xie and Patton, 1999, also see the last section).

7 A COMPARISON OF PN ATTENUATION IN CONTINENTAL REGIONS

Figure 5 summarizes all apparent Q_0 and η values estimated in this study and Xie and Patton (1999) for regions in and around the Tibetan plateau and Tienshan. Paths from the Lop Nor Test Site (LTS) to north central Tibet are associated with the lowest Q_0 (~183). Higher Q_0 values are found along paths from LTS to south central Tibet, and along the two profiles in eastern Tibet. This trend of Q_0 increase from northern Tibet to southern and eastern Tibet will be further discussed later, after we broaden the comparison of Pn attenuations to include those from other continental regions.

As mentioned in the Introduction, there have only been few publications documenting Pn attenuation on continents at far-regional distances. The published models of Pn attenuation, or Q, are obtained using different G.S.T. (Sereno et al., 1988; Zhu et al.,
1991; Xie and Patton, 1999). To compare them with those obtained in this study, we calculate models of Pn attenuation in the frequency domain at a reference distance of 1200 km (Figure 8). The calculation simultaneously accounts for the G.S.T. used, and the estimated Pn Q models. Pn attenuation models are similar for the relatively stable regions where mantle Pn velocity are higher than 8.0 km/s, including the Canadian shield, Scandinavia, central Asia and easternmost Tibet (omitted in that Figure; see caption). This is so despite that the G.S.T. used for the Canadian Shield by Zhu et al. (1991) has a frequency-dependent form of $m = 1.07 + 0.035f$, rather than the form of $m = 1.3$ used for Scandinavia, central Asia and easternmost Tibet.

The lowest model (corresponding to the strongest Pn attenuation) in Figure 8 is that for paths from ETB to northern Tibet (model "N. TP"). At all frequencies the model is below those for the stable regions, but the differences are more drastic toward higher frequencies. At 4 Hz the differences are more than a factor of 100. It is not surprising that of all the models compared, model N. TP has the strongest attenuation. As mentioned in the INTRODUCTION, analyses of lateral variations in Pn velocity have led to the inference that the temperature in the mantle lid under north central Tibet is abnormally low, likely reaching the solidus. Intrinsic Q_p is expected to be strongly dependent on temperature and melting and therefore should be very low in the mantle lid under north central Tibet, which is most heavily sampled by Model N. TP. The second lowest model in Figure 8 is Model C. TP, which as most frequencies is much below those for stable regions, while being somewhat higher than model N. TP. This is also not surprising given that model C. TB. is developed for paths from LTS to southern Tibet (Figure 5) and partially samples the expected high intrinsic Q in the cold mantle lid beneath southern Tibet. The
pattern of spatial variation of Pn attenuation under the TP is similar to that of Pn velocity (Zhao and Xie, 1993; McNamara et al., 1997) and suggest that lid temperature is the dominant driving factor for both variations of Q_p and V_p.

A plausible explanation for the low level of model C. TB. at higher frequencies is that at these frequencies, the Pn wavetrain propagates with a different mechanism than at low frequencies. Menke and Richards (1980; 1983) proposed that the high frequency Pn wavetrain observed at teleseismic distances (up to 20°) may travel as a group of "whispering-gallery" phases that are multiply bounced and scattered near the Moho. The "whispering-gallery" mechanism has recently been used extensively to explain the puzzling observation of a high-frequency (> 2 Hz) Pn wavetrain at teleseismic distances of up to 3,000 km along the Soviet Peaceful Nuclear explosions (e.g, Morozov and Smithson, 2000; Neilsen and Thybo, 2003). The low-frequency Pn wavetrains from the ETB to Tibetan stations may propagate along deep-turning, refracted rays similar to those calculated for a 1D structure in Figure 9. They are much affected by the deep-seated anomalies of velocity and intrinsic Q in the mantle lid. Specifically, deep-seated low velocity, low Q mantle material under north central Tibet, and high velocity, high Q material under southern Tibet, might have caused the observed Pn velocity and low-frequency Pn Q to vary from north to south. On the other hand, if high-frequency Pn wavetrains propagate along the "whispering-gallery" rays similar to those shown in Figure 9, they may not be much affected by the deep-seated anomalies. Rather, they may be more affected by the 3D velocity and Q structures near the Moho, particularly the scattering in this region (Menke and Richards, 1983; Kvaerna and Doornbos, 1991; Ryberg et al., 1995; Morozov and Smithson, 2000). If this frequency-dependent Pn propagation mechanism is at work under
much of the TB, then Pn attenuation may be dominantly affected by intrinsic Q at lower frequencies, and by scattering Q at higher frequencies.

