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CHAPTER 2

Waves in an Isotropic Elastic Solid

Supposethat all the particleswithin agas or afluid or asolid are stationary inside avolume
V, but then undergo small internal displacementsu = u(x, t) in response to applied forces
or to changes in the surface forces (tractions) applied on the surface S of the volume.

Let f betheapplied force, acting (per unit volume) on particlesinside V. fisafunction
of space and time: f = f(x, t). Examples of body forces, are gravitational attraction, and
magnetic attraction or repulsion. Earthquake sources inside V may also be represented by
body forces, as can an instructor speaking in a classroom and sending out sound waves
through the air.

Therate of change of momentum of particles making up V equalsthe forces acting on

these particles:
/// p—dV // fdv + // T(n)dS. 2.1
v ot v s

Here, the volume V and surface S move with the particles, we are using a Lagrangian
description of motion, the left-hand sideis [, p 43 dV since the particl mass pdV isnot
changing with time, and T isrelated to n by the rules'l'I = 7jinj = 7jjn; (T issymmetric).

But
// An;dS= ///VTJdV (2.2

for any differentiable quantity A = A(X) (see Box 2.1).

//STi dsszsq,-n,- dS:///Vngijid\,zf//vm "

It followsthat we can convert all thetermsin (2.1) to volume integrals, and put them on the

left-hand side as
/// (ply — fj — 7jj,j)dV =0. (2.3
Y,

Because this result is true for all volumes V, this integrand must be zero wherever it is
29

Mrking pages for Paul Richards’ class notes; do not copy or circulate without permission from PGR  2004/9/8 22:07



30 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

BOX 2.1
Generalization of Gauss's Divergence Theorem

Gauss's divergence theorem is

[[ anes=[[[ v-aav M

for vector a. Writing this out as

da; odapy Jaz
= =4 E4 =) dv 2
//S(a1n1+a2n2+a3n3) ds /f/v<8xl+ % + 8X3> av, 2

thisresult is actually valid “term-by-term,”

//Sa1n1d8=///vg—:dv, etc. (©)]

The proof of all these results, (1), (2), (3), is based essentialy on

f f f(q)df el d
@ — <p)=/ :f—x.
f(p) p dx

continuous (otherwise, we could surround a place where it is not zero with asmall volume
that violates (2.3)). Hence

eli = fi +1ij j, (2.9

which is our first form for an equation of motion. We have not yet made any assumptions
about the relations between stress and strain, so (2.4) isavery genera result. Essentially, it
says that particles within a moving deformable body have a rate of change of momentum
(mass x acceleration) that is driven by the applied body force plus the stress gradient.

2.1 Compressional and shearing motions in an isotropic elastic medium

For an isotropic elastic medium, the stresstensor T and the strain tensor e have components
that are related by the generalized version of Hooke's Law:

Tij = A& kdij + 2u6j. (1.37 again)

Combining this result with (2.4) and the definition of strain given by (1.29), we get the
displacement equation for elastic motion in an isotropic medium. The equation can take a
number of different forms, al equivalent. Specificaly, if the medium is homogeneous so
that we do not have gradients of the Lamé moduli,

pli = fi + AUk kjdij + pw(Uijj + Ujij)

i} (2.5)
pUi = fi + (A + wujji + wui jj
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2.1 Compressional and shearing motions in an isotropic elastic medium

T(n)
surface S

‘/

FIGURE 2.1

An elastic solid with volume V and surface Sis subjected to applied tractions. Body forcesf = f(x, t)
may act inside V, for example at a point where someone is singing or talking and leading to sound
waves that spread throughout the volume.

or (using vectors rather than vector components)
pli=f+ A+ wV(V-u) + uVau.

Using the definition V2u = V(V - u) — V x (V x u), thisgives

pl=f+A+20)V(V-u) —uV x (V x u), or 26)
poU="f+ (A + 2u) graddivu — w curl curl u. '

All of these different forms of the elastic wave equation are equally valid. But how do
they compare with simpler wave equations? We shall find that our elastic wave equation
permits two completely different types of solution — P-waves and S-waves.

First let's find what happens if we try to find a plane wave propagating with speed ¢
in the x1-direction in the absence of applied forces (f = 0). That is, we try for a solution
to (2.5) or (2.6) intheform

u=u<t_ﬁ>. @7

C

Here we are also assuming that the dependence on position is via the x;-coordinate alone,
so

au dusz du
V-u:—1 and Vxu= O,——S,—2 .
X1 0X1 0X1

From the wave equation (2.5) or (2.6) we see that
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32 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

pU1=0+ (A + wug 11 + puup 11 = (A +2u)urnn
plz2 =040+ pup 11 = puz 11 (2.8)
plz =0+ 0+ puz 11 = pUz11.

Thethree scalar equationsin (2.8) are each examples of a one-dimensional (1D) wave

equation, of the type discussed in Box 2.2. By comparison with the 1D solution discussed
in this Box we see that the u; component of motion in (2.8) propagates as a wave having

A+2
speed ¢ = + M. This is the P-wave (the P standing for primary, because this the

fastest traveling wave in an elastic solid). The particle motion is in the same direction as
the direction of propagation. A wave with this property is said to be longitudinal. From
the second and third of the equations in (2.8), which are also 1D wave equations, we see

that the uy and us components of motion have speed ¢ = \/E . These are examples of the
1Y

S-wave (the S standing for secondary). Because the particle motion is now perpendicular
to the direction of propagation (x1), these solutions for u, and us are each examples of a
transverse wave.

211 SIMPLE EXAMPLES OF 1D WAVE PROPAGATION

Wecanillustrate several basic propertiesof P-wavesand S-waveswith two simpleexamples
that have alot in common with plane waves traveling in three dimensions (3D).

(i)  Thelongitudinal wavein a spring (slinky). Stretch the spring or slinky on the surface
of a smooth table, and tap the end to initiate a longitudinal (P-wave) motion that
travels down the spring. If the spring has mass m per unit length, then an element §x
of the spring has a rate of change of momentum given by (m §x)U, where u is the
displacement in the direction of the spring (alongitudingal motion). Thetotal applied
forceisgiven by thedifferenceintensioninthe spring at each end of theline element,
T (X 4+ 8x) — T(x). But if the original string tension was Tp then the new tension is

au .
T (X) = Top + k— wherek isrelated to Young's modulus (see Problem 1.10: k = E x
cross-sectional area of the spring). It follows that
%u T 92
u K u

m— = — =k—,
at2  9x X2

k
a 1D wave eguation with speed ¢ = \/;

(ii)  Thetransverse wave in a stretched string or rope. Take arope, preferably afew tens
of metersinlength, andtieit to asupport at each end so that the ropeis approximately
horizontal and tightly stretched. Tap the rope near one end in a direction that is (a)
horizontal, and (b) perpendicular to the rope. A transverse wave of horizontal motion
travels the length of the rope, and the wave may be reflected at the ends (if the set-
up is working well), so that the wave goes back and forth a few times before it is
attenuated (dueto frictionin the ropefibers). In this case, let u be the displacement of
therope, inthe horizontal direction perpendicular to therope (parallel to thedirection
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2.1 Compressional and shearing motions in an isotropic elastic medium

BOX 2.2
On the most general solution of the simplest second-order wave eguation

The simplest second-order wave equation for the variable ¢ is
10% 0%
c2 3tz 9x2’
in which there is a dependence upon only one spatial dimension (x), and time (t).

