2.1 Formulation

elagticity isconceptually simpler to develop with the Lagrangian description, and this
is the framework we shall almost always adopt. Note that a seismogram is the record of
motion of aparticular part of the Earth (namely, the particlesto which the seismometer was
attached during installation), so it is directly arecord of Lagrangian motion.

We shall work in this chapter with a Cartesian coordinate system (x;, X, X3), and all
tensors here are Cartesian tensors. We use the term displacement, regarded as a function
of space and time, and written as u = u(x, t), to denote the vector distance of a particle at
timet from the position x that it occupies at some reference time ty, often taken ast = 0.
Since x does not change with time, it follows that the particle velocity is du/at and that the
particle acceleration is 8%u/at2.

To analyze the distortion of a medium, whether it be solid or fluid, elastic or inelastic,
we usethe strain tensor. If aparticleinitially at position x is moved to position x 4 u, then
the relation u = u(x) is used to describe the displacement field. To examine the distortion
of the part of the medium that was initially in the vicinity of x, we need to know the new
position of the particlethat wasinitially at x + §x. Thisnew positionisx + §X 4+ u(x + 8x).
Any distortion is liable to change the relative position of the ends of the line-element §x.
If this changeis du, then 5x + Su isthe new vector line-element, and by writing down the
difference between its end points we obtain

8X 48U =X+ X 4+ U(X 4 8X) — (X + U(X)).

Since |8x| isarbitrarily small, wecanexpand u(x + §x) asu + (§x - V)u plusnegligible
terms of order |§x|2. It follows that Su is related to gradients of u and to the original line-
element 5x via

oy

su = (6x- V)u, or su; = a_xJ 8X;. (2.1)

However, we do not need all of the nine independent components of the tensor u; ; to
specify true distortion in the vicinity of x, since part of the motion is due merely to an
infinitesimal rigid-body rotation of the neighborhood of x. Thiscan be seen from theidentity
(Ui j = Uj )X} = &€ imUm, 0% (see Box 2.2 and Problem 2.2), so that equation (2.1)

can be rewritten as
8uj = (U j +Uj ;)8 + (curl u x 8);, (22)

andtherigid-body rotationisof amount %curl u. Theinterpretation of thelast termin (2.2) as
arigid-body rotationisvalidif |u; ;| < 1.1f displacement gradientswerenot “infinitesimal”
in the sense of thisinequality, then we should instead have to analyze the contribution to u
from afinite rotation—a much more difficult matter, since finite rotations do not commute
and cannot be expressed as vectors.

In terms of the infinitesimal strain tensor, defined to have components

QJ E%(ui,j +Uj,i)’ (23)
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2.5 Representation Theorems

contributions due to the traction T (u, n) and to the displacement u itself on S. However,
the way in which each of these three contributions isweighted is unsatisfactory, since each
involves a Green function with source at x and observation point at &. (Note that the last
term in (2.41) involves differentiation with respect to &,.) We want x to be the observation
point, so that the total displacement obtained there can be regarded as the sum (integral)
of contributing displacements at x due to each volume element and surface element. The
reciprocal theorem for G must beinvoked, but thiswill reguire extraconditions on Green’s
functionitself, sincetheequation G; ,(§,t — 7; X, 0) = G, (X, t — 7; &, 0) (see(2.39)) was
proved only if G satisfies homogeneous boundary conditions on S, whereas (2.41) isvalid
for any Green function set up by an impulsive force in the n-directionat § =x and r =t.

Weshall examinetwo different cases. Supposg, first, that Green’sfunctionisdetermined
with S as arigid boundary. We write G'19 for this function and G/ 9, t — r; x, 0) =0
for & in S. Then (2.41) becomes

u,(x, t) = foo dz // f, (&, r)Ggigid(X, t—1;&,0dV
e v (2.42)

—/ dr // Ui(g,T)Cijk|nja—G:.:Eld(X,t—T;$,O)ds.
—00 S El

Alternatively, we can use G as Green's function, so that the traction
CijlN; (9/08)GlI*(¢, t — 7 x, 0) iszerofor £ in S, finding

U, (X, t)=/ dr ///V f.(g, 1)GI®(x, t — 7; £, 0) AV

- (2.43)
+ / dr f G (x, t —7; &, 0)T,(U(&, 1), n) dS.
—00 S

Equations (2.41)—2.43) are al different forms of the representation theorem and each
has its special uses. Taken together, they seem to imply a contradiction to the question of
whether u(x, t) depends upon displacement on S(see (2.42)) or traction (see (2.43)) or both
(see (2.41)). But since traction and displacement cannot be specified independently on the
surface of an elastic medium, thereis no contradiction. In (2.41), the Green function is not
completely defined.

The surface on which values of traction (or displacement) are explicitly required has
been taken, in this chapter, as external to the volume V. It is often useful instead to take
this surface to include two adjacent internal surfaces, being the opposite faces of a buried
fault. Specialized forms of the representati on theorem can then be devel oped, which enable
oneto analyze the earthquakes set up by activity on aburied fault. This subject is central to
earthgquake source theory, taken up in Chapter 3 and devel oped much further in Chapters 10
and 11.

So far, we have considered only Cartesian coordinate systems. In practice, the seismol-
ogist is often required to use non-Cartesian coordinates that allow the physical relationship
between components of displacement, stress, and strain to be simplified for the geometry
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At first sight, it is somewhat surprising that our spatially concentrated body force
(proportional to §(x)) has potentials (4.17) that are nonzero outside the source region. This
often happens in elasticity, and it brings out the artificiality of the potential method.

The second step in finding displacements is to solve wave eguations for the Lamé
potentials ¢ and . From (4.5), (4.13), and (4.17), we get

Xo(t) a1 202
—_— \Y 4.18
4o ax x| ¢ ¢ (4.18)
and
w o Xp(t) 0o 1 0 1 P
— 0, ——, —— — Vey. 4.19
v 4p ( X3 |X] %o |x|>+’3 v ( )

The solution of (4.18) follows by comparison with (4.5) and (4.6), so that here

Ix—§&|
o 0 1

= < — —dV(&). 4.20
e (4mx)2 /// X — &I 981 |§] © (420

Fortunately, this integral can be simplified by integrating over the volume V via the
system of concentric spherical shells centered on x. If at istheradius of atypical shell S,
sothat [X — &| = et and the shell thicknessis« dz, then

b [0 (] )
T (ra)?p 58$1|§|

In Box 4.3, it is shown that the integral over Sisasimple explicit function of x and z, and
it follows that

X1 /et
P(X, 1) = = (i i) / Xo(t — 1) dr. (4.21)
dnp 0

9%y [X]

Similarly, for the vector Lamé potential, one finds

7_’ | [X|/B8
Pt = (o, o1 —ii> / Xt —vydr.  (422)
0

4 p X3 [X] X%y [X|

Thethird andfinal stepin obtaining the displacement dueto body force X (t) appliedin
the x;-direction at the originistoform V¢ 4+ V x ¢ from (4.21) and (4.22). Usingr = |x|,
this gives

2 r/g
ui(x,t):i< 9 1)[ Xt —7)dr

drp \ 0% 0Xq T ra

+1 ararXtr+188r8rXtr
Ampar \ 9x 9%, ) "° amppr \''1 ox 0%, ) ° B)"
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4.2 Solution for the Elastodynamic Green Function in a Homogeneous, Isotropic, Unbounded Medium

4.2.1 PROPERTIES OF THE FAR-FIELD P-WAVE
We introduce here the far-field P-wave, which for (4.23) has the displacement uP given by

1 1 r

A pa?
Asin (4.23), thisisfor a point force Xy(t) in the X; -direction at the origin. Along agiven
direction y from the source, it follows from (4.24) that this wave

(i) atenuatesasr—1;

(if) has awaveform that depends on the time—space combinationt — r /«, and therefore
propagates with speed o (recall that o2 = (A + 2u)/p);

(iii) hasadisplacement waveform that is proportional to the applied force at retarded time;
and

(iv) hasadirection of displacement at x that is parallel to the direction y from the source.
Thisfollowsfrom the property uP o y; (see (4.24)). Thefar-field P-waveistherefore
longitudinal (sometimes called radial) in that its direction of particle motion is the
same as the direction of propagation. If t = 0 is chosen as the time at which X, (t)
first becomes nonzero, thenr /« isthe arrival time of the P-wave at r.