8 CONCLUSIONS AND DISCUSSION

Pn attenuation is studied using data from three PASSCAL experiments in the Tibetan Plateau (TP), including the 1991-1992 Sino-US TP, the INDEPTH (International Deep Profiling of Tibet and the Himalaya) II and III experiments. Three seismic events in the eastern Tarim Basin (ETB) are simultaneously recorded by the INDEPTH II and III networks to the south and the Khyrgistan network (KNET) to the west, at similar far-regional distances (≥ 1050 km). A comparison of the recorded Pn spectra yields direct evidence that the mantle lid under the TB is more attenuative than that under central Asia at high frequencies (> 1 Hz). At 4 Hz, the difference in attenuations cause the INDEPTH spectra to be about a factor of 35 smaller than the KNET spectra.

Under a simplified Pn geometrical spreading of $\Delta^{-1.3}$, we measure Q_0 and η (apparent Pn Q at 1 Hz and its frequency dependence, respectively) along various path groups. For paths from ETB to northern Tibet we estimate Q_0, η to be 183 ± 33 and 0.3 ± 0.1, respectively. For paths to southern Tibet, and along a profile (SANG-TUNL) in eastern Tibet deployed during the 1991-1992 experiment, Q_0 increase to above 250, while η decrease to about 0.0. Along a profile in the easternmost Tibet (SANG-MAQI), Q_0 and η are 374 ± 51 and 0.3 ± 0.1, similar to those along central Asian paths from ETB to KNET. Lateral variations of Pn Q_0 has a pattern that is similar to those of Pn velocity and is consistent with an inferred hot mantle lid under north central TB.

A comparison of total Pn attenuation that includes effects of both geometrical spreading and finite Q is made at a reference distance for various continental regions. In
the stable regions of central Asia, Scandinavia and the Canadian shield where Pn velocity is higher than 8.0 km/s. Pn attenuation are similar and low. In and around the TP, Pn attenuation is the strongest under north central Tibet, and increase toward south and east. In the easternmost TP Pn attenuation becomes similarly low to those in the stable regions. The variation of Pn attenuation correlates inversely to that of Pn velocity. It seems that both Pn attenuation and Pn velocity are dominantly affected by the temperature of the mantle lid, as would be expected if the Pn attenuation is mainly controlled by the temperature-sensitive, intrinsic Q_p in the mantle lid.

In theory, intrinsic P wave Q, Q_p, in the mantle lid is strongly affected by the temperature there. Caution must be taken in any attempts to infer lid temperature using Pn Q for three reasons. First, the estimated Pn Q are associated with an uncertainty caused by the imprecise G.S.T. used. Second, the estimated Pn Q may sample cumulative Q of various segments along Pn paths, including the short crustal segments. Third, Pn Q may contain contributions of both intrinsic Q and scattering Q as mentioned above. In the TP, the lowest Pn Q_0, η model of 183, 0.3 is obtained for paths from ETB to northern TB. The highest Pn Q_0, η of 374, 0.3 is obtained for easternmost TP. It is possible that the former η is higher than the η of lid Q_p because of the contribution of scattering Q at higher frequencies. To explore whether temperature can provide a plausible explanation of a variation in lid Q_p under the TP, we make a simplified assumption that the η of lid Q_p in question is actually 0.2 rather than 0.3, but all the other three estimated values approximately reflect those of lid Q_p. Using equation (7) of Mitchell (1995) we estimate that, if the temperature in the mantle lid is 800°C under easternmost TB at depths of about 150 km, then the temperature would be 1260°C under north-central Tibet. These temperatures are
similar to (a) the estimates by McNamara et al. (1997) using Pn velocity variations and even more simplifications on lid Q_p, and (b) the estimates made by other authors as summarized by McNamara et al. (1997). This demonstrates that although there is much uncertainty in Q measurements and theoretical relationships, temperature variation alone can indeed explain a lateral variation in lid Q_p under the TP. A similar inference has been made about mantle shear Q in the continental U.S. by Mitchell (1995).

A by-product of this study is a set of Pn travel time measurements, which were used to estimate apparent Pn velocities under the INDEPTH and 1991-1992 TP networks. Using two-way travel times along two profiles in the eastern TB, approximate dip angles along the profiles are also estimated. The maximum dip is estimated to be 2.6° in southeast TP, indicating a crustal thinning toward north.