To obtain the most general solution of (1), for ¢ as a function of space and time, we
define two new independent variables:

@

E=t—-x/c and n=t+Xx/c. 2
Then
B AE D an d 19 19 1/9 ]
_¢=_E_¢+_77_¢=___¢+__¢=__(___)¢ and
X AX dE X dp cdt  cap c\d&  dpy
19¢ _ 10& 0¢ 1ana¢_1a¢>+1a¢_1 a+a 5
cot cotaE cotdy caE  cdp c\dE  an)

Pp L0 3\ [0p dp\ 1 [0% 0%y 9%
we=o (o) (e 5y)= o (5 230yt 5p) o

10% 1 /9  a\[(op 0\ 1 (3% 0%y 9%
?W?(Wa—n)(%*%)—@ a6z " ogan ton2)

The wave equation (1) therefore becomes

_ 1% g P9

T 29tz ax2 T dEn’

9 (%) _p &)
& \ an
) . . .09 .
as follows. First we integrate with respect to & to obtain P g(n) for some function g.
n

a
(Thisresult isjust another way of saying that 8—¢ cannot depend upon & — which is what

But we can easily solve

we learn from equation (3) — and therefore can depend only upon 5.) Second we integrate
again, thistime with respect to », to get

n
¢ = F($)+/ g(n) d’

=F@E) +Gm
=F (X —ct) + G(x + ct).

4

The wave equation (1) therefore indicates that ¢ must be a function of t — x/c plus a
function of t + x/c. Thisisthe most general form of solution of the simplest wave equation
in one dimension, equation (1).
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34 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

BOX 2.2 (continued)

When we integrate a second-order ordinary differential equation we can expect to find
that the solution in general contains two arbitrary constants. Here we have integrated a
second-order partial differential equation, and have found that the solution (4) in general
containstwo arbitrary functions, of spaceandtimein particular combinations(eithert — x/c,
ort + x/c).

Thewavesolutionitself canhaveany shape. (F or G areany sufficiently smooth functions
— though shortly we shall discussthe need for them to have sometype of discontuity.) Note
that the wave solution of (1) propagates without change in shape (either F propagating in
onedirection, or G propagating in the opposite direction). What matters, are the particular
combinations of space and time upon which F and G depend.

Another way to approach the solution of (1), is to ask if there is a more general
combination of space and time, such ast — T (x), upon which solutions ¢ might depend.

o . . 0¢ T .
Substituting ¢ = ¢ (t — T(x)) into (1) and using Fvae —d—xﬁ,wefmd
2 2 2
dT\?_ 1\ Tas ©
dx c2 ) at2  dx2 at

If wethink of awave asasolution of (1) that is able to propagate non-zero values of some
physical variable (represented by ¢) into aregion where previously ¢ = 0, then we need to
consider solutions ¢ (x, t) that contain a discontinuity in some derivative of ¢.

[If » =0inside aregion Sof space and time, then all the derivatives of ¢ in that region
are zero also. But if there is no discontinuity anywhere in any derivatives of ¢, then the
Taylor series expansion

a¢ ap  Sx2 0% _sx st 9% at2 9%
(X +8X,t +8t) _¢(x,t)+8xax + 4t 3t + > a2 +2 > oot > a2 +...
impliesthat ¢ (x 4 8x, t 4 8t) = 0if (X, t) istakenwithin S. But then theregion Shasbeen
expanded to include (x + 8x, t + 8t). All derivatives of ¢ are zero in the larger region. In
thissituation it isimpossible to bound the region in which ¢ is zero. The only way to obtain
non-zero values is therefore to require that some derivative of ¢ is non-zero.]
TheFigures(a)—(c) hereshow anexamplewhere¢ (t — T) istherampfunction R(t — T),

givenby R(t) =0ift <0Oand R(t) =t if 0<t. Then i is the Heaviside step function
52

Ht-T) (Ht)=0ift<0, Ht)=1if 0<t), and _q2> is the Dirac delta function

§(t—T) (8(t) =0if t £ 0, but the area under §(t) for arange of t-valueswheret =0, is

unity). The Fourier spectrum of each function is also given in these Figures.

R(t-T) glor H(t-T)  goT 3(t-T) T

(—iw)? —iw

T t T t T t

@ (b) (©

We define awavefront as a propagating discontinuity in the solution to awave equation.
Thus the wavefronts for our simplest wave equation, (1), can be determined as the
propagating surfacest = T (X) in (X, t) space, across which some derivative of ¢ has a
discontinuity. In the case shown above with Figures (a)—(c), we can use equation (5) and
integrate the left-hand side across a small region fromt =T —¢,tot =T + ¢. The last
termin (5) integrates to aresult proportional to ¢, whichiis zero in thelimitase — 0.
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2.1 Compressional and shearing motions in an isotropic elastic medium

BOX 2.2 (continued)

G . . ,
But the term —(f in (5) integratesto anon-zero value, so its coefficient must vanish and at

last we obtai natﬁwe result
dT\? 1
— ) — = =0.
dx c?

Thisisthe equation which determinesthe wavefronts of the one-dimensional wave equation
(2). In the present case the solutions are simple, for

daT 1

dx c’
and hence T = x/c or T = —x/c (plus a constant, which will be zero if we arrange that
T =0 at the position x = 0). The relevant combinations of space and time upon which
¢ must depend are then seen to be those we chose in (2), and the interpretation of these
dternativeindependent variables, ¢ =t — x/cand n =t + X/c, isthat they are measures of
distance from awavefront. In practice, T = T (X) is seen to be the travel time of the wave,
that is, thetime it takesfor the wave to reach position x. Thent — T (x) isthe time after the
wavefront arrival (so that negative values of t — T give zero values of ¢).

t=t, =t

N\ N\

Xl X X2 X

To seethat ¢ isthe speed of propagation of the wave ¢ = F, we can compare the spatial
dependence of F at two different timest =t; and t = t, as shown in the Figure here. A
particular feature of the wave is chosen — say, the spatial position at which it has values
that begin to depart from F = 0. (Any feature that we can track as a function of space and
time will serve as a satisfactory marker.) Att =t; thisfeatureisat x = xg, andatt =ty it
isat X = Xp. Because this is the same feature of the moving wave ¢ = F(t — x/c), awave
that depends on space and time only in the combination t — x/c, we know that

t; — xg/c =1t — xp/C. (1)

in which the rope was initially tapped). If the rope has mass m per unit length, then
an element §x of therope hasarate of change of momentum given by m §x) 0. Inthis
case, the original tension Tg in the rope is unchanged because the transverse motion
produces achangein rope length that is negligible (it is of order u?). The Figure here
showsthe directionsin which x and u are taken, and an enlarged view of the element
of the rope between x and x + §x:
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36 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

BOX 2.2 (continued)

In the time period t — t; the feature has moved a distance X, — X1, so that the speed of
propagation is (X2 — X1)/(t2 — t1). Equation (7) then tells us that this speed, a ratio of
distance to time, is precisely c.