4.2.2 PROPERTIES OF THE FAR-FIELD SWAVE
The far-field Swave in (4.23) has displacement uS given by

1 r
Asin (4.23), thisis for a point force Xy(t) in the X] -direction at the origin. Recall that y
is the unit vector directed from the source to the receiver. Along a given direction y, this
wave

S 1
ur(x, t) = 47r—p/32(8”

(i) attenuatesasr—1;
(ii) propagateswith speed g and has arrival timer /8 at X;

(iii) hasadisplacement waveform that is proportional to the applied force at retarded time;
and

(iv) hasadirection of displacement uS at x that is perpendicular to the direction y from
the source. (From (4.25) it is easy to show that uS . y = 0.) The far-field Swave is
therefore a transverse wave, because its direction of particle motion is normal to the
direction of propagation.

Radiation patterns for uP and uS are given in Figure 4.2.

4.2.3 PROPERTIES OF THE NEAR-FIELD TERM

We define the near-field displacement uN in (4.23) by
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108 Chapter 4 / ELASTIC WAVES FROM A POINT DISLOCATION SOURCE

Since y is a unit vector at the source, directed along the ray to x, the problem of
obtaining the radiation pattern of the P-wave is smply a matter of expressing y - v and
y -Uintermsof strike ¢, dip 8, rake A, take-off anglei, and source-receiver azimuth ¢.
Theradiation patternsfor SV and SH are slightly more complicated because the separation
into SV and SH is not immediately apparent in (4.85). Clearly, this formula does indicate
that uS is a transverse motion, because uS- y = 0. It follows that SV and SH motions,
which are (respectively) in the directions p and ¢ of Figure 4.10, are given by

UV (x, t) = S ) P = [(y - v)@-P) + (J/éU)(v PluAp (4.80)
A pBr

and

[(y - »T-¢)+(y M- )luAd

SH — S oY b —
ut o =S 4) ¢ y—es

(4.87)

Toobtainall threeradiation patternsintermsof (¢, 3, A, i¢, ¢), weintroduce Cartesian
coordinate directions X, ¥, 2 at the epicenter. Our choice is X = North, y = East, and 2z =
vertically downward, as shown in Figure 4.20. In terms of these three unit vectors,

slipU = U (CoS A COS ¢+ COS S SN A SN ¢g) X
+ U (COSA Sin¢pg — COS S SN A COS ) §
—usnisng z,
fault normal v = — sin§ Sin ¢ X + SiN § COS ¢ Y — COS§ 2, (4.88)
P-wave direction| =y =sini, cos¢ X + sini; sin¢ § + cosi; 2,
SV-wave direction p = cosi; Cos¢ X + cosi; sing ¥ —sini; 2,

SH-wave directiong = — sing X+ cos¢ .

Six different scalar products are needed in the radiation pattern formulas (4.84), (4.86),
(4.87), and these can readily be obtained from (4.88). In dimensionless form, the radiation
patterns FP, FSV, and FSH are given by

FP =2y vy -w/U
= cos A sing sin? ig SIN2(¢ — ¢pg) — COSA €COSS SiN 2i; COS(¢ — )
(4.89)
+ sinA sin25(cos’ i, — sSin® i, SIN’(¢ — ¢)

+ SN cos28 sin 2i, sin(¢ — ¢g),
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5.2 Elementary Formulas for Reflection/Conversion/Transmission Coefficients

COS j;

SP = — 2p;——2GpBy/(a,D),
B1
S Cos j
§5=2p, B 1Eg 1(8,D),
B1
PP = 2,02005'2 Fay,/(a;D),
)
< cosi
PS= —2p, o szaz/(ﬁlD),
2

Bp_ _ [<b005|1 _Cc05|2) Fy <a+d003|200311> sz} D.
ag ap a B

pg_ p%0Si2 (ac + g S8 €08 ‘l> Pay/ (BoD),

oy oq /31

, . cos |
8P = 20,2 Hpg,/ (D),

B2
L cos j
§§=2p," B2y 1(p.D),

B>
gp = 2812 (ac 4 bg 811008 h) PBy/ (D),

2 a; B
ss=[ (020 - T2k ) gy (a+ 0Lk ) ] [ (54

By B, By

For two different solids that meet at a planar interface, but are not in welded contact,
thentractionisstill continuous but by implication sliding can take place. Chaisri and Krebes
(2000) consider displacement discontinuities on z = 0 such that

Tzx1 = Tzx2 Uyp — Uyq = Cy Ty
(5.41)
Tz21 = Tzz2> Up —Up = CTpy,
where ¢, and ¢, are constants and subscripts 1 and 2 refer to the upper and lower media.
They obtained 16 coefficients of the same general form as (5.40). But in their more general
case (i.e., with ¢, and c, not equal to zero), there is an explicit dependence on frequency,
absent in (5.40).

5.2.5 ENERGY FLUX

For a steady-state plane wave incident on the boundary between two homogeneous half-
spaces, there is no possibility of trapping energy at the interface (otherwise amplitudes
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apparent, together with minor contributions from aleaking mode (another type of interface
wave).

At the outset, we must emphasize that the best way to solve Lamb’s problem is via
L aplacetransformation and theinversion methods of Cagniard. Thediscussion of integration
pathsin the complex ray-parameter plane isthen relatively simple; and the actual inversion
of the Laplace transform, to obtain pulse shapesin the time domain, ismadetrivial. A self-
contained description of these methods is given here in Sections 6.4 and 6.5. We introduce
this material, however, with a Fourier transform. In part, thisis an acknowledgment to the
vast literature on the subject, including books by Ewing et al. (1957), Brekhovskikh (1960),
and Cerveny and Ravindra (1971), and many hundreds of papers. But the major reason for
developing Fourier-transform methods in connection with Lamb’s problem is to prepare
the ground for Chapter 9, which gives practical methods for calculating seismograms in
realistic structures. We shall find there that the reflectivity method for layered media and
powerful solution methods for problems of grazing incidence are based on numerical work
with the Fourier transform rather than analytic inversion of the Laplace transform.

6.1 Spherical Waves as a Superposition of Plane Waves and Conical Waves

Consider an inhomogeneous wave equation with source at the origin and time dependence
exp(—iwt):

929

7 c?V2¢ = 4r %8 (X) exp(—iwt). (6.1)

The solution of this equation (in an infinite homogeneous space) is obtained from (4.4) as
1 R
== [ ——t]), 6.2
(X, t) Rexp[lw<c )} (6.2)
where R = /X2 + y2 + 72,

Equation (6.1) can also be solved by recognizing the time dependence of ¢ (X, t) as
the steady oscillation exp(—iwt) and then using Fourier-transform methods to derive the
spatial dependence. From transformation of (6.1) we find that

P (k, t) = [4rc?/(K*c? — w?)] exp(—iwt),

where k? = k + k3 + kZ. Then from (6.2) and the triple inverse transform of ¢ (k, t),

1 ) R exp(—iwt) exp(|k x)
B exp |:Ia) (E —t>:| 7 /// ———dk, dk dk,. (6.3

The left-hand side of (6.3) is a spherical wave propagating from the origin with speed c.
Its amplitude is a function only of radial distance and has no directional variation. The
right-hand side of (6.3) is a superposition of plane waves exp[i (K - X — wt)] over the entire
range of k,, ky, k,, weighted by [272(k? — w?/c?)] 2. It therefore appears that we have
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Pl hsclios

Pole lecation

) 1] !

FIGURE 6.2
Paths of integration in the complex k;-plane for obtaining the Weyl integral. (a) The path when
z>0.(b)z<0O.

Theresidueevaluationisnow straightforward. For z > Othefactor exp(i k;z) suppresses
the integrand in (6.3) if it is taken around a sufficiently large semicircle in the upper half-
plane (see Fig. 6.2a). Adding this semicircle to the integration path along the real axis,
we have a closed path going in the positive direction around a pole at k; =iy in the first
quadrant, so that

—j 00 ik ikyy —
b — 271 x residue— M[f exp(i kxX + ikyy J/z)dkx dky.
"4 —o0 Y

For z < 0, we add asufficiently large semicirclein thelower half-plane (Fig. 6.2b) to obtain
aclosed path in the negative (i.e., clockwise) direction, which picksup apoleat k, = —iy
in the third quadrant:

I
=i reacn = ST [ SO by yDg
—00 14

Combining these resultsfor z > 0 and z < 0, we obtain the Weyl integral

1 R 1% explikex +ikyy — y(2])

wherey = /k% + k§ — »?/c? and the sign of y is chosen so that Rey > 0. Inthelimiting
case of zero attenuation, this becomes Rey > 0.