ACKNOWLEDGEMENTS

This research benefited from numerous discussions with my colleagues in and outside the Lamont-Doherty Earth Observatory (LDEO), including Hannes Brueckner, Jim Gaherty, Jeff Gu, Tom Hearn, Dan McNamara, Bill Menke, Brian Mitchell, Jim Ni, Paul Richards, Tom Hearn, and Eric Sandvol. I thank the IRIS Data Management Center for assisting the data retrieval. This research is supported by the Defense Threat Reduction Agency Grants DSWA01-00-1-0048, and Air Force Geophysical Laboratory Contract F19628-03-C-0122. This is Lamont-Doherty Earth Observatory contribution XXXX.

REFERENCES

8301 Program Cooperation Group, 1988. Velocity structure of crust and upper mantle at
the east margin of Tarim Basin and the east part of Qinghai-Tibet Plateau, in *Developments of the Research of deep Structures of China’s Continent*, edited by Department of Scientific Programming and earthquake Monitoring, China Seismological Bureau, Geology Publisher, Beijing, pp 89-96.

northern and southern Tibet from surface wave dispersion analysis, J. Geophys. Res., 108, art. no. 2120.

APPENDIX A: POTENTIAL RADIATION PATTERN FROM THE 1999 EARTHQUAKE

In theory, Pn spectra from earthquake 99.030 may be affected by a non-isotropic source radiation pattern (\(R(\theta) \) in equation (2)). In this appendix we demonstrate that the effect of this pattern is small and, when ignored, should not have caused significant errors in Pn Q estimates. First we note that this study uses finite Pn wavetrains, which are less vulnerable to the radiation pattern than are the first Pn pulses (Zhao and Ebel, 1993). To further explore the level of the radiation pattern from event 99.030, we calculate synthetic Pn wavetrains using (1) 1-D velocity model "M1" by Roecker et al. (1993), and (2) the centroid moment-tensor (CMT) solutions by Harvard and U.S. Geological Survey; both solutions characterize the source as an obliquely reverse rupture. These synthetics are then used to predict Pn radiation pattern to the directions of KNET and INDEPTH III stations (roughly west and south, respectively). The radiation predicted using the Harvard solution is about 30% higher to KNET than to INDEPTH III stations. An almost exactly opposite prediction is obtained using the USGS solution. Perturbing the 1D velocity model and focal solutions cause variations of the predictions, but the range of the variations is small, presumably because neither station group is near the Pn nodal planes. Variations in radiation pattern of such level (±30% when comparing the KNET paths to the INDEPTH paths) are less than the observed spectral variations within each station group (Figure 4).

We can estimate the relative error in Pn \(Q_0 \) measurement caused by an error \(\delta x \) arising from an unaccounted \(R(\theta) \) of 1.3, using equation (A8) of Xie et al. (2004). Assuming \(\delta x=0.3, V=7.6 \text{ km/s}, f=1 \text{ Hz}, \) and \(\Delta=1200 \text{ km}, \) we obtain \(\delta Q_0/Q_0 \) of 16% and 11% when the true \(Q_0 \) is 260 and 175, respectively. These relative errors in \(Q_0 \) are rather small and acceptable. In the true Earth structure 3D scatterings should occur to further smooth-out
any radiation pattern.

Next we empirically examine whether by ignoring the effect of non-isotropic $R(\theta)$, our estimates of Q_0 and η to the INDEPTH III stations are significantly biased (see section ESTIMATES OF PN Q TO INDEPTH STATIONS). Because group III-2 of stations are located in southern Tibet and are close to the INDEPTH II stations (here after referred to as "group II"; see Figures 1 and 5), The Pn Q_0 and η from the October 7, 1994 explosion (which should not have a non-isotropic $R(\theta)$) to station group II should be similar to those from earthquake 99.030 to station group III-2. If there is a significantly non-isotropic $R(\theta)$ by event 99.030, then ignoring it should result in a biased set of Q_0 and η estimates over paths to group III-2. The bias should have masked the similarity between Q_0 and η values to group III-2 and those to group II. In the main text we ignored $R(\theta)$ and estimated average Q_0 and η values to station group III-2 to be 254±48 and 0.1±0.1, respectively. These values are close to those of 253±53 and 0.0±0.1, estimated for paths to station group II. This preserved similarity empirically demonstrates that a potential bias in the the estimated Q_0 and η values, caused by a non-isotropic $R(\theta)$ from event 99.030, is small. As a further precaution, we repeated the procedure of estimating Q_0 and η values using the southern half (8) stations of the 15-station group III-2. These 8 stations are even closer to the INDEPTH II stations as they tend to overlap (Figures 1 and 5). We obtained average Q_0 and η estimates of 258±42 and 0.0±0.1, respectively. These values are similar to those obtained using all 15 III-2 stations and show that our empirical inference on small $R(\theta)$ is robust.