Finally, we may notethat (1) is a combination of the simpler wave equations

10

19 _ 3¢ g 109 __ 09
c ot aXx c ot ax

The first of these first-order wave equations describes a wave moving with speed c in the

x-direction, and the second a wave moving with speed —c (that is, with speed +c in the
negative x-direction).

(6)

This transverse wave travels in the x direction

X+ OXx T

X - _
T 1’\ angle between rope and original direction = (;u
X

The force applied to the mass m §x in the direction in which u is measured, is

au ou
To— at one end, and —To—‘ at the other. So
X X+8x IX |y
o sx 9%u  _ du au
2 T % ax| s o]y
and the 1D wave equation is
9%u 9%u

m— = PR
a2~ %9x2

so that the speed isc = \/E.

Instead of tapping the Qring horizontally, it could have been tapped in adirection
that is till perpendicular to the rope, but in the vertical plane. Thistoo is away to
initiate a transverse wave, that is independent of the horizontal transverse motions.
In genera the rope can support a transverse wave that is an arbitrary mix of these
two possibilities. The polarization of the general wave, is a measure of the mix of
horizontal and vertical motions, both being transverseto the direction of propagation.

If the ends of the rope are not at the same level then the rope itself is not
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2.1 Compressional and shearing motions in an isotropic elastic medium

FIGURE 2.2

The position of aplane wavefront is shown at afixed time. P isapoint at position x on the wavefront.
For any such x, the value of x - | is the same since this scalar product is the perpendicular distance
from the origin of coordinates at O to the wavefront (a distance which is independent of position x
aslong asit isin the wavefront).

horizontal. The first transverse motion we have discussed, above, can still be taken
in the horizontal direction which is tranverse to the rope. Such amotion iscalled an
SH-wave. The other transverse motion will be perpendicular to the rope, but if the
rope isno longer horizontal it will not be a purely vertical motion — although it will
lie in a vertical plane. Such a motion is called an SV-wave. The polarization of a
general transverse wave, is a measure of how much of the transverse motion is SH,
and how muchis SV.

2.1.2 THE GENERAL PLANE WAVE IN AN ISOTROPIC ELASTIC MEDIUM

Here, we shall examine solutions of the 3D wave equations (2.6) that are very similar to
those described by equation (2.7) and Section 2.1.1, but the propagation now is assumed to
bein ageneral direction | (a unit vector). Some of the main results of this Section are left
as an exercise (Problem 2.1).

First, we need to appreciate the defining property of aplanewave. A dependent variable
(such as displacement u or a particular stress component such as t23) travels as a plane
wave, if values of the variable are unchanged for any point on a moving planar surface.
This planar surface propagates as a wavefront in the direction specified by the unit vector
| (see Figure 2.2). The equation of all points lying on a plane perpendicular tol isx - | =
constant. This constant, is just the perpendicular distance from the origin (where x = 0)
to the plane of interest. As the constant is changed from one value to another, a different
planeis specified. All the planes are perpendicular to |. The constant is zero, for the plane
perpendicular to | that also lies on the origin O itself. For a plane wavefront that moves
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38 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

with speed ¢ perpendicular toitself, x - | = ct. If werewritethisast = T (x) thenweseein

_ X- L .
thiscasethat T = e which isthe travel time.
A general plane wave solution to the elastic wave equation

pU=A+2L)V(V-u) —uV x (V xu (equation(2.6) with no body force)

can therefore be taken as
-
u:u(t—x—>. (2.9

We can now generalize the result given in (2.8), in which one-dimensional elastic waves
travelinginthe x;-direction were obtained (both P-wavesand S-waves). | nthe present more
general case of propagation in the | direction, with (as yet) no contraint on the direction of
particle motion (the direction of u in (2.9)), we can substitute our new form of trial solution
into (2.6). The details are best worked out by the reader (see Problem 2.1).

2.1.3 WAVEFRONTSAND RAYS

The planewave shown in Figure 2.2 will moveto anew position at alater time. Figure 2.3a
shows the same plane wavefront at anumber of different times. This system of wavefronts
is an example of the wavefront equationt = T (x) in which t is given five different values,
and for each t value the set of x values solving t = T (x gives the position of the wavefront
at that t value. In other words, these values of x all share the sametravel time. Asthe travel
timeincreases, thewavefront movesto anew position. Orthogonal to the moving wavefront,
isthe set of rays. In the case of a plane wavefront, the rays are parallel to each other.

Figure 2.3b shows a completely different wavefront, namely an expanding spherical
wavefront. This too is a wavefront governed by the equation t = T (x, but now a three-
dimensional wave equation applies, for example

—— =V?%p, (2.10)
and atrial solution is sought in the form
X, ) =AXP (t—=TX)). (2.11)

With this form of solution, again we seek a propagating discontinuity given by t = T (x).
Thefactor P(t — T) represents the “ pulse shape” of the wave, and the factor A(x) governs
the change is amplitude with different position. This factor was missing for the plane wave
solutions we have looked at previously, because for them the wave propagated without
change in amplitude. In the example of a spherical wave shown in Figure 2.3b, we would
expect the amplitude to decrease as the wavefront expands. The term A(x) in (2.11) is
sometimes called the geometrical spreading factor. Usually, it is not possible to get an
exact solution to (2.10) in the form (2.11). But this form of trial solution is adequate for
finding the propagating discontinuities associated with the wave equation (2.10) (see the
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2.1 Compressional and shearing motions in an isotropic elastic medium

)
)

AN —
~N~—
WA Vs
@) a\lé(oﬂ‘g%e(eﬂ‘“ (b)
D\ﬁ‘\dd\;\fé\(o\'\\* A system of spherical wavefronts, and radial
eW rays (still orthogonal to the wavefronts)

FIGURE 2.3

(a) On the left, is shown a propagating plane wavefront. Its position is indicated at five different
times. Orthogonal to the system of wavefronts, is the system of rays. In this plane-wave example,
the direction | is constant along the ray, and has the same value for al rays. (b) On theright, is
shown another system of wavefronts, in this case an expanding spherical wavefront shown at eight
different times. Again the rays are an orthogonal system, and again these are straight line rays
(because the medium os homogeneous, with a fixed value of the propagation speed c). But now the
rays themselves are not parallel.

discussion in Box 2.3). Fortunately, in the case of a spherical wavefront expanding in a
homogeneous isotropic medium, it is possible to find an exact solution to (2.10) in the

19 3 192
form (2.11). Noting that the radial derivativesin V2¢ are Zar rza—?) == a(rrf)
see that the product r ¢ satisfies the one dimensional wave equation
192 32
(rg) 09°(ro) 2.12)

2 9tz or2

provided the solution is spherically symmetric (so that the spatial dependence in only on
theradia coordinate).