In the above expression, the plane wavesin the integrand do satisfy the wave equation
with velocity ¢, so that the spherical wave is indeed represented by a superposition of
such plane waves. Note that for some parts of the (ky, ky) integration, the plane waves are
inhomogeneous. This occurs for w?/c? < kZ + k3, so that y becomes positive real

2003/11/30 21:36



6.4 Cagniard—De Hoop Methods for Line Sources

FIGURE 6.12

Diagrams for interpretation of the generalized reflection for a point source in an elastic half-
space. (a) The source-receiver geometry and a reflected P-wave defining the reflection angle i .
(b) Branch cuts for £ and 5 in the complex p-plane, together with a pole at p = 1/cz. (Note:
For attenuating media, the branch cuts and pole on the positive real axis move up into the first
quadrant.) (c) The steepest descents path I for the exponent in (6.33), this being the path such that
pr 4+ £z+ &£h = R,/a + positive imaginary quantity = Ry/a + i X2. One may solve for p to find

RZp=r(iX?+ Ry/a) £ /X4 —2i X2Ry/a (z+ h)

onT, crossing the real axisat p= p,= a~lsn iandalsoat p=1/(x siniy). (d) For small i, the
steepest descents path can be taken (going ontothe sheet Im& < 0, Im 5 < O inthefirst quadrant, as
in Fig. 6.8). (e) For large i, the integration path (wholly on the top Riemann sheet) can be thought
of as asum of two branch-cut integrals, I', and I" g plusacircuit I'g picking up the residue from the
Rayleigh pole.

BOX 6.7
Outstanding features of Rayleigh waves from a buried point source

1. Attenuation behavesliker —1/2 with distance, as compared with body waves (~r ~1)
and head waves (r —2), so that Rayleigh waves must dominate the ground motion
at sufficient range. Note that the ratio between horizontal and vertical motions in
the cylindrical Rayleigh wave (6.37) isjust that found for a plane Rayleigh wave in
Problem 5.4b.

2. Phasedelay isgiven by er /cg, and isindependent of depth h, so that the travel time
curveisastraight line.

3. Amplitude is an exponentially decaying function of h and w:

exp[—wy/cr? — a2 h] ~ exp[—+/0.9 wh/A].

For an S-wave source, this becomes

exp[—wy/cr? — B2 h] ~ exp[-v/0.2 wh/f].

4. Particle motion isretrograde elliptical (w has a phase shift of —/2 with respect to
u, and hence a phase advance of +7/2; see Box 5.5), and the ellipticity is the same
asfor the free Rayleigh waves described in Section 5.3.

5. Fromitems 2 and 3 above, the slope of the phase spectrum is afunction of range but
not of depth, and the shape of the amplitude spectrum is a function of depth but not
of range. Therefore, the amplitude and phase are independent of each other. Thisisa
common feature of what we generally call normal modes, to be investigated in more
detail for a layered medium in Chapter 7. This independence, of course, violates
causality (see Box 5.8), hence it is meaningless to speak of the “first motion” of
Rayleigh waves or individual normal modes.
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that is,
2
Xt — |2+ z| /&;—tZ
> Pr <R (6.573)
_ RS B1
P= 2
xt+ilz+z) [t2——
. Py t> Fo (6.57b)
R B1

where Ry = /X% + (z+ z,)? is the distance between receiver and image source (see
Fig. 6.15h). It isinteresting to compare this Cagniard path with the steepest descents path
of integration for (6.56). To find this latter path, we adopt the terminology of Box 6.3
withx =s, ¢ = p,and f = —(px + ny|z+ Z|). A saddle point p = pgs must be such that
f'(py) =0, i.e, X€os jo=|z+ Z| sin js, where p,= ﬁl‘l sin jg so that pg is just the
ray parameter for the reflected ray between source and receiver, having jg as the angle of
incidencein the upper medium (Fig. 6.15a). Note that some close parallelswith Section 6.2
are beginning to emerge (see (6.19)). In that section, we analyzed a P-wave problem, used
a Fourier transform, and considered a point source. Yet here we find essentially the same
saddle-point position. A difference now isthat the steepest descents path is perpendicular to
thereal p-axis; i.e., angle y = /2 (see Box 6.3), whereas previously wefound y = —x /4.
In fact, where the Cagniard path lies on the real axis (6.573a), it lies on a “ridge” of the
integrand, theridgedescendingtoasaddlepointat ps= x/(Ry81) = ﬂ{l sin jgastincreases
to Ry/ 8. Therethe Cagniard path turnsthrough =z /2 and followsa* valley” of theintegrand,
which is the ordinary steepest descents path for t increasing from R,/ 8, (see (6.57b)).

If thereceiver isinaposition such that x/ Ry < 841/ 8,, thenthe point of departure of the
Cagniard path from thereal p-axisliesto theleft of branch cuts emanating from p=1/8;
and p=1/8,. (Theinequality impliesthat x islessthan the critical distance at which head
waves begin to be observable.) No interference with the branch cuts can occur, and since

dp/dt =in,/\/t2— R8/p?  onC (fort > Ry/By).

it follows that

vel(x, z, t) =

o | Hal— Mz'?z} H(t — Ro/ﬂl)' (659)

21, B2 {M17’1+M2’72 ft2 — R2/p2

(Thereisnocontributionfort < R,/ B4, sincethen p(t) isreal (see(6.57a)), and theintegrand
(6.56) has zero imaginary part.) This algebraic formula (6.58) is exact, and is evaluated for
t > Ry/p, by first using (6.57b) to obtain a corresponding point on the Cagniard path, then
finding n; =, /,3(2 — p2 (i =1, 2); andfinally, substituting into (6.58). Thisis an example
of what we can naturally call a narrow-angle reflection.

If the receiver is beyond the critical distance, so thet 8,/8, < x/Ry < 1 and we expect
a wide-angle reflection (see discussion of (6.23)), then the Cagniard path departs from
the real p-axis at a point p = p, between 1/8, and 1/8,, as shown in Figure 6.15b. The
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deformation from the positiveimaginary p-axis(6.56) to the Cagniard path proceedsjust as
before, but now there can be a contribution from that part of the path which lies on thereal
p-axis. This is the head-wave contribution, which arises in the evaluation of (6.56) along
the Cagniard path for real p-valuesbetween 1/8, and 8; lsinj o thenn, ispureimaginary,
so that the integrand has a nonzero imaginary part. Corresponding values of time are found

from (6.57):
ap=1/,  t=ty=x/By+Iz+7l\/B17— B3

t;, being the arrival time at (x, z) of head waves from (0, z;);

ap=ptsnjs,  t=Rypy,

the arrival time of the wide-angle reflection. Between timest,, and R,/ 81, 1, is a negative
pure imaginary quantity. It follows that an exact formulafor the generalized reflection is

o (x. 2, 1) = My — Mz’?z} H(t —t) — H(t — Ry/By)

2 1% {Mm + e /R2/p2 — 12

A Re {Ml’?l—ﬂzﬂz} H({t — Ry/By)

+ .
2upip; Lwam + uanz ) 2 p2 g2

The last term here evaluates the shape of the wide-angle reflection at time t > R,/8;.
However, there is a phase shift, because associated waves in the lower medium are
inhomogeneous (p > 1/8,). Asweshowed in Box 5.6 and in Section 6.2, the pul se shape of
thewide-anglereflectionisalinear sum of theincident pul se shape anditsHilbert transform.
The latter involves motions often called the head-wave term. In this sense, one can speak
of the wide-angle reflection as “emerging from the tail of the head wave.” Note, however,
that the attempt to separate the head-wave and reflection contributions will fail whenever
there is a breakdown of the approximate (asymptotic) theory for each contribution (e.g.,
(6.26), if the receiver is near the critical distance, so that L isvery small). Although thisis
a breakdown of terminology, (6.59) continues to give the exact total effect of “head wave”
plus “reflection” even when L issmall.

The final problem we shall consider in this section on the exact impulse response for
two-dimensional problemsisthat of aline source of P-SV wavesin ahalf-spacetaken asthe
region z < 0, with afree surface at z = 0 so that a Rayleigh wave is generated. We closely
follow Chapman (1972), obtaining exact results that have many points of similarity with
Section 6.3 above. One new ideaisintroduced: the concept of a*“leaking mode,” associated
with zeros of the Rayleigh function lying in the Riemann sheet {Re ¢ < 0; Ren > 0}.

We shall consider P-SV motions with displacement only in the x- and z-directions.
Then, from an argument given in Section 5.1, it is sufficient to work with scalar potentials
¢ and v related to displacement via

(6.59)

U=V¢+V x (0, ¥, 0) = (3p/dX — 3y /dz, 0, dp/dz + dyr/dX).  (6.60)
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(6.82)

N o0 1% exp(—s(pr + nz]))
x(x,S)zzﬂz—;’ﬂz/O dqlm[0 dp]

where n = /8724 g2 — p2. (To obtain (6.82) from (6.81), we also used half-ranges of
integration and properties of evennessin q; and evenness and oddnessin w for thereal and
imaginary parts of the integrand.)