APPENDIX B: PN VELOCITY ANALYSIS
A by-product of the spectral analysis of this study is a set of Pn arrival times, which must be read prior to the Fourier transform. These arrival times are used to estimate the apparent Pn velocity under the INDEPTH and 1991-1992 PASSCAL profiles, as well as the KNET. Figure A1 shows examples of the Pn arrival times and the best-fit apparent velocities. Table A1 summarizes the best-fit velocities along all profiles studied. As mentioned in the main text, we have divided the INDEPTH III stations into two groups that are north and south of the BNS (Figure 5; Figure A1(a)). We obtained very slow and very fast apparent velocities of 7.71 ± 0.12 and 8.27 ± 0.12 km/s for the northern and southern station groups, respectively. These estimates are consistent with those of Hearn et al. (2002) who used a larger set of Pn arrival times and proposed that Pn velocity changes abruptly, from about 7.7 to 8.4 km/s, across the BNS. The change is thought to be caused by hot (near solidus) mantle lid in north central Tibet, and cold lid in the south (see INTRODUCTION).

Along the 1991-1992 profiles (SANG-TUNL and SANG-MAQI) two-way arrival times are available, yielding average apparent Pn velocities that are more reliable estimates of the true lid velocity when the Moho dips (Telford et al., 1976; equation (4.54a)). We estimated that the average apparent velocity can vary from the one-way apparent velocities by about 0.1 km/s (Figure A1). Along profiles SANG-TUNL and SANG-MAQI, the estimated two-way average Pn velocity are 8.1 to 8.3 km/s (Table A1), indicating an eastward increase of lid velocity. This is consistent with the eastward increase of Pn Q_0 reported in the main text. The average dipping angles along these two profiles are also estimated using equation (4.53) of Telford et al. (1976), and listed in Table A1.
Figure Captions

Figure 1. Map of study area. See inset annotation for symbols representing tectonic boundaries and seismic stations. The Sino-U.S. (91-92) and INDEPTH II and III stations were temporarily deployed during three PASSCAL experiments in Tibet. The Kyrgyzstan Network (KNET) is a permanent network. Regional earthquakes used in this study are shown as open circles. Earthquakes whose ID numbers start with 91 and 92 occurred in years 1991 and 1992 (see Table 2 of McNamara et al., 1995 for the event parameters). Earthquake 99.030 is an $M_w=5.5$ ($m_b=5.9$) event that occurred on January 30, 1999, at 3:51:5.4 UT. Stars are the June 10 and October 7, 1994 explosions (Table 1 of Xie and Patton, 1999). White, medium and dark grays represent elevations of greater than 4000 M, between 2000-4000M, and less than 2000 M, respectively. The abbreviations are: IYS - Indus Yalong Suture, BNS - Banggong-Nujiang Suture; JRS - Jinsha River Suture, KF - Kunlun Fault, ATF - Altyn Tagh Fault, LTS - Lop Nor Test Site.

Figure 2. Vertical component record section from the INDEPTH II stations recording the October 7, 1994 explosion ($m_b=5.9$). Predicted arrival times corresponding to approximate Pn and Lg group velocities of 7.6 and 3.5 km/s are marked by gray lines. Lg is blocked. See Figure 3 of Xie and Patton (1999) for the record section from the KNET.

Figure 3. Time series containing the Pn wavetrain and the preceding noise (top), and Fourier spectra (bottom) from INDEPTH II station BB15 recording the October 7 explosion. For clarity, only two of the five signal windows (the first and third windows) are shown by the dashed curves on the top. Upper and lower black curves in the bottom are spectra from individual signal and noise windows. The spectrum in gray is the average of
the Pn signal spectra.

Figure 4. Pn spectra from explosions and earthquake in the eastern Tarim Basin (ETB). Spectra are scaled by $\Delta^{1.3}$ to reduce the effect of geometrical spreading. Each row is from one event as indicated at lower left, with "EX" and "EQ" indicating explosions and earthquake (see Figure 1). The INDEPTH III stations are divided into two groups (III-2 in row 3 and III-1 in row 4), located to the south and north of the BNS (Figures 1 and 5). Left columns show individual spectra from KNET and INDEPTH networks as black and gray curves, with the network name and number of recording stations written nearby. Right columns show the network averaged spectra and the associated sample standard deviations. The average distances are marked.