From the knowledge of solutionsto the 1D wave equation gained in Box 2.2, it follows
that the solution of (2.12) has the form

r

1
b= P (t - E) . (2.13)

Thisisanexact relsult, havingtheform of solutiongivenin (2.11). Thegeometrical spreading
factor is simply 2 The wavefront equation, which in general takes the formt = T (x), in
thiscaseisjustt = :—:

[Note to PGR: add here a discussion, with new Figure, showing wavefronts and raysin an
example for which ¢ = c(x).]
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40 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

BOX 2.3
On finding approximate solutions to the 3D wave eguation

If we substitute the trial solution (2.11) into the wave equation (2.10), we can get an exact
solutionif A, T, and P satisfy

((VT)Z - i) Pt—T) - (VZT + 2M) Pt—T)+ ﬂF>(t ~-T)=0. (1)
c? A A '

If we seek a solution ¢ = AX)P(t — T (x) that has a propagating discontinuity given by

the wavefront equation t = T (X), then the three terms of the above equation have different

orders of discontinuity, with thetermin P being the strongest, then the P term, and finally

the P term. The strongest term is removed by requiring that

1
(VT)? == @
c
By requiring that the term in (1) in P also have a zero coefficient, we obtain an equation
for the geometrical spreading factor A, namely
VA.-VT
e

In genera the final term, proportional to P(t — T), will not be zero. The net result is that
with T asolution of (2) and then A asol utic2>n of (3), thetrial form ¢ = AX)P(t — T(X)

“¢ 2
§W=V¢).

VT +2 0. ©)

can be auseful approximate solution to

214 A GENERAL METHOD FOR SOLVING THE 3D WAVE EQUATION IN A HOMOGE-
NEOUS MEDIUM

In Sections 2.1.1 and 2.1.2 we discussed the plane wave solution. Here, we shall find that
such solutions can be used to build up more genera solutions (for example, the waves from
a point sources). The overall approach we shall develop, is related to the use of integral
transforms to solve wave propagation problems.

Thus, a general method for solving

— - =V?% (2.10 again)

isto try for asolution ¢ = ¢ (X, t) in the special form
¢=DX)T () (2.14)
in which the dependences on x and t come from different factors. This is the method of
“separation of variables,” and once we find a system of such solutions we can sum over the

system and generate more general solutions, that do not factorize into separate dependences
on space and time.
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2.1 Compressional and shearing motions in an isotropic elastic medium

BOX 2.4
On eigenval ues and eigenfunctions associated with ordinary differential equations

First, we note that the original partial differentiation with respect tot in (2.10) has become
an ordinary differentiation in (2.15) and (2.16). Second, it is of interest that any of the
fur21cti ons€®, et coswt, and sinwt can be thought of as eigenfunctions of the operator

d
TR That is, asfunctions of t they have the specia property that double differentiation has
the same effect as multiplying by ascalar —(w?):

d2T

So we can think of —(w?) as an eigenvalue by analogy with the algebra problem described
in Box 1.2, namely

A-X=2AX. 2

This equation in general cannot have non-trivial solutions for the eigenvector, unless i
takes on specia discrete values. A similar result often follows for the eigenvalues w of
(2). The discrete values of w may come from arequirement that T is zero at two different
values of t, or from similar spatial boundary conditions that give discrete values of the
wavenumbers used in equations (2.21), hence constraining » to discrete values by this
same eguation (2.21).

1 .
From (2.14) substituted into (2.10) we obtain e ®(x) T(t) = (V2®) T(t) and hence

Ve 1T
o TaT (219
which hastheform f (t) = g(t). It follows that each side is a constant, since no variability
with respect to x or t is allowed. [Note that we have previously introduced constants, and
then allowed them to take different values and in this sense to become variables. We'll
be doing this here also. When we say each side of (2.15) is a constant, we mean that this
“constant” isindependent of x and t.] If we say that each side of (2.15) isthe constant —k?,
then

d’T
72T k2c?T =0 (2.16)

and if w = ke then T (t) must be alinear combination of €®! and ! (or of coswt and
sinwt). We write thisresult as

T =etet (2.17)

The separated solution of (2.10) isnow ¢ = ® (X, w)e™ !, where
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42 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

2 »?
Ved + gq)zo. (2.18)

If we were to sum over such solutions, for example in the form

M&U:%;/@Mwmqﬁmu (2.19)

then we see thereis arelation between the method of separation of variables, and the use of
Fourier transforms. (In (2.19), o ranges over all values so we have dropped the + sign.) The
solution ¢ (X, t) here has been written as alinear combination (a summation, or in this case
an integration), of separated solutions ®T. In equation (2.19), the factor ® in the integrand
must satisfy egquation (2.18) in order for ¢ to satisfy the scalar wave equation (2.10).

We can keep on going with the method of separation of variables— separating out the
dependences on x1, X2, and X3 via an assumption that

D (X) = X1(X1) X2(X2) X3(X3).

Then from (2.18) wefind

X// X// X// wz

1 2 3
1,2 38,7 0 2.20
X1 + X2 + X3 + c? ( )

in which primes are used to der)w(ote spatia differentiation with respect to the appropriate
argument (for example, X}, = d—x2)' Because (2.20) hastheform f (x1) + g(x2) + h(x3) +
2

2 X "
0, each of the four terms must be a constant. Say X—l =—k?and 72 = —k3. Weaso
1 2

"

w
2

have =2 = —k§ but now the choice of this last constant in terms of w, ki, and ko, must
. 3
satisfy
2

@+@+@=H=%. (2.21)

Thisequationisarelation, equivalent to the original wave equation (2.10), between the four
separation constants k1, ko, ks, and w. The fully separated solution has the form

HX,t) = e:tiklxle:tiKQXZe:Hk3X3e:Hwt. (222)
If we wish, then without loss of generality we can drop the + symbols as long as we
recognize that the separation constants can take any values (subject to the contraint given
by (2.21)). Or we can mix the constants in (2.22), some with plus signs and some with
negative, so that for example

¢(X, t) — eI (k1 X1+koxo+k3axz—wt) — eI (k-x—wt) (223)

isa 3D wave equation solution for any constants w and k = (k, ko, k3) such that
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2.1 Compressional and shearing motions in an isotropic elastic medium

2
k-k=—. (2.21 again)

oy
Notethat (2.23) hastheform of aplanewave¢ = F (t — XT> if wemaketheidentification

l = E orl = Ek.ThesymboI | definedinthisway isindeed aunit vector, becauseof (2.21).
I(<: i the waven(imber vector.

We can generalize (2.19) above, by noting that alinear combination of solutions (2.23)
inthe form

1
(2r)3

H(X, 1) = / / / X3(ke, ko, X3, @) € Kxatkoe=ob) g, di, dow  (2.24)

32X 2 . :
(where 8_23 +k2X3=0 and k2= % — k? — k2) provides a solution to the three-
X

dimensi onanwave equation (2.10). Since X3 oc et'k2X3, the integrand of (2.24) is a plane
wave.