Strong similarities are now apparent between the integrands of (6.48) and (6.82). Note
here that the horizontal variable isr, rather than x, and 1/82 + g2 replaces 1/82 in the
definition of . Previously, we found that

1o exp(—s(px + nlz))) ( . - )
I d thn = 2_p?
m[o ; p] withn =,/B~2—p

is the Laplace transform of

H (oYX 2
B
2 2
5 Xc4z

-

)

t

and this enables us now to write (6.82) as

) 00 _ /R—2 2
x(x,s)=%f dqf il U Vot v PSS
274pB= Jo 0

6.83
VE-R(BZ+a?) o5

Here we are using R=/x2 + y2 + 722 = v/r2 4 72 as the three-dimensiona distance
function. If we integrate with respect to q first, and then with respect to t, we find

00 A/12/R2—1/82
x (X, s):%f dte St {H (t— B)/ dq
2rpB® Jo B/ Jo VI2—R2(p24q?)
(6.84)

(as explained in Fig. 6.20). But now from this integrand we can recognize the required
solution as

Oy —
0

W= — .
xC. 1) 2n2pB2 \/t2 —R2(B2+q?

5 (6.85)

Thisis essentially the method of de Hoop (1960), and we list the following comments
on (6.85):

(i) Thesolution hasthetypical form for point-source problems, in that the exact solution
isasinglefiniteintegral.
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Then it is an elementary exercise in convolutions to show that

(Xt)—d—w*i*i— )
XY=t J rr\/f_l/f ’

and in this sense we can actually get a useful algebraic expression for the seismogram,
given by (6.95).
The approximation (6.94) and the resulting convolution (6.96) are now very much a

part of modern seismology, as we shall find in Chapter 9 when looking at the effects of
multiple layering.

6.6 Summary of Main Results and Comparison between Different Methods

We have described two methods for solving problems of a spherical wave interacting
with a plane boundary. The first method (Sections 6.1-6.3) uses the Fourier transform
of time dependence, and leads to solutions for displacement, pressure, etc. as a function
of frequency. The second method (Sections 6.4-6.5) uses a Laplace transform, but (by
mani pulations due to Cagniard, de Hoop, and others) leads to solutions directly in the time
domain. In this section we list some similarities and differences between the two methods
and briefly discuss their merits and disadvantages.

First, we list the similarities. Both the Fourier method and the Cagniard method
entail integrations in the complex ray-parameter plane: ray paths in the physical problem
correspond to saddle points in the integrand under consideration; head waves correspond
to branch cuts; interface waves (e.g., Rayleigh, Stoneley) correspond to poles; and leaking
modes (e.g., P) correspond to pol eson Riemann sheets other than that onwhich theradiation
condition is satisfied.

Second, there are several superficial differences. (i) To obtain results in the time do-
main via the Fourier method, a numerical inverse transform is required. But, in practice,
the Cagniard solution must be convolved with a source function and with the instrument
response, and these operations are essentially equivalent to numerical Fourier transforma-
tions. (ii) We characterized the Cagniard methods as being exact, whereas early in the
development of the Fourier method, we made an approximation to certain Hankel func-
tions (see (6.16)—6.18)). In practice, an equivaent approximation (6.94) is often made
in the Cagniard approach. (iii) Branch cuts in the Cagniard method were chosen to make
{Re& > 0; Ren > 0}, and it wasfound possible to keep the path of integration on this same
physical Riemann sheet, without crossing branch cuts. However, we devel oped the Fourier
theory with branch cuts fixed by {Im & > O; Im 5 > 0}, in which case we found it neces-
sary to develop complicated paths of integration (e.g., Fig. 6.9) that had segments on non-
physical sheets. Many authors have taken this approach, and a correct discussion of the
effect of leaking modes can be highly involved. Fortunately, the choice of branch cutsis
quiteflexiblein the Fourier method, and apath of integration can in fact be chosen that does
lie close to the steepest descents path, yet also stays on the same Riemann sheet. The main
constraint, the radiation condition, requires that the integrand (e.g., (6.33)) tend to zero as
|z| — 0 only for values of p on the origina path of integration. Thus, in (6.33), we really
require Im & > 0 only for p-values on the real p-axis, and do not need to use branch cuts
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FIGURE 6.22 (continued)

Various branch cuts and integration paths in the complex p-plane, showing the flexibility of choice.
(a)—(d) are relevant to the problem solved in Section 6.2 of a point source of pressure in a medium
consisting of two fluid half-spaces. (a) Branch cuts are chosen so that Im&; > 0, Im &, > O for
the whole plane. T lies on the real axis, just above cuts in the third quadrant, and below cuts
in the first. Compare with Figure 6.4. (b) For the same problem, we have changed branch cuts to
Re&, > 0, Re&, > 0. Thesolutionisunchanged, becauseI" isunchanged and theval ue of anintegrand
(e.g., (6.18)) at any point on I" isunchanged from (a). (c) I' isdistorted from the position shownin (b)
to lie on a steepest descents path in a case where head waves are possible. The path around the cut is
now much simpler than that shown in Figure 6.9, although thereis still a problem in that the steepest
descents path runs into the cuts at p = 1/(x; Sini), hence I is subsequently drawn below the cut.
(d) For cuts like those shown here, there is no difficulty in keeping I" everywhere on the steepest
descents path (except around the branch point at p = 1/«,). To see that these cuts are possible, note
that they can be moved from the position shown in (a) before I' is distorted from the real axis. In
subsequent distortion of T to the path shown here, Im &; and Im &, do become negative in the first
quadrant to theleft of the cuts shown. Thisisallowed because no singularitiesare present between this
part of I" and apath (shown asabroken ling) onwhichIm &, and Im £, are posmve (e) Thisshowsthe
p-planefor asolid half-space problem, e.g., for evaluating the generalized P P reflection (seeFig. 6.12
for comparison). Branch cuts are drawn upward into the first quadrant, and a path I' favorable for
computations is made up from straight-line segments and asemicircle around p = 1/cg. Branch cuts
of this type have properties similar to the lines of poles found in Chapter 9 in generating theoretical
seismograms when the Earth’s spherical geometry is taken into account.
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Problems
6.1 When head waves can occur in the solution (6.93), arriving at time t,,, show that

(6.94) isequivalent to requiring

>t —t
ﬂz “
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BOX 7.2 (continued)

Let usnow usethesevaluesof c and U to analysethe seismogram at a particular distance
X = 500 km, assuming it is given by

f (500, t) = % / ™ expl[i (K500 — ot)] dov. )

This assumes a unit amplitude spectrum, and all frequenciesleave the source at x = O with
the same zero initial phase.

r

art/rio7bf02c.eps

L
The phase of (1) at seven different times, giving examples where wg has 0, 1, or 2 values.

Figure C shows the phase of (1), plotted as a function of w at 20 s increments from
t =80 to 200 s. It can be seen that the phase at timest = 80 and 200 s does not have
stationary values—that is, thereisno solution of d(kx — wt)/dw = Ofor (x, t) = (500, 80)
or (500, 200). For t = 100, 120, and 160 sthereis only one stationary value, a solution w
of equation (7.14). And for t = 180 s, there are two solutions w,.
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7.3

74

7.5

7.6

7.7

Generalize the idea expressed in the previous question by relating both f(z) and
f(z_,) tow, and then showing that

f(z) =F z)F Y @_pfE_y).

Hence show that the propagator from z;, to z, is

P 20) = [Fe@0Fi @ | [Fa@nFich@co) | - [FiaFi'e@) .

(Note: These results are till true if the medium consists of a stack of inhomoge-
neous layers, provided F,(z) is a matrix whose columns are linearly independent
solutions of 9f/9z = A(2)f in thelth layer.)

In Sections 5.4 and 7.2, we showed that Fw can be thought of as a sum of all
the possible wave types that solve df/dz = Af; that each of the columns of F is
separately abasic solution of of /0z = Af; and that w is avector of constants that
give the weight of each basic solution present in the sum Fw. Consider the first
column of F in (7.55) when k > w/«a, and show that the corresponding wave in
the sum Fw of (7.54) is an inhomogeneous P-wave with displacement amplitude

F\’e_ﬂ\/olzkz/a)2 — sin(kx — wt).
Show by redefining the origin that one way to construct G,,(0, 0, h; X, Y, z; )
is by making the switches (r —r; ¢ — ¢ +m; z— h; h— 2z) in formulas for
Gnp(X. ¥, z; 0, 0, h; w). Use this approach to verify that the reciprocity
an(O, 0,h;x,vy,z w) = Gpn(x, Y,z 0,0, h; w)

is satisfied for surface-wave components (7.146) and (7.147).