Figure 5. Map showing paths used in this study and the estimated Pn Q_0 and η values. The events and stations are the same as those plotted in Figure 1. Black paths are from earthquake 99.030 to station group III-2, sampling the northern Tibetan Plateau. Light gray paths are those from the 1994 explosions to INDEPTH II stations, or from earthquake 99.030 to station group III-1, sampling a mixture of northern and southern Tibetan Plateau. White paths are from explosions and earthquake 99.030 to KNET. Dashed lines plotted in darker gray are paths from the regional earthquakes to the 1991-1992 PASS-CAL stations, used in the two-station Pn Q measurements. Three profiles are formed: SANG-TUNL, WND0-TUNL which is a subprofile of SANG-TUNL, and SANG/GANZ-MAQI which is merged from two sub-profiles SANG-MAQI and GANZ-MAQI. The end stations along these profiles (SANG.TUNL, WND0, SANG, GANZ and MAQI) are written. See McNamara et al. (1995) for other station names. The Pn Q_0 and η values are written near the paths over which they are estimated; oblique numbers are
those obtained using the two-station method.

Figure 6. Network averaged Pn spectra (fluctuating curves), and the model spectra (smooth curves) corresponding to rows 1, 3 and 4 of Figure 4. Model spectra are constructed using the MMM or Brune source model, the estimated source M_0, f_c and path-averaged Q_0 and η values. Similarly to Figure 4, black and gray are used for spectra from KNET and INDEPTH networks. The network name and path-averaged Q_0 and η values are written near the curves. Note that only 8 KNET stations recorded the October 7 explosion, so the average Q_0 is 381, rather 364 obtained using all 10 KNET stations (Xie and Patton, 1999).

Figure 7. Stacked spectral ratios (SSRs) calculated along three profiles in eastern Tibet (dots) and the best-fitting models of Q_0 and η (straight lines). Profile names and numbers of two-station pairs used are written on the top of each panel. The frequency bands used, and estimated Q_0 and η values are written inside the panels.

Figure 8. Pn attenuation models calculated for various regions from published observations, at a reference distance of 1200 km. Each model is plotted in the frequency range of observation. Model "Canadian S." is for the Canadian shield, calculated using the Q_0 and η values and the G.S.T. by Zhu et al. (1991). Model "Scandinavia" is from Sereno et al. (1988). Model "C. Asia" is for central Asia (Xie and Patton, 1999; this study). Models "C. TP." and "N. TP." are obtained from this study for paths running from ETB to stations in south-central Tibet and north-central Tibet (gray and black paths in Figure 5), respectively. Model "B&R" is calculated by extrapolating the result of Tinker and Wallace (1997), which is obtained using Pn decay in the Basin and Range province at near-
regional distances. Values of Q_0 and η of the models obtained in this study are written. Model for the easternmost Tibet obtained in this study is similar to that for Central Asia (end of section 6) and is not plotted to ease the comparison.

Figure 9. Pn ray patterns in a 1D velocity model constructed for Tibet using shear velocity model "S. Tibet" by Rapine et al. (2003), a Poisson ratio of 0.25, and a lid velocity gradient of 3.0 s$^{-1}$ (Zhao and Xie, 1993). The vertical scale is exaggerated by a factor of 2. Black curves are refracted rays. Light gray curves are "whispering gallery" rays that undergo multiple (three) bounces underneath the Moho. The area delineated by the white dashed curve represents a deep-seated region with low velocity and low intrinsic Q (Q_p), such as that expected under northern Tibet. Thick black lines delineate a region with high velocity and high Q_p, expected under southern Tibet. Although the 1D structure is simplified, the ray patterns demonstrate how the refracted rays heavily sample the deep-seated anomalies. The "whispering gallery" rays, on the other hand, heavily sample structures near Moho (note the heavy concentration of light gray curves under the Moho). In the real Earth, the latter rays are expected to be also affected by 3D scatterings on or near the Moho.

Figure A1. Examples of Pn travel times and the best-fit apparent velocities. Panel (a) is for paths from earthquake 99.030 in the eastern Tarim Basin (E.T.B.) to two subgroups of INDEPTH III, and the KNET, stations. Panel (b) is for the linear profiles delineated by stations of the 1991-1992 Tibetan Plateau experiment. Numbers in parentheses are the estimated best-fit velocities along the profiles.