Our overall conclusion of this Section, is that the method of separation of variables
applied in a cartesian system of coordinates yields a plane wave solution. Each factor
in (2.22) isan eigenfunction of asecond order ordinary differential operator, asdiscussed in
Box 2.4. And by linear combination of such separated solutions (in particular, by integration
over plane waves, asin (2.24)) we can generate solutions to the 3D wave equation that in
general are not separated solutions.

215 THEINTERACTION OF A PLANE WAVE WITH A PLANAR INTERFACE BETWEEN
TWO DIFFERENT HOMOGENEOUS MEDIA: ACOUSTIC WAVES

First, we shall examine the case of an acoustic wave in a fluid, incident upon a planar
interface. Later we shall find that plane waves generalize from those we have considered so
far, to atype of wave in which amplitude decays exponentially with distance in a particular
direction.

For aplanewave propagating in afluid, rigidity is zero and the stresstensor isisotropic
(tjj = —P4jj). So the wave equation plij = 7jj j becomes pli = —V P and Hooke's law
Tij = AV - Udjj + 2ue; reducesto —P = AV - u. Sincerigidity is zero there are no shear
waves. The P-wavesin afluid that we are discussing here, are often called acoustic waves.
They provide the method by which whales communicate in the oceans (where sound can
travel for thousands of kilometers), and of course by which people communicate with sound
waves in air. The study of acoustic waves has been extensively pursued, in the context of
hunting for submarines. Oceanographers and sei smol ogi sts use acoustic wavesto study the
ocean floor, and structures within the oceanic crust. Infrasound waves in the atmosphere
are part of a developing technology to study winds at high atitude, and to monitor for
meteorites, bolides, manmade explosions, and supersonic planes and space shuittles.

Thewave equation (2.6) reducesin this caseto pii = AV2u since u = 0, but itiseasier
to quantify wave propagation in afluid by analysing the pressure field P, because then we
can work with ascalar rather than avector asthe dependent variable. It is easy to show (can
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Incident wave Reflected wave
A B
. .k
lq|",
P1 €
%3=0 -
: X
ll 2 P2 Cy 1
C

Transmitted wave

FIGURE 2.4

Two homogeneous fluids, with densities and wave speeds pj, ¢ (i = 1, 2), have a planar interface
whichischosen asthe plane x3 = 0. Anincident plane wave in the upper medium travelsin the plane
X2 = 0 and isincident upon the interface with ray direction given by the anglei;. The reflected wave
(making an angleiy) and transmitted wave (angle i) are also shown. Wave amplitudesare A, B, and
C. The reflection and transmission coefficients are B/ A and C/ A respectively.

you do it?) that the scalar wave equation for pressure is

19°P A
297 = VP  where c= |=. (2.25)
0

Each of the thre;a plane waves shown in Figure 2.4 has a pressure field given by
Px,t)=F(t— %) wherei = 1for theupper mediumandi = 2for thelower medium.
The unit vector | is dlif erent for each of the three waves, being | = (siniy, 0, cosi1) for the
incident wave, | = (sinij, 0, — cosiy) for the reflected wave, and | = (siniz, 0, cosiy) for
the transmitted wave. If we use the approach indicated in the previous Section, in which Cthe
dependencieson (x1, X, X3, t) are handled by separate factorsasin € & *—«b with| = —k,
then we can take the incident wave as @

pinc _ Aeiw<%lxl+%llxﬁ>. (2.26)
The reflected wave is
i sinii 7cosi’l‘ B
prefl _ ge ( o AT e 8 t)’ (2.27)
and the transmitted waveis
purans _ Ceiw(%zXl+ C?ZIZXH). (2.28)

Thisisan example of linear wave propagation, so that we expect the amplitudes B and C of
the scattered waves (reflected, transmitted) will increase in proportion to A, if the incident
amplitude A isincreased. Theratios B/ A and C/ A have yet to be determined along with
the unknown anglesiy and i.
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2.1 Compressional and shearing motions in an isotropic elastic medium

To solve for these unknowns we must use boundary conditions at the interface x3 = 0.
Across this surface, the vertical displacement uz must be continuous (otherwise a cavity
would open up, or thetwo fluidswoul d be driven to occupy the same volume). Also thetotal
pressurefield must be continuous (otherwise, avery thin disc of material with itsupper face
in medium 1 and itslower face in medium 2 would be subjected to anet force, and it would
acquire an infinite acceleration). From pl = —V P, the first boundary condition translates

a
into arequirement that — T has the same value just above the interface (in medium 1), as
. . o . . .
itsvalue just below the mter?ace (in medium 2). That is,

i Acogléw<%%XT4>_.Bcogféw<igi“70 ::Efccogzéw<%¥xr4>(22@
p1 C1 G p2. G2
The second boundary condition (continuity of pressure) is simpler, namely
Aéw<¥%“fQ_FBé”(iF“f§=:céw(%¥M_0. (2:30)
Both (2.29) and (2.30) apply for all values of x; and t. It follows that
sinilzsinifzsiniZ. (2.31)

C1 C1 C2

This result, known as Snell’s law, essentially says that the component of wavenumber k
taken along the interface, is the same for each of the scattered waves (two, in this case), as
itisfor the incident wave. The angle of reflection, i} equals the incident angle i1, and the
transmission angle i, is simply related to i1. In optics where there is a similar result, it is
more common to work with refractive index than wave speed. Since refractive index n is
inversely proportional to speed ¢, Snell’slaw hasthe form ny sini; = nzsiniz in optics.
Because of Snell’slaw, all the exponentialsin equations (2.29) and (2.30) are the same
and can be cancelled out leaving the following two equations for the ratio B/ A and C/ A:
COoSiq COoSio

(A-B)
p1C1 02C2

C and A+B=C,

which are easily solved to give

CoSi;  COSio coSiq
B C B C; C 2 C
e L S . I ) S (2.32)
A~ Cosiy 4 CoSi> A~ cosip  cosis

p1C1 02C2 p1C1 02C2

The product pc which appears here repeatedly (evaluated for the upper and lower media) is
the impedance of afluid. Impedance is essentially theratio of pressure to particle velocity.
Impedanceis high, if high pressure leads only to small particle velocity. Impedanceislow,
if the particle motion islarge even at low pressure.

Note that the reflection coefficient B/ A and the transmission coefficient C/ A are both
real, if anglesii and i, exist in the range from 0° to 90°. If i; =0 then i, = 0, and the
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46 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

coefficients reduce to

B _ pC— p1c an C_ pe2
A pC2+ 0101 A pCo+ piCy

For afree surface, where there is just one fluid and the pressure is zero at the surface of a
half space, an incident pressure wave is reflected back with B/ A= —1, or B = —A. (Take
p2 =0 in the above eguation to see this — the result is true also for general angles of
incidence, as can be shown from (2.32).) So the reflected wave of pressure has exactly the
same amplitude (but the opposite sign) of the incident pressure. This is why the pressure
from the two waves, taken together, cancels out, to give zero pressure at the free surface
itself.