Show that the change in phase vel ocity of Love waves at fixed wavenumber, which
will result from a perturbation (8o, §u) in the structure, is

2
/OO k2|f+(%> Sudz—/wwzlf&odz
(80) _Jo dz 0
€ /x 2a)2/ pl? dz
0

Show that the Rayleigh-wave eigenfunction for a half-space with Poisson’s ratio
0.25is given by

r, = e 08472 _ 05773 g 0393342
r,=0.8475 g 08475kz _ 1 4679 @ 0-3933Kz

and that the energy integral |1, isequal to 0.62050/ k (k isthe horizontal wavenum-
ber and p is the density). Then, using (7.150), obtain an explicit formula for
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BOX 8.1 (continued)

stopping at either x or 1 (times a constant) as the last term. The first few Legendre
polynomials are

P =1, P (x)=x, P,=1(3x*- 1),

Py(x) = 3(5x3 = 3x),  P,(x) = 2(35x* — 30x? + 3),
and, in general,
d I
P = WW(X -1,

which is known as Rodrigues' formula.

The figure shows some examples of Legendre functions, plotted as (large scale, axially
symmetric) topography on asphere. P (cos A) has| oscillations around the circumference.
Note from the figure (e.g., with | =5, 10, 14) that these oscillations are not quite evenly
spaced: thereis an increasein wavelength and amplitude for the peaks (or troughs) at A =0

and A =m.
M B
art/rio8bf01.eps
L _|
THE CASESm#0

We shall initially assume the integer m is positive. Then with X = cos A in (3), wefind

d , 4O m?e
&[(1—“&]_1_)(2—1(0. (1)

We might attempt a power-series solution like (5). However, this approach becomes dif-
ficult because the formula for b,  , turns out to involve not just b, (asit did before for ®

(continued)
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8.2 Excitation of Free Oscillations by a Point Source

integral such asfi u*(&) - f(&) dV (&), where f(&) is now the body force per unit volume.
We shall continue to assumethat this body force acts asastep function in time. From (8.25)
we immediately obtain

ux =y (/ ur(E) - f(€) dV) = eXp[_(“’it/zzQi)] cos eit g 26)

i v i

Our useof i heredenotestheith norma mode of thewholeEarth. That is, eachi corresponds
to somevaluefor thetriplet of integers (I, m, n) that wefound in Section 8.1 were necessary
for characterizing individual modes. The sumin (8.25) isthusan infinite sum, but, as shown
by Rayleigh in his classic text “The Theory of Sound” (reprinted 1945, paragraph 101), it
does converge because of thefactor w,” 2, Thenormal modesin (8.26) have been normalized
(cf. (8.18)) by

/Vp(s),-U*(S) Sju) dv =§;, (8.27)

where p (&) isthe density, and the volume integral s above are taken over the whole Earth.

We shall now find the vibration of a spherical Earth model due to a point source that
is specified by a moment tensor. Using a result that was previously given as an exercise
(Problem 3.6), the body force becomes

0
fp(%.s t)= _Mpq(t)_a(s - Xs)' (828)
o€,

We shall assume that M acts as a step function in time at x, so that the body forceisalso a
step function, and (8.26) is directly applicable. Theith excitation coefficient is now

9
/ @) - fE) dV = — Mpq/ () 506 —x)dV ()
v v & (8.29)

= Upq(XIMpg = €pq (X9 My,

where; e, isthe (pqg) strain component in thei th normal mode. To obtain the last equality

in (8.29), we used the symmetry M g = Mgp- Putting (8.29) into (8.26), we finally obtain
the displacement for an arbitrary point source M H (t) acting at X

— exp(—w;t/2Q;) cos w;t
! 3 ! L. (8.30)

1
ue, t) = Z[ie’gq(xs) M pgl U
i

Thus, once the normal modes; u of the Earth are known, it is conceptually a simple matter
to calculate the response of the Earth to a point source with arbitrary moment tensor.

To find explicit forms for the normal modes, we must be more specific about the Earth
model. We shall consider here a nonrotating spherically symmetric Earth in which the
density p and Lamé parameters A and p depend only on the distancer from the center of
symmetry. The equations of motion (2.47)—2.50) for this model can fruitfully be studied
by the motion-stress vector approach that we adopted in Chapter 7. In spherical polar
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coordinates, the appropriate ansatz for displacement in the mode (I, m, n) is
[UIORMA, ¢) + .V, (NSNA, ¢) + W, (NT(A, ¢)] exp(—ipot). (8.31)
The associated traction working on spherical surfacesr = constant is
[LRORMA, ) +,§OSA, &)+, T, (OTN(A, p)] exp(—ijot) (832

and we can write the equations for the radial function in the following separate forms:

v 1 VI(E5Y) 1 0 \
r r m
ANA+D 2\ 1
v i r(A+2p) T T2 0 20 U
T Adsvpotw o2 2 _2u@d2wMTED 3 _a/I0ED
S r20.+2/1) p r2 r20.+2/1) r T (+20) S
_ 2u@+2w)/I(+D) —pa? 4 G2 AA+D 4
R r200+241) p r2042u0) r o420 R
(8.33)
and
g (W 1 1N /w
— = ' M . (8.34)
dr T ud =1 +2) 2 3
Tz e /AT

(We have dropped subscripts | and n from the dependent variables and from . Note that
m does not enter the matrix equations.)

Thus the vibrations of a spherically symmetric Earth without rotation can be separated
into two type of modes. One isthe spheroidal mode with horizontal wave functionsR™ and
S" and radial wavefunctions determined by (8.33). The other is the toroidal or torsional
mode with horizontal wavefunction T[" and radial wavefunctions determined by (8.34).
It is clear from a comparison of matrices in (8.33) and (7.28) that the spheroidal modes
include Rayleigh waves. Comparing (8.34) and (7.24), we see that the toroidal modes
include L ove waves. Such comparisonsrequire that the horizontal wave number k of surface
waves beidentified with /I (I + 1)/r for free oscillations. We shall present amore detailed
comparison of surface waves and free oscillationsin the next section.

To find the normal modes, we must solve the eigenval ue-eigenvector problems (8.33)
and (8.34) under the boundary conditions that the solutions are regular at r = 0 and the
tractions vanish at the Earth’s surface (r =r,). The numerical method and the Rayleigh—
Ritz method described in Chapter 7 can be adapted to solve these problems. One method
of handling the condition at r = 0 (Takeuchi and Saito, 1972) is to assume that the Earth is
uniforminr < r, and solve the differential equations in powers of r. The power series are
then evaluated at r = r4, and numerical integration is initiated from these values and taken
upward. For each integer |, there are eigenvalues ,w; (N =0, 1, 2, . . .) that make the stress
wavefunctions (R, §, T)) al zero at r =rg, and for each ,w, there is an eigenfunction
for the motion-stress vector. Again we note a degeneracy, in that eigenfrequency and radial
eigenfunction are independent of m.
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TABLE 8.1
Strain components for a spheroidal mode.

du

&, bOW 0 0

b bpv@+2(1-1) V
es | 2U-IT+DV] 0 % v
€ TN 0 —€x

—bgm | VIT+1) dav Vv

2, 0 2ie 0
2e,, 0 0 ime, 5

TABLE 8.2
Strain components for atoroidal mode.

m=0 m=+1 m=42
e, 0 0 0
imb W
€an 0 0 —5 Vi+20-D-—
€ 0 0 —€xa
—ib dw W
2 0 = [d—r‘T] 0
bm [dW W
% 0 2 [d—r T] 0
—bvOT+20I =D W
26,4 0 0 oV ( +2 )( )T

The asterisk in (8.38) following Mpq indicates convolution, and (8.38) indicates that
the point source is naturally characterized by its moment-rate tensor, M (t).

