Motion of mass on spring (no gravity)

Reference state

\[\begin{align*}
M & \quad \text{x} \\
\text{spring} & \quad \text{mass}
\end{align*} \]

Deformed state

\[\begin{align*}
K & \quad \text{x+u} \\
\text{mass} & \quad \text{spring}
\end{align*} \]

\(u = \text{displacement} \)

Newton's force law: \(F = ma \)

Hooke's law: \(F = -k u \)

\(k = \text{spring constant} \)

Connects force and acceleration

\[M \frac{d^2 u}{dt^2} = -K u \]

\(u'' = -\frac{K}{m} u \)

Oscillatory motion

Amplitude \(C \), freq. \(\omega \)

\[u = C \sin(\omega t) \]

\[-MC\omega^2 \sin(\omega t) = -\frac{KC}{m} \sin(\omega t) \]

\(C = \text{anything} \)

\(\omega = \sqrt{\frac{K}{m}} \)
VIBRATIONS IN AN IDEAL GAS

"Sound"

1. Ideal gas law: \(PV = nRT \)
 - \(n \) moles in here
 - \(P \) pressure, \(T \) temp, \(V \) volume

2. Convert from volume - "Bulk property" to density - "Point property"
 - \(n \) moles in here
 - \(\rho \) density

\[M = mass = \rho V \]
\[n = \frac{M}{m} \]
\[= \frac{\rho V}{m} \]
\[P = \frac{RT}{m} \]
\[PV = nRT = \rho VRT/m \]

Let \(K = \frac{RT}{m} \)
\[P = \rho K \]

Nitrogen:
\[R = 8.3 \ \text{m}^2\text{kg} \text{s}^{-2} \text{K}^{-1} \text{mol}^{-1} \]
\[T = 300 \ \text{K} \]
\[m = 0.028 \ \text{Kg/mol} \]
\[\rho = \frac{RT}{m} = (298 \text{ m/s})^2 \]
1-D deformation in a gas

Reference state

Deformed state

Deformation related to displacement \(u \).
Old position, \(x \) New position \(x + u(x) \)
\(x + \Delta x \)
\(x + \Delta x + u(x+\Delta x) \)

1-D means \(u \) is horizontal

Reference volume \(V_0 = A \Delta x \)
Deformed volume \(V = V_0 + A (u(x+\Delta x) - u(x)) \)

\[\Delta V = V - V_0 = A (u(x+\Delta x) - u(x)) = A \frac{du}{dx} \Delta x = V_0 \frac{du}{dx} \]

\[\frac{V - V_0}{V_0} = \frac{\Delta V}{V_0} = \text{fractional change in volume} = \frac{du}{dx} = \text{volumetric strain} \]
convert volume to density
\[V_0 = \frac{M}{S_0} \quad \frac{\Delta V}{V_0} = \Delta \frac{1}{S_0} = \frac{1}{S_0} \Delta \frac{1}{S_0} \]

but \(\Delta \frac{1}{S_0} = -S_0^{-2} \Delta S \) so

\[\frac{\Delta V}{V_0} = -\frac{\Delta S}{S_0} = \frac{du}{dx} \]

By Ideal gas law \(p = kS \) so \(\Delta p = k \Delta S \)

and \(\frac{\Delta V}{V_0} = -\frac{\Delta p}{p_0} \)

\(\Box \) Newton's Law \(F = Ma \)

\[F = -A \left[p(x+dx) - p(x) \right] = -A dx \frac{dp}{dx} \]

\(M = \int_0^x A dx \)

\(a \approx \ddot{u}(x) \) sloppily!

\[F = Ma \]

\[-A dx \frac{dp}{dx} = \int_0^x H dx \ddot{u} \quad \text{or} \quad \int_0^x u \ddot{u} = -\frac{dp}{dx} \]
let $P = P_0 + \Delta P$

$S = S_0 + \Delta S$

with reference state constant in x, t

so $\frac{dP}{dx} = 0 + \frac{d\Delta P}{dx}$

$\frac{dP}{dx} = 0 + \frac{d\Delta P}{dx}$

now differentiate w.r.t. x

$\frac{d^2}{dx^2} \frac{d^2}{dx^2} \Delta P = -\frac{dP}{dx}$

so $\frac{d^2}{dx^2} \frac{d^2}{dx^2} \Delta P = -\frac{d^2}{dx^2} \frac{d^2}{dx^2} \Delta P$

$-\frac{d^2}{dx^2} \frac{d^2}{dx^2} \Delta P = -\frac{d^2}{dx^2} \frac{d^2}{dx^2} \Delta P$

$\Delta P = \sin \left(\frac{x - vt}{K} \right)$

$C \sin (x - vt)$

$C = \text{anything}$

$\frac{v^2}{K} = 1 \text{ or } v = \sqrt{K} \approx 300 \text{ m/s for air}$