FIGURE 8.13 Application of the stationary phase approximation. The pressure
and velocity of a sound wave at the surface of a fluid. The group velocity is the vector perpendicular to the wave front that propagates at a constant phase velocity. The stationary phase approximation is used to calculate the pressure and velocity of a sound wave at the surface of a fluid. The group velocity is the vector perpendicular to the wave front that propagates at a constant phase velocity. The stationary phase approximation is used to calculate the pressure and velocity of a sound wave at the surface of a fluid. The group velocity is the vector perpendicular to the wave front that propagates at a constant phase velocity.
from the crust to mantle. The increase in shear velocities about 3.5 to 4.5 km/s, reflecting velocities typically increase from second period range, phase 4.

In the earth, in the 20-100 km depth, 92% of the shear velocity. Rayleigh waves are non-dispersive. In a uniform half-space, the Rayleigh waves from mid-Atlantic Ridge earthquake observed along east coast of North America.

Phase velocities computed from groups of

\[[\omega \lambda/\omega] \sim 1 \]

\[\lambda = \omega \]

The group velocity \(\lambda \) move at the phase velocity \(\omega \), but rather at is an interference phenomenon. It does not

2. A wavecrest (red and green lines, below) with frequency \(\omega \) (called dispersion) called the phase velocity \(\omega \), whereas

1. The velocity of a single-frequency wave, Rayleigh wave phase and group velocity