In this section we have followed the simple and straightforward steps due to Gilbert
(1971) and Gilbert and Dziewonski (1975) in deriving the formula for excitation of free
oscillations. Earlier, Saito (1967) solved the same problem using a method similar to the
one we described for surface-wave excitation in Chapter 7, and he obtained a formula
equivalent to (8.30). Figure 8.4 shows a comparison between observed and calculated
spectral peaks at several WWSSN stations for a large deep earthquake in Colombia. The
continuous lines indicate the observed radial displacement spectrum, and the vertical bars
show thetheoretical amplitudes of free oscillations cal culated by Mendiguren (1973a) using
Saito’'sformulaand afocal mechanism determined from the observed P-wave first-motion
pattern. Saito’s results were used by Mendiguren (1973b) in devising a stacking technique
for high-resolution identification of spectral peaks, as described in Box 8.2.
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9.1 Cagniard’s Method for a Medium with Many Plane Layers: Analysis of a Generalized Ray
M N

FIGURE 9.1
(a) Notation for the density (p)
and two wave speeds («, 8) in
a stack of homogeneous layers.
The boundary between layers n
and n+4 1 is at depth z,, and
the thickness of the nth layer
isTh, =2z, —2z,_,. (b) Ray in-
terpretation for the two main
contributions to the generalized
P-wave reflection associated
with the nth boundary; source
and receiver arein layer 1. We
have assumed &, 1 > a,,, SO that
a head wave (involving hori-
strip in ri09f01 zontal propagation at the top of
the (n 4+ 1th layer) can exist,
together with a wide-angle re-
flection, as shown. Because this
generalized reflection is associ-
ated with only one interface, it
isknown asaprimary reflection.
No mode conversions (from P to
SV) are shown. In practice, for
a P-wave source, it is often true
that the total P-wave response at
the receiver is given quite accu-
rately by summing such primary
reflections, one for each inter-
face (i.e., by ignoring multiple
internal reflections and conver-
sions from P to SV and back
L ] to P).

where K isamodified Bessel function and

PRODUCT(p) = (PP); - (PP), - - (PP)y_1- (PP), 03
S(PP)pq (PP),- (PP)y,

SUM(p) = (Thy — dp)&; + Thoé, + - - - + Thyé,

(9.9

+ Thpéy + - - - + Thod, + (Thy — dy)é;.
Here, & = /a2 — p2 with branch cuts chosen by Re & >0, and (PP),_; (etc.) is
a transmission coefficient for the (n — 1)th boundary. The product in (9.3), involving
plane-wave transmission and reflection coefficients, is easily written down with an eye
on Figure 9.1b, following the generalized ray across interfaces. (Although our physical
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FIGURE 9.14

The behavior of T, A, and t asfunctions of p for avelocity decrease with depth. (a) A low-velocity
zone (within which da/dr > «/r and there are no turning points) is shown shaded, and a shadow

within which no rays are received is observed at the surface. (b) The travel-time curve. The upper

boundary of the low-velocity zone is the turning point for the ray emerging at point E. Point F has
the same ray parameter, but lies on aray going through the low-velocity zoneitself. Asray parameter
decreases dightly from itsvalue at F, distance A decreases until acausticisreached at A ;. (c) The
valuesof A = A(p). These show that thefurther boundary of the shadow isin fact acaustic. (d) Upper
and lower boundaries of the low-velocity zone are turning pointsfor raysthat differ infinitesimally in
their ray parameter. The turning-point radius is therefore a discontinuous function of p. Thisisalso
adiscontinuity int(p) = T — pA and inthe gradient dz/dp = —A(p).
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so we can rewrite (9.46):

1 (Y% X(q)dqg

Z(p):; ) 7?2_ 02

The first term of the right-hand side of the above equation is nothing but the Herglotz—
Wiechert formula, and is determined uniquely from the observed travel-time data. The
contribution | (p) from the low-velocity layers can be obtained as

+1(p). (9.47)

K o 2 1/c(2) qdq
l(p=> —/ dz/
i-1 7z i /[1/0(2)]2 — 2 JP — p2

k va 2 2

2 /Z. 1 | [Ye@] =P
:§ — tan ————4dz for p, > p> Proq.
Sl N B “ o

The above equations (9.47) and (9.48), obtained by Gerver and Markushevitch (1966),
represent the extension of the Herglotz—Wiechert formulato include low-vel ocity layers.

For p > py. | (p) = 0. Therefore, the Herglotz—Wiechert term givesthe solution Z(p),
which gives the vel ocity—depth function uniquely for z < z;.

For p < p,, the Herglotz-Wiechert term is determined from the observed travel-time
data. However, through the second term | (p), an arbitrary velocity—depth function v(2)
may be assigned to the low-velocity layer subject to some constraints described below.
Except for the upper boundary of the first low-velocity layer, the boundary depths z,, z,
are al'so unknown.

Thefirst constraint from observations, on c(z), z,, and z,, is given by the discontinuity

inz(p):

(9.48)

At =2 / Zk,/[l/c(z)]z— p2dz. (9.49)
Zk

The second is, by definition, that the calculated Z (p) should not increase with p. Thethird
is that Z(p, + 0) and Z(p, — 0) must agree, respectively, with the depths of the lower
and upper boundaries, z, and z,, of the kth layer. As shown in Figure 9.27, Gerver and
Markushevitch gave a “giraffe-like” area in which the plots of al possible solutions c(2)
must lie for the case of two low-velocity layers. The upper bound for c(z) corresponds to
the Herglotz—Wiechert term. Figure 9.27 also shows the existence of an upper bound for
the thickness of the LVZ given earlier by (9.40).

The special methodswe have described in thissection, for inverting travel-timedata, are
closely associated with the special properties of the Abel integral equation. These methods
are unusual in that a method of construction is known for obtaining the inverse. More
general methods of inversion, applied to travel times, are described by Johnson and Gilbert
(1972).
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BOX 9.5 (continued)

Note that B contains the horizontal derivatives present in the Laplacian operator, so that
BY,™=—I(I + 1)Y," for any surfaceharmonic Y,"™. Theinverse B~* of B hasbeen discussed
by Backus (1958):if g = g(r, A, ¢) canbeexpressedasasumg= ) 2, Zlm=4 g"my",
then weinvert Bf = gtoobtain f =B~1g=— Y, >[I + D] gmY™

SV-POTENTIAL

For spheroidal motion, curl.u =0, and then § =0 and V - S= 0 both follow from (2).
Thus 3(sin AS,)/dA + 98,/0¢ =0, which is a condition that there exists a function V
suchthat S, = (1/sinA) aV/d¢, S, =—3V/IA. Hence

S=Vx(V,0,0 for SV waves. (5)

To construct V, weform curl, Sand notethat —r curl, S= BV, an operator we have aready
found how to invert. Richards (1974) shows that

2

u
v2V + P2 v — terms of order lul
n

@

(6)

SH-POTENTIAL

For toroidal motion, u, =0 and V - u = 0. We can therefore follow the same stages as
discussed above for S, introducing a potential H, via Hy = —B~%(r curl u). To get the
canonical form of the wave equation for SH-potential, it is convenient to work with
H = uY2H,. Then

u=p Y2V x (rH,0,0)  for SH-waves,
and

2
v2H + 2271 — terms of order . 7
o w

Equations (9.50a) and (9.50b) are obtained by ignoring small termsin (3)—(7). (All these
terms are zero in homogeneous media.)

Following Seckler and Keller (1959) and Friedman (1951), weintroducethree particul ar
solutions of the homogeneous equation related to (9.55). Let f,(r) bethat solution for (r, |)
which is regular at the central point r = 0. For very large values of r, the wave equation
becomes roughly d2a/dr2 = —w?a/«?. By analogy with the solutions €'/ when « is
constant, we expect that two independent solutions of our wave eguation can be chosen,
one with a phase that increases with r, and another with a phase that decreases. We label
these solutions gl(l)(r) and gl(z)(r ), respectively. In association with the factor exp(—iwt),
g® isan outgoing wave and g@ isingoing. Apart from anormalization, the three solutions
are completely defined and we may take

ar 1= €9 ® =T (9.56)
c, fi(r) forO<r <rg
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r T
strip in ri10f01
FIGURE 10.1
The origin of coordinates
is taken on a finite fault
surface. L _

If thiserror isequal to or greater than a quarter wavelength, A /4, aserious error will be
introduced in the result of integration. Therefore, the approximation by equation (10.11) is
justified only for

fo[lél (E~y)]<<4
or, conservatively,
L2 <« 3ar, (10.12)

where L isthe maximum of |&] on X. Thisis the same as the condition to be satisfied for
the region of Fraunhofer diffraction in optics. For comparison, note that the condition we
assumed in Chapter 4, in which the whole fault was regarded as a point source, amounted
to L « A, which is a much more restrictive condition on the applicable frequency range
than (10.12). Under condition (10.12), we can rewrite the displacement waveform givenin
equation (10.7) as

Q(X, t):Q(y,t):// AU [s,t—W] dx. (10.13)
=

Note that the far-field pul se shape depends more directly on y than on x, sinceit is position
on the focal sphere which governs this pulse shape, and many positions x have the same
value of y.

Taking the Fourier transform of the above equation with respect to t, we get

_ il . —io@-y)
_exp< S >//2Au(§,a)) exp[ o ]dE

(10.14)
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10.1 Kinematics of an Earthquake as Seen at Far Field

across a smaller but still significant magnitude range, for events all from the same region,
have in some cases reported a different result, namely that stress drop appears to increase
monotonically with increasing moment for events below acritical size, becoming constant
for events larger than critical (e.g., Shi et al., 1998). Heaton (1990) pointed out numerous
earthquakes with fault length much greater than width, for which the rise time was likely
to be independent of fault length, resulting in a different scaling law.