2.1.6 EVANESCENT WAVES

Having obtained algebraic formulas for the reflection and transmission coefficients of an

acoustic wave in (2.32), we ask what will happen if the incident angle i1 isincreased to an

sin sin
anglelargeenoughto prevent asimple solutioni, being given by Snell’slaw, —IZ | -1

c1
This situation can easily ariseif ¢ > ¢z, for which Snell’s law usually |mpll$that io>"1,

as shown in Figure 2.4. The essence of this latter Figure is repested in F|gur(i 25. The
sini
transmitted angle i, is shown in this case as being less than 90°, but if =1 c_ then we

can no longer find area angle i, because then sini, > 1. In such cases, t]here exist waves
in the lower medium that exponent|ally grow or exponentially decay with depth.
Incasessuchthat p > = the transmitted wave of (2.28) becomes

io [L-p2x —o [P~ x
cdomata V3 o _ce VT8 P dopa-t (2.33)

When interpreting the first square root, on the left-hand side of (2.33), we have made the

choice /— —p2=+i [p?— c—lg becausethisgivesanegative exponentia ontheright-hand

sideof (2. 33) and then the wave decays with depth below theinterfaceat x3=0. Thisisan

exampleof an evanescent wave. If wehad madetheother choice, |5 — p2=—i /p?— 6—12
2

then wewould obtain an exponentially growing wave. Although both waves are solutions of
the wave equation, in practice we are usually moreinterested in the exponentially decaying

sol utions because they satisfy the condition that no radiation be transmitted to great depths.

sini sni .
It is a convenience if we assign a new label, p, to the value of —1 —2 used in

Snell’s law. This quantity, sometimes called the ray parameter, is the same for al three
rays shown in Figure 2.5. All of the algebraic manipulations we did in going from (2.26)

. . " . . sini
to (2.32) are still valid inthe case p > p and sini, > 1, provided we interpret 0—2 as p,
2 2

COoSio 1 5 5 1
as —2—p—| p?— .
C2 c; c

Proceeding further with the choice of sguare root made in (2.33), we can go to (2.32)

and

and find for p > C— that now
2
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2.1 Compressional and shearing motions in an isotropic elastic medium

narrow angle reflection

- SII‘]I:L - S|I‘l|2 i
C1 C2 C2
1]
C1
a \i
2
FIGURE 2.5

- . 1 ) . .
Narrow angle incidence upon a planar interface: p < o A transmitted wave exists, propagating
away from the interface. 2

critical reflection

_ sniy _ osni, _ 1

Cl 02 02

. 0 i

i = 90 1

2 cq

c, lgo"
FIGURE 2.6

1
Critical incidence upon a planar interface: p= o The transmitted wave in the lower (faster)
medium, propagates parallel to the interface.

COoSiq i 5 1
B mG p2 2 (2:34)
A~ cosip i > 1 i
+—PP-3
P1C1 P2 2

Because this expression has the form

B_a—ib  ithrea valuesof aand b
A a+ib
it follows that
B
’_‘ :1.
A

A similar example of wide-angle incidence (Figure 2.7 with c; = the speed of light in
glass, and ¢, = speed of light in air) in opticsis called total internal reflection, and there
is little interest in the evanescent wave below the boundary because w is so high that the
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wide angle reflection

_ S|n|l — Sl']l2 i
C1 G C2
i
i, = 2 1
2 (o
C2 \ evanescent wave
FIGURE 2.7

1
Wide angle incidence upon a planar interface: p > o The transmitted wave has an amplitude that
decays exponentially with distance from the interfacez.

exponentially decaying transmitted wave (2.33) has little importance. For example, thisis
thesituationinthe use of total internal reflectioninapair of binoculars (i; = 45°, medium 1
isglass, and refractiveindex of glass = speed of light in avacuum - speed of light in glass ~

1.5,sothat p > C—). But in many other fields, including geophysics, the evanescent waves

are very importar%t. They represent a class of waves, sometimes called inhomogeneous
waves, that satisfy the wave equation with horizontal oscillation and vertical decay of
amplitude. In terms of the “unit vector” | = (14, 0, I3), we still havel? +13 = 1 and we still
havel = (siniy, 0, £ cosiy). But now |1 = siniz > 1 and I3 = + cosiy isimaginary.

217 THE INTERACTION OF A PLANE WAVE WITH THE “FREE SURFACE" OF AN
ELASTIC HALF-SPACE

Here we shall consider plane P-waves and plane SV -waves, incident from below upon the
planar free surface of an elastic solid as shown in Figure 2.8.

By “free surface”, we mean a surface that has no traction. Taking the surface to
be horizontal, and the xs-axis as the depth direction, this means that the stress tensor
components 731, 732, and 33 are al zero on x3 = 0.

InFigure2.8, if weassumetheincident P-wave hasadisplacement with unit amplitude
and frequency w, its displacement is given by

osi

incident P-wave, of unit displacement = (sini, 0, — cosi)e"“(pxl_CT xs=t), (2.35)

The only significant difference between this expression and (2.26), isthat (2.35) is avector
instead of a scalar. (The first term on the right-hand side of (2.35) is a unit vector in the
longitudinal direction corresponding to the incident P-wave wavefront.)

In order to determine what waves arereflected from thefree surface at x3 = 0, and with
what amplitude, we need to take account of the boundary conditions. For afreesurface, there
isno constraint on displacement. But x3 = Oisatraction-freesurface, sot31 = 730 = 733=0
on x3 = 0. If wedlow for a P-wave reflection, its form will be
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2.1 Compressional and shearing motions in an isotropic elastic medium

T =T =3 0 onx3=0

X1
%0 [
— > T~
e J ~
— ~a
— Ny
incidentP 7 ~ [eflectedP
/ \
A /
X3 /reflectedS\/
FIGURE 2.8

A plane P-wave is shown, incident upwards upon the free surface of an elastic half-space. Taking
this surface as the plane x3 = 0, with the xz-axis as the depth direction, and the x; axis as the
horizontal direction containing the horizontal component of the P-wave motion, it follows that the
key boundary conditions are t3; = 0 and t33 = 0 on x3 = 0. (Whileit is aso true that 3o =0 on
x3 = 0, this latter condition istrivially satisfied because 73, is not excited by the incident wave, and
remains zero everywhere.) Rays are shown in grey, the position of wavefronts is shown as heavy
black lines perpendicular to the rays, and short lines with small arrows indicate the directions of
particle motion (longitudinal for the two P-waves, and transverse for the S-wave). Because the
transverse component of Sin this case liesin avertical plane, the reflected S-wave is polarized as
SV, using terminology introduced at the end of Section 2.1.1.

reflected P-wave= PP (sini, 0, cosiye@(Pat et xt) (2.36)

Note here that the phase of the wave increases in the longitudinal direction given by unit
vector | = (sini, 0, 4 cosi), which is aso the direction of particle motion (because thisis
a P-wave).