An extensive study of source parameters of major earthquakes in and near Japan was
made by Kanamori and hiscolleaguesusing the Haskell model. Theresult, assummarized by
Kanamori (1973), showed that the amount of slip and the extent of the fault area obtained
by the seismic method are in good agreement with those obtained by a static method,
using geodetic measurements for earthquakes caused by “brittle elastic” rebound. On the
other hand, for earthquakes attributed to “visco-elastic” rebound, the dlip and fault area
were found to be significantly greater by the static method than by the seismic method,
indicating that the seismic event does not totally represent tectonic processes associated
with an earthquake. The completion of the Global Positioning Satellite system in the 1990s
permits subcentimeter determination of absolute locations of points nearly anywhere on
Earth, and Heki et al. (1997) made such a measurement of ground displacements at 16
stationsin thevicinity of amagnitude 7.8 subduction zone earthquake that occurred on 1994
December 28, off the Sanriku coast of northeastern Japan. During the ensuing 12 months,
thedisplacement of 15 of these sitesgrew to exceed the displacement that had occurred at the
time of the earthquake at these same sites. These authors and DeMets (1997) interpreted the
observationsasevidencefor afterdip, somewhere onthefault planethat rupturedinthemain
shock, rather than as an effect of viscosity in alower layer. The motion between tectonic
plates is apparently accommodated by a continuum of processes, including slow-rupture
earthquakes, aseismic creep, and afterdip, as well as by more conventional earthquakes.

10.1.6 NUCLEATION, SPREADING, AND STOPPING OF RUPTURE

Theunidirectional propagation of rupturein Haskell’s sourcemodel isan oversimplification
of faulting when welook closer at the nucleation of the rupture process. To make the model
moreredlistic, itisdesirableto allow rupturetoinitiate at apoint (rather than simultaneously
everywhere along a line segment) and then spread out radially (rather than propagate in a
single direction), until it covers an arbitrary two-dimensional surface on the fault plane.
Far-field waveforms from this type of source model, using auniform rupture vel ocity, were
first studied by Savage (1966) using equation (10.13).

As shown in Figure 10.6, we shall place the fault in the plane x; = 0 and assume that
rupture propagates from the origin in all directions with uniform velocity v and stops at the
perimeter of the fault plane X. Initially the rupture front is a circle described by p = vt,
but the final fault will have a perimeter given by p = p,(¢'), where (p, ¢") are cylindrical
coordinates in the fault plane.

Savage (1966) assumed the displacement discontinuity wasastep functionin timewith
final value AU (p, ¢'). In our notation and using Heaviside step functions, the model can
be expressed as

AU, ) = AU (p, $HH(E — p/v)[L— H(p — pp)]. (10.23)
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M Bl

strip in ri10f06
FIGURE 10.6

The rupture starts from the origin

and spreads in the x;X,-plane with

a constant velocity v. Initialy, the

rupture front isacircle p = vt, but the

final fault plane has a perimeter given

by p = py(¢"). P is the observation

point, and an element dX of the fault

isshown at (o, ¢'). L _

Putting thisinto (10.13), we find

Qx, ) = /f AU (st i ”)) dx ()

,0 sind cos(¢p — ¢) P , (10.24)
- Jf(-t 2) v

c

x [1=H(p — pplp dp d¢’,

where we used the spherical coordinates shown in Figure 10.6 for expressing (¢ - ). Since
J f(x) 8(ax — b) dx = f (b/a)/a, the integration with respect to p gives

/8 (t — %0 - quc> AU (p, oH[1—H(p — py)lp dp

r r
y t_EO 2 t_EO
=|{t——)A o | = for 0 < <p
( C> Oo/v 2 e °
r
=0 for p, < ,
7 g/

where g, =1 — (v/c) sSinf cos(¢ — ¢’) is assumed positive everywhere; in other words,
v < ¢ and theruptureis subsonic. [If v > ¢, waveswould arrive beforery/c inthe directions

(@, ¢) for which q,, is negative, because AU[(t —ry/C)/(0./v), ¢'] will be nonvanishing
fort <rp/cl


paul

paul

paul


10.3

104

105

10.6

10.7

Problems

Equation (10.41) amounts to a dynamic boundary condition for tractions on
the fault plane. Where do we take this condition into account in setting up a
representation of the solution, such as (10.39)? Verify that this representation of
the radiated field does indeed have continuity of shear stress across the fault (use
results of Problem 10.2).

Theopening of acrack may be represented by adisplacement discontinuity [u] that
isparallel to v, the fault normal. Obtain the equivalent body force in an isotropic
elastic body, and find thefar-field body waves (P and S) in aninfinite homogeneous
medium (cf. equation (10.6)).

Show that the source spectrum for a faulting episode, derived from the far-field
displacement as discussed in Section 10.1.4 in the limit of low frequencies, isflat
at the origin (w = 0). (Thisresult istrue, whether the spectrum has a maximum at
the origin, or whether there is overshoot.)

Under the assumptions of shear faulting on a plane, and dlip everywhere in the
same direction, we have seen that the far-field pulse shape is given by (10.13)
provided fault length L, wavelength X, and source—receiver distancer satisfy the
constraint L2 < 1Ar,. Far-field pulse shapesfor P-waves and S-waves radiate out
to every direction on thefocal sphere. Supposethat the pulse shape Q2 (t) isradiated
asa P-wave in some direction y °.

a) Show that it is always possible to find a direction y S in which this same pulse
shape Q(t) isradiated as an S-wave (though the arrival time will be different,
and note that we are neglecting the effects of different attenuation between P-
and S-waves).

b) Show that the relationship between y ” and y S is similar to Snell’s law (5.20)
governing theanglesi and j of P- and S-waves coupled at a planeinterface.
¢) Given an S-wave pulse shape observed in direction yS, show that it is not

always possible to find a direction in which this same pul se shape is observed
asa P-wave.

The“finitenessfactor” X 1 sin X that appearsin equations (10.20)—(10.22) isvery
simple, because (i) the rupture is unilateral (i.e., it proceeds from one end of the
fault to the other); (ii) it has constant rupture velocity; (iii) the fault width W is
very small; and (iv) the slip function at each point of the fault plane is the same,
apart from a delay due to the time taken for rupture to initiate.

a) Suppose that we drop assumptions (i), (ii), and (iii), but retain (iv). Show that
the far-field pulse shape is then given by

QX, w) = QyX, ®)F(y, w),

where Qy(X, w) is the pulse shape radiated by a point shear dislocation of
strength A x Au(w), and the finiteness factor in this more general caseis

1 )
F(y,w):K//E exp i [z(g)— ‘&T"} ds.
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- ~
FIGURE 11.1

Approximating an arbi- strip in ri11fo1

trary dlip function Aw(x’)

by a superposition of step

functions. L _

For the in-plane problem, a similar relation is found between the shear stress ,, on
the fault plane and slip velocity Aw. Applying the same superposition to equation (10.65),
we get

N 2““132 2/.2 (1_1)2/2/32)2 0 Au

In both (11.3) and (11.4), we see that the shear stress on the fault plane is a constant times
the Hilbert transform of dlip velocity.

A function and its Hilbert transform are very closely related. From Box 5.6, we see that
if g(x) isthe Hilbert transform of afunction f (x), then these two function share acommon
amplitude spectral density, and their spectral phases differ by = /2.

Thus the shear stress and the dlip velocity on the plane y = 0 must share a common
amplitude spectral density apart from a constant factor, with a phase difference of = /2.
Furthermore, the slip velocity must be zero outside the crack (because no slip occurs there
yet), and the shear stress must be zero inside the crack (assuming no frictional stress for
simplicity). In other words, we want to find a pair of functions f (x) and g(x) that satisfy

f(x)=0if x>0, g(x) =0 if x <0, and g(x):% “gfigz(

(11.5)

dg.

From tables of Hilbert transforms, we find that the following choices of f (x) and g(x)
satisfy these three conditions:

_ H(=Xx) _ —HX)
= N and g(x) = %

It iseasy to show that they satisfy theintegral in equation (11.5) by extending & to acomplex
plane and making a branch cut along the negative real axis (Fig. 11.2). The integral along
AO will be equal to the one along OB because of the opposite signs of ./—& on the two
paths. For x > 0O, the residue evaluation of & = x gives g(x) = 1/./X, and for x < 0 the
integral vanishes because the pole is outside the contour.

Thus we find for our mechanics problem that the boundary conditions for a moving
crack are satisfied by a square-root singularity in stress ahead of the crack tip, and another
square-root singularity in dlip velocity behind the crack tip. The square-root singularity in
stressiswell known for a static crack.

f(x)
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r 1
strip in ri11f08
FIGURE 11.8
Thereisapole at g, near the Cagniard path for
L _ evaluating (11.31). [From Richards, 1976a.]

out to be a second-order pole, denoted by q,,,,, and is due to the moving nature of the
source. It is necessary to pick up residues in converting to the Cagniard path, giving
the form

g

P . 1 o0 o
u-(x, s)_?/0 dw/0 dt F(q(t), w, ¢)e at

. (11.32)
+/ dw R(qy,, w, ¢, e~ (qy,, w, 6),
0

From the first term on the right-hand side here, one can invert to the time domain in
the usual fashion (i.e., by reversing the order of integration and recognizing the result
asaforward Laplace transform), obtaining asingleintegral over w. The second term
on theright-hand side of (11.32) isaready in the form suitable for recognition asthe
Laplace transform of a function of time. This term therefore results in an algebraic
closed-form expression. This overall method, an algebraic expression resulting from
an integral of residues, was first developed by Gakenheimer and Miklowitz (1969)
for solving Lamb’s problem with a moving source.

As usual for Cagniard inversion of three-dimensional problems (see Section 6.5), the
complete seismogram can be calculated only numerically, an integration being necessary
for each point in the time series. Figure 11.9 shows theoretical record sections for x;- and
X3-components of acceleration near a left-lateral strike-slip fault. The coordinates for the
four stations are (1, 1.5, 0.5), (4, 1.5, 0.5), (7, 1.5, 0.5), and (10, 1.5, 0.5). The density of
the medium is 2.7 gm/cm3, the P-wave velocity is 5.2 km/s, and the S-wave velocity is
3 km/s. The rupture speed in the x,-direction is 90% of the Rayleigh-wave velocity, and that
in the x,-direction is 90% of the S-wave velocity. We seg, in thiscase, small P-waves, sharp
step-like S-waves arriving from the nucleation point, and large accel eration associated with
the passage of the crack tip. The amplitude of waves from the nucleation point decreases
with distance, whereas the accel eration associated with passage of the crack tip increases
because the stress-intensity factor increases with increasing crack length.

The corresponding displacement records are shown in Figure 11.10. As discussed
in Section 11.1.1, the transverse component shows a step-like waveform rather than a
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r 71
strip in ri11f12
FIGURE 11.12
Grid-point assignment for each
of nine stress/particle-velocity
components. L _

where A, u are the Lamé constants and p is the density. We have to solve these equations
subject to the following boundary conditions on z = 0:

T ,=-24,=—p forr <min(ut,re),
U=v=0 forr > min(vt, r.), and

%,,=0 forallr.

The slip components Au, and Aus, in the original coordinates can be written in terms
ofuandvatz=0:

Au; =2ucos® ¢ — 2vsin? ¢, AU, = (U + v) SiN2¢.

In the case of self-similar cracks studied in the preceding section, Au, vanishes. In the
present case Au, does not necessarily vanish but is found to be practically negligible; i.e.,
u~ —v, so that

Auy=2u=—2v. (11.38)

Interestingly, Au, isindependent of ¢.

Madariaga (1976) solved the above problem by the finite-difference method using a
so-called staggered grid in which the velocities are defined at discrete times k At and the
stresses at times (k + 1) At, for integer values of k, where At isthe time-grid interval. The
spatial grid-point assignment for each of the nine stress-particle velocity components is
shownin Figure 11.12.

Figure 11.13 shows the dlip function Au(r, t) = u(r, 40, t) — u(r, —0, t) at severa
points on the crack. The rupture starts a t = 0 and expands with velocity 0.98, where 8
is the shear velocity. The dlip is measured with pyr./u as the unit. The time t and radial
distance r’ are normalized to r /o and r, respectively, where « is the P-velocity. The
dlip function in time is shown at the center (r = 0) and at four other points at intervals of
0.2r.. At each position for which the slip history is shown, an arrow indicates the time of
arrival of P-waves, originating from the perimeter of the crack at the instant the rupture
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12.2 Frequency and Dynamic Range of Seismic Signals and Noise

re-leveled to maintain the bubble position. Using this feedback as the output signal,
Harrison was able to measure the M,, tide to about 0.5% after 3 months of observation.
However, short-base tiltmeters are inherently susceptible to very loca site effects, which
are hard to quantify. If nearby rock units are heterogeneous, then an applied overall strain
can cause local tilting, which partly explains why closely spaced short-baseline tiltmeters
do not always give the same signal.

12.2 Frequency and Dynamic Range of Seismic Signals and Noise

Most of the signals studied in seismology are transient, i.e., they have in practice afinite
duration, such as seismograms from explosions and earthquakes. For such atransient signal
f (1), the Fourier transform f (w) exists with the definition

f(a)):/oo f(t)e“t dt, and f(t):/oo f(w)e‘iwtg—:, (12.21)

—00 —00

inwhicht isthetime and w isthe angular frequency. We shall define the amplitude spectral
density as the absolute value of f (w), and the phase-delay spectrum ¢ (w), by

f(w)=|f(w)e?®. (12.22)
Our reason for calling ¢ the phase delay is givenin Box 5.5. Since f (t) isreal,
f*(w) = f(~w), [f(w)|=f(-w)l, and ¢ (w) = —¢(—w), (12.23)

where the asterisk indicates the complex conjugate.

The unit of | f (w)]| isthe unit of f(t) divided by the unit of frequency (w/2r). For
example, if f(t) represents the ground displacement in cm, then the unit of | f (w)| iscm
per Hz—which explains why | f (w)] is called the amplitude spectral density (though the
abbreviation “amplitude spectrum” is common). The most commonly used units of ¢ (w)
are the radian or the circle (i.e., 2z radians).

There are three other distinct types of signal for which the ordinary Fourier transform
does not exist. Oneisthe superposition of sinusoidal oscillations with frequencies w,,, such
asthetidal Earth-strain caused by the gravitational attraction of the Sun and the Moon. For
this, we define amplitude A,, and phase delay ¢,, in the following manner:

ft)=>" Ayexp(—iont +igy). (12.24)
n

where A,, has the same physical dimension as f (t).

Another type of signal we shall consider is the stationary stochastic process, such
as ambient seismic ground noise caused by the atmosphere, the oceans, some volcanic
processes, industrial activities, and traffic. These signals cannot be expressed either by
(12.212) or by (12.24). Wefirst introduce the autocorrelation function P(z), defined as

Pm)=(fM®ft+1), (12.25)
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12.3 Detection of Signal

Thisgivesaground acceleration equival ent to the Brownian motion of the pendulum. Using
Q1 =2¢/w, where 21 /ws = T, isthe undamped pendulum period, (12.39) isrewritten as

(@?(t))  8rkT
Af  MQT

(12.40)

Thus the instrumental acceleration-noise power-density is inversely proportional to the
product of mass, instrument Q, and pendulum period.

For comparison with the ground-noise spectragiven in Figure 12.12, it isinteresting to
note that the Low Noise Model ground-noise spectrum is approximately flat in acceleration
for frequencies in the range 0.002 to 0.03 Hz, and also for frequencies greater than about
1.5 Hz. In order to estimate the instrument parameters required for the thermal noise to
be kept bel ow the ground noise, we can therefore fit (12.40) to the observed LNM ground
noise spectra, shown in Figure 12.12b, at long periods and short periods separately. From
the figure, we would want

87 kT

MOT, <107 Y(mis)?Hz  at frequencies below 0.03 Hz,

<107 %m/s)>Hz  at frequencies above 1.5 Hz.

Putting kT ~ 4 x 10~ erg, we therefore find that the requirement for thermal noise
to be below the ground noise is given approximately by

MQT, > 1kg-s for long periods (12.41)
and
M QT > 0.01 kg-s for short periods. (12.42)

The traditional long-period seismograph has about a 10-kg mass and a period of 15-30 s,
easily satisfying (12.41) with near-critical damping (Q = ). One of thefirst instrumentsto
satisfy the long-period requirement (12.41) with much smaller mass was an accel erometer
described by Block and Moore (1970). This instrument had M about 10 grams and a
relatively short period of 1 s, and it achieved low thermal noise by making the pendulum Q
high (200) and using capacitive sensing and el ectrostati c feedback—techniques we discuss
further in Section 12.3.6.

Many simple short-period seismometers still in common use have pendulum periods of
0.1to 1s. Themassrequiredto overcomethethermal noiseisthenonly 10to 100 grams. The
pendulum mass traditionally used in the short-period sensor of the Worldwide Standardized
Seismographic System is much larger. The sensing device of these instruments (a moving
coil in amagnet gap) requires a larger pendulum mass for greater signal power, as shown
in the next section.

12.3.2 ELECTROMAGNETIC VELOCITY SENSOR

The motion of a pendulum relative to the seismometer frame was for decades measured
most commonly in seismology by the electromagnetic velocity sensor shown schematically
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