For both the incident wave (2.35) and the reflected wave (2.36), it is easy to use
Tij = AVéij + u(uij + uj,;) to conclude that neither wave perturbs the 73> component
of stress, and both waves perturb the 731 and t33 components. It follows that if the only
reflected waveisthe P-wave described in (2.36), we can satisfy therequirement that t3p = 0
on x3 = 0. (Infact, (2.35) and (2.36) have 3 = 0 everywhere.) But we cannot satisfy both
731 = 0 and 733 = 0 on x3 = 0. To satisfy both these scalar boundary conditions, we need
to alow for another reflected wave, namely the reflected S-wave shown in Figure 2.8. Its
displacement is given by

reflected SV-wave= PS(cos j, 0, — sin j )ei“’(pxﬁ% Xat) (2.37)

The terms in the exponential here are chosen to make this wave travel downwards at an
cos cosi
angle j determined by o8] _ o8l p (an extension of Snell’s law to cover different
o

wavetypes). And, the displacement here hasavector direction whichistransverse. Because
the particle motion in the incident and reflected P-waves is confined to the x;—x3 plane,
S-wave motion can be expected to be confined to this same plane. So, the S-wave has SV
polarization (see Section 2.1.1), with no displacement component in the x» directionin the
present problem, and no excitation of the t3, component of stress.
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50 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

Equations (2.36) and (2.37) introduce a notation for the reflection coefficients of the
reflected waves, namely PP and PS, that in miniature indicates which wave is incident,
and which isreflected. Aki and Richards (1980, 2002) use this notation to analyse in detail
al 16 possibilities if P-waves are incident from above or below, upon the planar interface
between two different solid elastic half-spaces, and each incident wave generates upgoing
and downgoing P- and S-waves in each half-space.

To apply the two non-trivial boundary conditions, which are given in terms of stress
components, we need to evaluate the relevant stresses in terms of displacements (2.36)
and (2.37)ausi ng tge genera stress-strain relation (1.37) in an isotropic solid. Thus, since

us uz
“Nox " s
the first relation between PP and PS. Itis

131 = , some algebra turns the boundary condition 733 = 0 on x3 = 0 into

2Bp cosi PP + (1—28°p?) PS=28p cosi. (2.38)

. au " .
Andsince 133 =AV -u+ 2@73, the boundary condition 733 = 0 on x3 = 0 provides the
second relation (after more aneb3ra) as

a(l—28%p%) PP —28%pcosj PS= —a(1— 28°p?). (2.39)

At lagt, in (2.38) and (2.39) we have two equations for the two unknown reflection
coefficients. The solutions are

1 2 cosi cosj
- <— - 2p2> 4 4p2S8L )
PP = ad

B2 B
e e
52 p P 5
and
a cosif1
o e ()
PS= : 5 A (241)
B2 a B

2.1.8 RAYLEIGH WAVES

In Section 2.1.6 we showed that evanescent waves, or inhomogeneous waves, can exist as
solutions of the acoustic wave equation. These acoustic P-waves propagate horizontally
(the x1 direction) with aphase factor given by € (PX1—1 and they decay exponentially with
depth x3. Their horizontal speedis1/p.

Morethan ahundred yearsago, L ord Rayleigh showed that itispossibleto haveapair of
evanescent waves, one of P-wave type, the other an SV -wave, which when added together
can satisfy the free surface boundary conditions. But this coupled solution, a superposition
of P and SV, can occur only when the constant p takes a specia value.

To analyse this possibility, we can write (2.36) and (2.37) in the notation that is more
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2.1 Compressional and shearing motions in an isotropic elastic medium

1 1
appropriate when — < — < p. (Another way to state these inequalities, is to say that p
o
is the ray parameter for a wave that travels horizontally with a speed that is slower than
a horizontally-propagating P-wave, and slower also than a horizontally-propagating S-
wave.) Sincetheanglesi and j of Section 2.1.7 and Figure 2.8 cannot be given real values,
we make the following interpretations:

.. o cosi y, . —w pz—i X3 .
(sini, 0, cosUe""(leJr 2 xat) =(@p,0,i\/a?p2—1e V " deomat

and (2.42)

: cosj —w 2_ 1 .
(cosj, 0, —sin j)e'w(pX1+TlX3_t) =(i,/B%p>—1,0,—pp)e V PR doa-n

Because the x3 component of each of these inhomogeneous waves has a phase that
is greater than the x; component by 90° (see the right-hand sides of both the first and
second of equations (2.42)), the particle motion of each of the two wavesis elliptical (see
Problem 2.6).

Suppose now that weformalinear combination of the P- and SV -wavesgivenin (2.42),
and see if the combined waves can be made to satisfy both of the non-trivial boundary
conditions 131 = 133 = 0 of afree surface. If we take P times the first of (2.42) and add it
to Stimes the second of (2.42), then

2papi,| p2 — a—lz P+(1-28%p%)S=0 (fromt=00nx3=0), (2.43)

. 28%pi 1.
(1—252p2)P—$/p2—ES=0 (fromtaz=00nx3=0). (2.44)

(We choose the notation P and S for the coefficients of the two waves, because these
constants symbolizetheamountsof thedowngoing P- and SV -wavesthat wearecombining,
in the case that p is small and it is natural to work with the left-hand sides of the two
equations in (2.43). When p is large, so that the right-hand sides of equations (2.43) are
more appropriate and the waves exponentially decay with depth, then P and SV determine
how much of each decaying solution is present in the combination.)

In general it is not possible to satisfy both these equations at once, unless P = S= 0.
(Essentially, they are two equations for the ratio between P and S.) But they can both be
satisfied with non-trivial valuesof P and Sif the determinant of coefficients vanishes. This
requiresthat R(p) = 0, where

1 2 1 1
R(p) = <? —2p2> —A PP 5\ [P

2 . .
a B

and

(2.45)
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52 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID

This function of p? has just one zero (for positive imaginary “cosines’), which is real and
positive. Since the corresponding positive value of p is dightly (4-14%) greater than 1/8
for all elastic solids, it isindeed possible for a coupled pair of inhomogeneous waves, P
and SV, to propagate along the free surface of a half-space. Such a surface wave is named
for Rayleigh, who described its main properties in 1885. (Lord Rayleigh had enormous
scientific accomplishmentsin the application of mathematical methodsto learn for thefirst
time about fundamental properties of acoustic waves, elastic waves, and non-linear motions
including convection. He was awarded the Nobel Prizein physicsfor hisdiscovery of argon
in the Earth’s atmosphere.)

When an earthquake or an underground explosion occurs, the seismic body waves such
as P and S spread throughout the three-dimensional volume of the Earth’s interior. In the
simplest case of ahomogeneous medium, thewavefronts of these body waves are expanding
spheres, and the amplitude decreases with distancer like — (see, for example, (2.13)). But
the Rayleigh wave spreads only over the Earth’'s surfacer, expanding like a circle rather
than a sphere, and therefore does not attenuate so rapidly. In fact, surface-wave amplitudes

- . 1 . . .
attenuate with distance like - This means that the ratio of surface-wave amplitude to

body-wave amplitude increaseslike /r with distancer from the seismic source, so that the
surface waves become progressively stronger and stronger relative to body waves.

Suggestions for Further Reading

Menke, William, and Dallas Abbott. Geophysical Theory, New York: Columbia University
Press, 1990 (pp 253—260 for properties of plane wavesin afluid, and pp 326-330 for
plane wavesin an elastic solid).

Aki, Kaeiiti, and Paul G. Richards. Quantitative Seismology, second edition, Sausalito,
Cadlifornia University Science Books, 2002 (Chapter 5, for plane waves and their
interaction with a plane boundary).

Problems

2.1 Show that when the general planewavetria solution (2.9) is substituted into (2.6),
the vector wave equation in the absence of body forces becomes

A2
pl= 2“

(U-I)I—%IX(IXU).

Taking the scalar product and the vector product of thisresult with | (that is, | - ...

and! x ...), show that
A420 .
(,0— 2 )u'|=0

Mmooy
(p—?)uxlzo.

and

Mrking pages for Paul Richards’ class notes; do not copy or circulate without permission from PGR  2004/9/8 22:07



Problems

[The last three equations are valid for any plane wave in the form (2.9). So, up to
this point, don’'t make any assumptions about whether the wave is longitudinal or
transverse in the derivations]

. . A+2
From the last two equations show that either ¢? = At ou

and U x 1 =0,

or =" and t-1=0. Show finaly that the plane wave travels with speed

0
A+2
c= +oH and has motion paralel to | and is therefore longitudina (this is
P

the plane P-wave); or the plane wave travels with speed ¢ = X and has motion

o)
perpendicular to | so that it is transverse (this is the plane S-wave). There are no
other types of elastic plane wave in an isotropic homogenous medium.

2.2 If anelasticdisplacement sati sfiesthe vector equation (2.6), and if thisdisplacement
and the body force are represented by potentials so that u = V¢ + Vi (with
V-y¢y=0)andf =V 4+ VWV (with V - ¥ = 0), show that (2.6) becomes athird-
order partial differential equation. Show that separate fourth-order equations for
¢ and  can be written in the form

Vpp — (n +21)V2p — ®] =0
and
VAo — uV?y — W] =0.

[To generate a solution of (2.6), note that it is sufficient to require ¢ and
¥ to satisfy the simpler second-order equations p¢ — (A + 2u)V2¢p = ® and
oY — nV2y = W, because such solutions also satisfy the third-order differential
eguation mentioned above. But is it true that all possible displacement solutions
u to (2.6) can be generated by potentials ¢ and y that satisfy these second-order
wave equations? Fortunately the answer here is “yes,” though a proof was not
given for more than 100 years after it was assumed to be true. It follows that only
second-order equations for ¢ and v are needed, in order to generate all possible
solutions u.]

Show from u = V¢ + V¢ (with V - ¢ = 0) that the potential ¢ generates
a displacement which is irrotationa (has zero curl); and that the potential
generates a displacement which is divergence-free (no volume change). [ Thus the

2
P-wave, in addition to having the characteristic speed ¢ = + and being

longitudinal, isalsoirrotational but carriesachangein volume; and the S-wave, in

addition to having the characteristic speed ¢ = e and being transverse, is aso

0
divergence-free (sometimes called equivoluminal) but carries a change in particle
rotation. P-wave motion is sometimes called compressional, entailing dilatation
or rarefaction as well as compression. An S-wave entails shearing motion.]

2.3 For the problem of a plane wave incident upon the interface between two fluids
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54 Chapter 2 / WAVES IN AN ISOTROPIC ELASTIC SOLID
Transmitted SH wave
i

P1 B
X3=0 -
ap X
Ip|ls P2 B2 1

Incident SH wave

Reflected SH wave
1 -
3 s

FIGURE 2.9
The three S waves shown here have horizontal particle motions (thus giving SH motion).

(see Section 2.1.5 and Figure 2.4), show that in general the horizontal component
of displacement is discontinuous across the interface.

For the fluids shown in Figure 2.4, p» > p1 for stability. If aso ¢, > ¢y, then
show that the bulk modulus (defined in Problem 1.6) of the lower fluid is greater
than that of the upper one.

What types of physica phenomena might result from the discontinuity in
horizontal displacement?

2.4 Prove the statement made following (2.32), that “Impedance is essentially the
ratio of pressure to particle velocity.”

2.5 Supposethat an SH waveisincident from below, upon the surface x3 = 0 asshown
in Figure 2.9.

a) What arethetwo boundary conditions needed, to determine the two coefficients
S8 (transmission) and SS (reflection)?
b) Show that the displacement

SianX 7005]‘2

. . iw( 1 X37t) iw(pxlf cosiz ngt)
u=(0,ul® 0) where u*=e \ 72 72 —e P2

is a satisfactory form for the incident wave (i.e., show that u given by these
formulasisaplane SH wave, propagating in the correct direction and with unit
amplitude).

¢) Write down the corresponding formulas for the transmitted u, component,
which can be called u§®™s, and the reflected component, ul.

d) Show that the two coefficients in this problem are given by

66— 2p2f2COS j2 &5 _ P1P1COS j1 — p22COS |2

p1B1COS j1 + p2B2CO0S J2 p1P1COS j1 + p2B2COS j2

e) If x3 = 0isafreesurface, on which 73, = 0, then there is no transmitted wave.
Show in this case that the particle motion of the free surfaceitself is double the
particle motion in the incident wave.

Mrking pages for Paul Richards’ class notes; do not copy or circulate without permission from PGR  2004/9/8 22:07



2.6

2.7

Problems

Show from theleft-hand sides of (2.42) that for each of thesetwowaves, P and SV,
the particlemotionislinear when p < — < —.[By “linear”, we mean the particles
o

move in aline, with their X1 and x3 components either in phase, or exactly out of
phase (by 180°). So, for ahomogeneous P-wave or SV -wave, the particles move
in straight lines — longitudinal or transverse. The whole point of this problem,
given below, is to make the point that particle motion for inhomogeneous waves
isnot linear.]

The right-hand sides of equations (2.42) give the form of both P- and SV-

waveswhen their horizontal speed — isso dlow that the waves decay exponentially

with depth x3. Conventionally we express the wave by taking the real part of these
eguations. Show for the inhomogeneous P-wave described by the right-hand side
of (2.42) that the particle motions (u1, O, u3) satisfy

2 2 _ [p2— L
Ul U3 —e 20 [ p 22 X3

and hence that the particle motion in an inhomogeneous P-wave is elliptical.
What is the corresponding result for the inhomogeneous SV -wave, derived

from the second of (2.42)?

If A= pu, show tha;the Rayleigh wave function R(p) given in (2.45) is zero if
Which of these possibilities can provide a coupled inhomogeneous P-wave

and SV-wave?
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